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The purpose of this study was to establish reference ranges for gut microbial indices by collecting real-world 
Japanese microbiome data from a Mykinso cohort. Although several large cohort studies have focused on the 
human gut microbiome, large cohort studies of the gut microbiome from Japanese populations are scarce, 
especially from healthy or non-diseased individuals. We collected stool samples and original survey lifestyle 
information from 5,843 Japanese individuals through the Mykinso gut microbiome testing service. From the 
obtained 16S rRNA sequence data derived from stool samples, the ratio and distribution of each taxon were 
analyzed. The relationship between different epidemiological attributes and gut microbial indicators were 
statistically analyzed. The qualitative and quantitative indicators of these common gut microbiota were confirmed 
to be strongly correlated with age, sex, constipation/diarrhea, and history of lifestyle-related diseases. Therefore, 
we set up a healthy sub-cohort that controlled for these attribute factors and defined reference ranges from the 
distribution of gut microbial index in that population. Taken together, these results show that the gut microbiota 
of Japanese people had high beta-diversity, with no single “typical” gut microbiota type. We believe that the 
reference ranges for the gut microbial indices obtained in this study can be new reference values for determining 
the balance and health of the gut microbiota of an individual. In the future, it is necessary to clarify the clinical 
validity of these reference values by comparing them with a clinical disease cohort.
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INTRODUCTION

Since the establishment of next-generation 16S rRNA 
sequencing analysis, multiple large cohort studies focusing on 
the human gut microbiome have been conducted, such as the US 
Human Microbiome Project [1] and MetaHIT in Europe [2]. An 
integrated catalog of human fecal microbial metagenomes from 
1,200 people in the United States, China, and Europe has identified 
9.9 million microbial genes across fecal microbiota [3]. However, 
studies on gut microbiome from Japanese populations are scarce, 
especially those reporting on healthy or non-diseased individuals. 
Further, in recent studies comparing gut microbiomes by race/
nationality, clear impacts of dietary habits were demonstrated 
[4], suggesting that, owing to the unique Japanese food culture, 
the gut of Japanese individuals could harbor different flora from 
those of individuals in western countries. Therefore, to advance 

research on the gut microbiome and various diseases in Japan, 
it is critical to characterize the healthy gut microbiome in the 
Japanese population.

Host parameters such as age, gender, and body mass index 
(BMI) have been reported to be related to individual differences in 
gut microbiota composition [5–9]. Further, differences in dietary 
habits have been shown to affect the bacterial diversity and 
enterotype of human gut microbiota [10, 11], which may partially 
explain why differences in residential areas/countries are strongly 
associated with differences in gut microbiota composition [12, 
13].

Recently, several studies have revealed gender differences 
in gut microbiota [14–17]. For instance, Min et al. [18] 
conducted an association study to identify bacterial compositions 
associated with men and women, and showed similar microbiota 
characteristics, including overall abundance and diversity, 
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between men and women. However, they also showed gender 
differences at the species level between microbial taxa related 
to fat distribution, suggesting the existence of a gender-specific 
microbiome signature corresponding to gender-specific fat 
distribution, which may also contribute to the observed sex-
specific immunity differences [19]. Thus, several immune 
pathophysiologies may be involved in gender differences in gut 
bacterial composition.

Age is also an important factor affecting the gut microbiota 
[8, 20–23]. Recent reports have described differences in gut 
microbiota between children and adults, and an adult-like 
composition of bacterial communities is established at around 
3–4 years of age or older [7, 20, 24–26]. In addition, the intestinal 
microbiota has been shown to change with age, although the 
definition of old age has differed between reports and include 
individuals older than 60, 65, 70, or 100 years  [14, 27–29]. The 
associated mechanism also remains unknown. Yatsunenko et 
al. [8] conducted a large study of subjects aged 0–83 years and 
showed continuous changes that occurred with age. They found 
that the period required to form an adult-like gut microbiota was 
the 3-year period following birth. Second, interpersonal variation 
was significantly greater between children than between adults. 
Third, the dominance of Bifidobacterium in the baby microbiota 
continued throughout the first year of life, although this dominance 
diminished with age. Nevertheless, owing to the limited number 
of subjects over 60 years of age, the specific continuous changes 
that occur in older people remain unknown. Recently, Odamaki et 
al. [7] reported age-related compositional differences from infants 
to centenarians in a Japanese cross-sectional study. They found 
that Bifidobacterium decreased and Enterobacteriaceae increased 
with age, as observed in some previous studies [8, 21–23].

Relationships have also been observed between gut microbiota 
and diarrhea/constipation. Vandeputte et al. [30] described 
an association between stool consistency and gut microbiota 
composition in 53 healthy female subjects. Tigchelaar et al. [31] 
also reported an association between stool consistency and the 
structure of gut microbiota. Hadizadeh et al. [32] demonstrated 
a correlation between the number of bowel movements and gut 
microbiota. In a Japanese cohort, Takagi et al. [33] reported 
significant differences in microbial structure between individuals 
with differences in stool consistency (Bristol stool scale type). 
Therefore, investigating the relationship between bowel habits 
and intestinal bacterial composition can provide important 
information on gastrointestinal motility function.

However, Japan has its own food culture and customs 
compared to western countries, and the intestinal flora of Japanese 
individuals contain more genes for polysaccharide-degrading 
enzymes derived from water-soluble dietary fiber than Americans 
[34]. This feature may be related to the longer life expectancy of 
Japanese people and their low BMIs [35, 36]. Nishijima et al. 
[37] clearly showed significant differences in the gut microbiota 
of the Japanese population compared to other countries, which 
cannot be explained by meals alone. Therefore, the structure of 
the intestinal flora may be highly dependent on an individual’s 
country/region and lifestyle [38].

In this study, we investigated the relative abundance ranges of 
microbial taxa in stool samples from a large healthy human cohort. 
Further, we analyzed the relationship between the aforementioned 
genera or gut microbiota composition and Japanese demographic 
features, lifestyle, and bowel habits. Finally, we developed 

reference ranges using a large healthy Japanese cohort and 
considered the effects of age, gender, diarrhea, and constipation.

MATERIALS AND METHODS

Study design and participants
From November 2015 through June 2019, a Mykinso cohort of 

5,843 individuals who had submitted fecal samples (one sample 
per subject) was selected from data obtained through the Mykinso 
gut microbiome testing service. Informed consent was obtained 
from all participants in the study. All procedures complied with 
the principles of the Declaration of Helsinki and were approved 
by the Institutional Review Board (IRB) at our institution, and the 
study was registered as UMIN000028887 and UMIN000028888 
in the UMIN Clinical Trials Registry System. The IRB-approved 
protocol specifically allows for a study involving a cross-sectional 
(one time per subject) analysis of the survey data and subsequent 
follow-up survey (multiple times per subject). In this study, we 
analyzed only cross-sectional data from the cohort study dataset.

Demographic features, bowel habits, and disease and 
medication data

Using an original survey (Supplementary Table 1), metadata 
were collected through the Mykinso gut microbiome testing 
service. The original survey included questions on demographic 
features, lifestyle, bowel habits, and disease. Individuals were 
scored positive for a disease if they replied yes to any original 
survey question, negative if they replied no, and unknown if data 
were unavailable across all original surveys.

Fecal sampling, DNA extraction, and sequencing
Fecal samples were collected using brush-type collection 

kits containing guanidine thiocyanate solution (Techno Suruga 
Laboratory, Shizuoka, Japan), transported at normal temperature, 
and stored at 4°C. DNA extraction from the fecal samples was 
performed using an automated DNA extraction system (GENE 
PREP STAR PI-480, Kurabo Industries Ltd, Osaka, Japan) 
according to the manufacturer’s protocol. The V1–V2 region 
of the 16S rRNA gene was amplified using a forward primer 
(16S_27Fmod: TCG TCG GCA GCG TCA GAT GTG TAT 
AAG AGA CAG AGR GTT TGA TYM TGG CTC AG) and a 
reverse primer (16S_338R: GTC TCG TGG GCT CGG AGA 
TGT GTA TAA GAG ACA GTG CTG CCT CCC GTA GGA GT) 
and KAPA HiFi HotStart ReadyMix (Roche). To sequence 16S 
amplicons by Illumina MiSeq platform, dual index adapters were 
attached using the Nextera XT Index kit. Each library was diluted 
to 5 ng/µL, and equal volumes of the libraries were mixed to 4 
nM. The DNA concentration of the mixed libraries was quantified 
by qPCR with KAPA SYBR FAST qPCR Master Mix (KK4601, 
KAPA Biosystems) using primer 1 (AAT GAT ACG GCG ACC 
ACC) and primer 2 (CAA GCA GAA GAC GGC ATA CGA). 
The library preparations were carried out according to 16S library 
preparation protocol of Illumina (Illumina, San Diego, CA, USA). 
Libraries were sequenced using the MiSeq Reagent Kit v2 (500 
Cycles), to produce 250 bp paired-end reads.

Taxonomy assignment based on 16S rRNA gene sequences
Paired-end reads of partial 16S rRNA gene sequences were 

clustered by 97% nucleotide identity and then assigned taxonomic 
information using the Greengenes database (v13.8) [39] through 
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the QIIME pipeline (v1.8.0) [40]. The steps for data processing 
and assignment based on the QIIME pipeline were as follows: (i) 
joining paired-end reads; (ii) quality filtering with an accuracy 
of Q30 (>99.9%) and a read length > 300 bp; (iii) randomly 
extracting 10,000 reads per sample for subsequent analysis; (iv) 
clustering operational taxonomic units (OTUs) with 97% identity 
by UCLUST (v1.2.22q) [41]; and (v) assigning taxonomic 
information to each OTU using the RDP classifier [42] with the 
full-length 16S gene data of Greengenes (v13.8) to determine the 
identity and composition of bacterial genera.

Transformation of compositional microbiome data for 
hypothesis testing

Centered log-ratio (clr) transformed values were used as inputs 
for multivariate hypothesis testing [43] to manage 0 count values 
as both point estimates using the zCompositions R package [44] 
and as a probability distribution using the ALDEx2 package [45] 
available on Bioconductor.

Group differences in beta-diversity
Aitchison distance, the Euclidian distance between samples 

after clr transformation, and the distances between samples are 
the same as the phylogenetic ilr [43]. Replacement for β-diversity 
exploration of microbiome data is a variance-based compositional 
principal component (PCA) biplot [46], in which the relationship 
between inter-OTU variance and sample distance can be observed 
[47]. Compositional PCA biplots display the relationships 
between OTUs and distances between samples on a common plot 
to glean substantial and qualitative information regarding dataset 
quality and the relationships between groups [47].

Group differences in alpha-diversity
Microbiota diversity was assessed by the Shannon index 

based on 97% nucleotide sequence identity. These values were 
calculated using QIIME [40] with a depth of 10,000 reads. To 
test two-group differences between male and female groups, we 
calculated p values using the two-sided unpaired Welch’s t-test. 
To test group differences among age groups in the diversity 
index, we calculated p values using one-way analysis of variance 
(ANOVA).

Group differences in taxonomic abundance
To compare the taxonomic abundance between the groups, we 

conducted the univariate statistical test using the ALDEx2 tool. 
The false discovery rate (FDR) control was performed based 
on the Benjamini-Hochberg procedure to correct for multiple 
testing, i.e., ‘p.adjust’ in R. Analysis was confined to taxa with a 
prevalence greater than 10% and a maximum proportion (relative 
abundance) greater than 0.005. An FDR-adjusted p-value less 
than 5% was considered to be significant.

RESULTS

Cohort characteristics
The participants primarily resided in Japan (n=5,843; 

Supplementary Table 2) and were characterized by a greater 
range in age, stool type, and lifestyle than the participants in 
other Japanese large-scale microbiome projects [7, 33, 37]. In 
the original survey, participants (n=4,479) reported demographic 
features, disease history, and lifestyle data (participants missing 

any of these data were excluded; Supplementary Table 3). In 
accordance with our IRB, all survey questions were optional 
(question response rate, 76.65%). Eligible subjects were male 
and female who were considered to not have disease history 
(ineligible subjects were those who self-reported any disease 
history; Supplementary Table 4). Eligible criteria included no 
self-reported history of any disease. Ultimately, 2,865 individuals 
were included in the subsequent analysis (Table 1, Supplementary 
Fig. 1).

Sex-related gut microbiota
Taxonomic differences in microbial communities were 

evaluated at the genus level. The comparison of microbial 
composition between male and female subjects showed a 
significant richness in the abundances of 12 and 13 genera in 
male and female subjects, respectively (blue and red points, 
respectively, in Fig. 1). The results were characterized by a 
richness in the representative genera Prevotella, Megamonas, 
Collinsella, Dorea, Megasphaera, and Fusobacterium 
(p<0.001, FDR-adjusted p-value<0.005) in male subjects and an 
increase in representative genera Oscillospira, Coprobacillus, 
Ruminococcus, Bacteroides, Eggerthella, Anaerotruncus, 
Trabulsiella, and Akkermansia (p<0.001, FDR-adjusted p-value 
<0.005) in female subjects. Subsequently, we evaluated the 
alpha-diversity of gut microbiota using the Shannon index. The 
Shannon index showed no statistically significant differences 
between male (mean=6.013) and female (mean=6.008) subjects 
(Welch’s two-sample t-test; t (2,352.5) =−0.198, p=0.843, 95% 
CI =−0.049 to 0.060). Next, the dissimilarity of the overall 
structure of the gut microbiome for male and female subjects, 
beta-diversity was calculated using Aitchison distance (Fig. 2). 
PCA revealed that there were structural differences between male 
and female subjects (PERMANOVA, R2=0.060, p=0.001).

Age-related gut microbiota
Further, differences in the gut microbial structure in each 

age group were taxonomically evaluated at the phylum level 
(Fig. 3). In agreement with previous results, the microbiota 
composition included four predominant phyla (Firmicutes, 
Bacteroidetes, Actinobacteria, and Proteobacteria). Of these, 
Actinobacteria showed a trend to decrease in the 60 years old 

Table 1.	 Distribution of primary eligible subjects

Demographic
features Female Male

Number of samples 1,722 1,143
BMI 21.1 (3.0) 23.1 (3.5)
Age 40.16 (11.30) 41.77 (11.30)
Age group
19 and under 20 (1.2%) 10 (0.9%)
20–29 322 (18.7%) 135 (11.8%)
30–39 559 (32.5%) 408 (35.7%)
40–49 485 (28.2%) 358 (31.3%)
50–59 249 (14.5%) 159 (13.9%)
60–69 73 (4.2%) 52 (4.5%)
70 and over 14 (0.8%) 21 (1.8%)

Mean (SD); n/N (%).
BMI: Body Mass Index.
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group (p=0.040, FDR-adjusted p-value=0.640) and 70 years or 
older group (p=0.048, FDR-adjusted p-value=0.700), compared 
to the 19 years or under group. The alpha-diversity index 
showed significant differences across age groups in our cohort 
(ANOVA; F(6,2851) = 5.045, p<0.001; Fig. 4). We also tested the 
multiplicity correction of each pair difference with the Benjamini 
& Hochberg method, and statistically significant differences were 
found between 20s and 60s age groups (p<0.001), between 30s 
and 60s age groups (p=0.008), between 20s and 40s age group 
(p=0.006), and between 50s and 60s age groups (p=0.043; Table 2). 
Additionally, we created three age groups (young group, 0–19; 
adult group, 20–59; and elderly group, 60 years or older), and 
the overall structure of the gut microbiome using beta-diversity 
indices was calculated using Aitchison distance (Fig. 5). PCA 

revealed that there were microbial structural differences among 
the three age groups (PERMANOVA, R2=0.034, p<0.001).

Bowel habits-related gut microbiota
Considering the heterogeneity and varying generations of 

samples in this dataset, we excluded samples from the young 
(0–19) and elderly (60 years or older) groups, which might 
have caused bias in the subsequent analysis [7, 14, 27–29]. As 
a result, 2,675 samples were included in the resulting dataset 
(Table 3, Supplementary Fig. 1). The bowel habits (stool shape 
and defecation frequency) of all participants enrolled in this 
study were recorded and classified using the self-reported 
original survey. Additionally, perceived symptoms of diarrhea/
constipation were recorded and classified. According to the 

Fig. 1.	 Relative abundances of gut microbiota in male and female subjects. Genera were significantly different 
between male and female subjects. diff_btw = median difference in clr values between female and male groups. 
magenta: positive diff_btw in female group; cyan: negative diff_btw in female group.
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stool shape, bowel frequency, and perceived symptom scores, 
participants were classified as normal bowel habit type, diarrhea 
type, constipation type, or mixed type. Participants reporting stool 
type 1 (hard stool), defecation frequency type 4 (less than once per 
week), or frequent perception of constipation symptoms within 
1 month were classified into the constipation type. Participants 
reporting stool type 7 (liquid stools), defecation frequency type 
1 (more than three times per day), or frequent perception of 
diarrhea symptoms within 1 month were classified as the diarrhea 
type. Finally participants who fit into both the constipation 
and the diarrhea types were classified into the mixed type. The 
constipation group (female, n=337, 20.87%; male, n=37, 3.49%), 
diarrhea group (female, n=357, 22.11%; male, n=457, 43.11%), 
mixed group (female, n=139, 8.61%; male, n=29, 2.74%), and 
normal group (female, n=782, 48.42%; male, n=537, 50.66%) 
were observed (Table 3). Importantly, the Shannon index for 
each bowel habit group showed a significant difference among 
groups in our cohort (ANOVA; F(3,2667)=1.761, p<0.001; 
Fig. 6). We also tested each pair difference with the Benjamini 
& Hochberg method, which showed statistically significant 
differences between the normal and diarrhea groups (p<0.001), 
constipation and diarrhea groups (p<0.001), and mixed and 
diarrhea groups (p=0.001). These differences are illustrated in 
Fig. 6. Additionally, the beta-diversity indices among the four 
bowel habit groups using was calculated using Aitchison distance 
and visualized by PCA according to Aitchison distance (Fig. 7). 
An additional PERMANOVA analysis showed that the bowel 
habit type was a significant factor contributing to the variation 
of the structure of the gut microbiota (p<0.001). Approximately 
0.7% of the variance in beta-diversity was explained by the 
bowel habit type (PERMANOVA; F(3,2667)=6.714, R2=0.007, 

p<0.001), which was competitive with available measurements 
for clinical and environmental covariates. Subsequently, at the 
genus level, we identified several altered bacteria among the 
four bowel habit groups. Interestingly, a significantly higher 
relative abundances of Fusobacterium (p<0.001, FDR-adjusted 
p-value<0.005) and Oscillospira (p<0.001, FDR-adjusted 
p-value<0.005) were observed in the diarrhea and constipation 
groups, respectively. In addition, the relative abundances of 
Ruminococcus, Anaerotruncus, Alistipes, and Akkermansia 
(p<0.01, FDR-adjusted p-value<0.05) were significantly higher 
in the constipation group, whereas that of Dorea (p<0.01, FDR-
adjusted p-value<0.05) was higher in the diarrhea group.

Reference ranges from the healthy Japanese cohort
Considering the heterogeneity and bowel habits of the sample 

dataset, we excluded samples from individuals with diarrhea or 
constipation (Supplementary Fig. 1), which might cause bias 
in reference ranges [30–33]. Ultimately, 1,319 samples were 
selected as a healthy reference dataset (Supplementary Fig. 1). 
We identified 453 genera and 20 phyla of Bacteria and Archaea in 
the gut microbiomes of the healthy reference dataset. The genera 
with an average relative abundance of ≥ 0.5% in the Japanese 
healthy reference dataset are listed in Supplementary Fig. 2. At 
the genus level, the Japanese healthy reference was characterized 
by the highest abundances of Bacteroides, Faecalibacterium, 
Prevotella, Blautia, Bifidobacterium, Coprococcus, and 
Parabacteroides (Supplementary Fig. 2).

In this study, health-related microbiome indices were selected 
based on peer-reviewed studies in academic journals and in-
house data analyses (Table 4). To determine the reference ranges 
of 11 target microbiome indices, the dataset of 1,319 individuals 

Fig. 2.	 Plot of individual samples from PCA output (magenta: 
female samples, cyan: male samples). The distance between 
points is proportional to the Euclidian distance of CLR 
vectors of the samples (Aitchison distance). The multivariate 
distance between samples was estimated using the Aitchison 
distance, which showed significantly different composition 
between female and male samples (ANOSIM, R2=0.060, 
p=0.001).

Fig. 3.	 Comparative analyses of the taxonomic composition of the microbial 
community at the phylum level for each age group. Each component of the 
cumulative bar chart indicates a phylum.
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selected from the Mykinso cohort as described above was 
established. Microbiome data from this dataset were analyzed to 
determine the empirical reference ranges for two indices of overall 
community structure, two complex genus indices, one class, and 
six genera. For each of the 1,319 samples, we determined the 
relative abundance of each target within the microbial population, 

revealing the distribution of the relative abundance of each target 
in the cohort (Table 4). These data were used to define a central 
80% healthy range with confidence intervals for each target. 
Many of the targets show significant spread, highlighting the 
importance of defining reference ranges for health-related indices.

Table 2.	 Pairwise comparisons of the Shannon index between age groups

Age-group pair diff lwr upr p.adj
20s–19under 0.001 −0.398 0.400 1.000
30s–19under 0.109 −0.284 0.502 0.983
30s–20s 0.108 −0.012 0.228 0.112
40s–19under 0.151 −0.242 0.545 0.917
40s–20s 0.151 0.027 0.274 0.006
40s–30s 0.043 −0.057 0.142 0.870
50s–19under 0.128 −0.272 0.529 0.965
50s–20s 0.127 −0.017 0.272 0.125
50s–30s 0.019 −0.106 0.145 0.999
50s–40s −0.023 −0.151 0.105 0.998
60s–19under 0.349 −0.082 0.779 0.203
60s–20s 0.348 0.134 0.562 <0.001 
60s–30s 0.240 0.039 0.441 0.008
60s–40s 0.197 −0.006 0.400 0.063
60s–50s 0.220 0.004 0.437 0.043
70over–19under 0.303 −0.224 0.830 0.618
70over–20s 0.302 −0.069 0.674 0.199
70over–30s 0.194 −0.170 0.559 0.701
70over–40s 0.152 −0.214 0.517 0.885
70over–50s 0.175 −0.198 0.548 0.812
70over–60s −0.046 −0.451 0.359 1.000

diff: Differences in mean levels; lwr: 95% confidence lower level; upr: 95% 
confidence upper level
p.adj: p-value adjusted by Benjamin & Hochberg medhods.

Fig. 5.	 (a) Plot of individual samples from PCA output (red: elderly samples, blue: young samples, and gray: adult samples). The distance between 
points is proportional to the Euclidian distance of CLR vectors of the samples (Aitchison distance). (b) The multivariate distance between samples 
was estimated using the Aitchison distance, which showed significantly different compositions in the junior, adult and senior samples (red: elderly  
r, blue: young, and gray: adult) (PERMANOVA, R2=0.034, p<0.001).

Fig. 4.	 Age-related differences in the Shannon index of gut 
microbiota.
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DISCUSSION

We developed reference ranges using a large healthy Japanese 
cohort. The reference ranges consider the effect of age, gender, 
diarrhea, and constipation to aid physicians with accurate 
diagnosis of the intestinal bacterial composition ratio using a 
standard value derived from a healthy population. Eighteen 
intestinal bacterial indicators suggested to be associated with 
health status were selected. Using intestinal bacterial composition 
test panels, the detection of intestinal bacterial indicators outside 
of their healthy ranges can be useful evidence to support a 
medical plan.

Gut microbiota and sex/gender
Some characteristics of gender-specific immune differences 

are induced by gut microbiota. Fransen et al. [48] investigated 
significant gender differences in bacterial groups at the 
family or genus level. Females had higher abundances of 

Desulfovibrionaceae, Lactobacillaceae (Lactobacillus at 
the genus level), and Verrucomicrobiaceae (Akkermansia at 
the genus level), whereas males had higher abundances of 
Ruminococcaceae and Rikenellaceae (Alistipes at the genus 
level). In this study, several characteristic differences were 
observed between male and female subjects regarding the 
abundances of gut microbiota at the genus level. The genera 
Prevotella, Megamonas, Fusobacterium, and Megasphaera were 
significantly abundant in male subjects, whereas Bifidobacterium, 
Ruminococcus, and Akkermansia were significantly abundant in 
female subjects. These results are consistent with the results of 
previous Japanese studies [7, 33] and may be considered as the 
characteristic gender differences in the composition of intestinal 
microbiota in the Japanese population.

Gut microbiota and age/generation
Recent reports have shown a clear difference in the composition 

of the intestinal microbiota of infants, adults, and the elderly [7, 

Table 3.	 Distribution of bowel habits by sex and age group (20–50)

Age-group:  
gender

Normal  
stool Diarrhea Constipation Mixed Number of 

samples
20–29: male 59 69 2 5 135
20–29: female 149 76 57 40 322
30–39: male 196 185 14 13 408
30–39: female 243 134 128 54 559
40–49: male 185 150 15 8 358
40–49: female 233 112 111 29 485
50–59: male 97 53 6 3 159
50–59: female 157 35 41 16 249
Sum 1,319 814 374 168 2,675

Fig. 6.	 Alteration of the Shannon 
index of gut microbiota associated 
with stool consistency. Comparison 
of α-diversity indices: Shannon 
index (OTU evenness estimation). 
Bowel habit was categorized into 
four groups: normal, diarrhea, 
constipation, and mixed.
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8, 33]. The microbiota composition initially shifts after birth, 
followed by significant shifts during childhood and in later years 
[20]. In this study, we segmented the population by age group 
(young, adult, and elderly group). Our results are in agreement with 
studies indicating clear differences in gut microbiota composition 
among infants, adults, and the elderly [7, 49, 50]. It was found 
that the Actinobacteria abundance and alpha-diversity index 
were gut microbiome indices related to aging. The most dramatic 
changes in gut microbiota diversity occur in early childhood [20], 
but recent large cross-sectional cohort studies have also reported 
increases in adulthood [7, 51]. In our cross-sectional cohort, the 
alpha-diversity index showed slight increasing trend from 20 to 
69 years old (Fig. 4) that was consistent with recent previous 
reports [7, 51]. On the other hand, other recent studies have 
suggested that both Bacteroides abundance and species diversity 
decline in the feces of elderly subjects and that the abundance of 
Bifidobacterium is reduced [27]. The gut microbiota composition 
of elderly subjects is expected to be in a state of flux [20]. In our 
cross-sectional cohort, most elderly individuals were community 
dwellers not in long-term residential care; this state of healthy 
aging may maintain a high diversity of gut microbiota.

Gut microbiota and bowel habits (diarrhea/constipation)
Similarly to Vandeputte et al. [30], we found a significant 

association between bowel habits (stool shape and defecation 
frequency) and gut microbiota diversity. Furthermore, deviations 
of the gut microbiota composition in several genera, including 
Oscillospira, Ruminococcus, Anaerotruncus, Alistipes, and 
Akkermansia, in constipation subjects and Fusobacterium and 
Dorea in diarrhea subjects were confirmed, which is consistent 
with a previous report [33]. Although the role of these genera 
in stool consistency remains unclear, the results illustrate the 
effect of gut microbiota on stool consistency in healthy Japanese 
subjects.

Gut microbiota and racial/regional differences
Our results showed that Japanese adults (20–59 years 

old) had a greater abundance of the genera Bacteroides and 
Faecalibacterium, interquartile ranges (IQRs) of 27.43% (19.03–
35.26) and 6.83% (3.39–10.06), respectively, and a relatively 
lower abundance of the genera Clostridium (IQR 0.20%, 0.04–
0.44), compared with previous studies in other Japanese cohorts 
[37]. However, the estimated abundances of Bifidobacterium and 
Blautia were greater (IQRs of 2.47% (0.86–5.78), and 5.31% 
(2.94–7.85), respectively) than those of a previous study in other 
nations (<0.5% and >5%, in the US and China, respectively) 
[37]. These bacterial compositions may be characteristic of the 
intestinal microbiota of the Japanese population but may also 
reflect differences in DNA extraction methods [52, 53] and the 
amplified region of the 16S rRNA [54].

A high abundance of Bifidobacterium has also been observed 
in the gut microbiome of Japanese children by 16S rRNA gene 
analysis [12], indicating its high prevalence throughout the 
Japanese population. Bifidobacterium is thought to be a beneficial 
microbe that contains more glycoside hydrolases for degrading 
starch than other intestinal microbes [55, 56]. Therefore, the high 
abundance of Bifidobacterium may be a consequence of the intake 
of various saccharides in traditional and unique Japanese foods. 
However, it is unknown which foods or nutrients contribute to 
the high abundance of Bifidobacterium. As future prospects, 
it is essential to create a reference microbiota for the Japanese 
population by age group and to increase the number of subjects in 
the young and the elderly age groups. Additionally, investigations 
of geographical differences within Japan are of interest.

Clinical relevance and reference ranges
All 11 microbiome indices successfully identified using 16S 

rRNA gene sequencing were associated with specific health 
conditions. Alpha-diversity, including the Shannon index, and 

Fig. 7.	 (a) Plot of individual samples from PCA output (gray: normal samples, red: diarrhea samples, green: constipation samples, and blue: mixed 
type samples). The distance between points is proportional to the Euclidian distance of CLR vectors of the samples (Aitchison distance). The 
multivariate distance between samples was estimated using the Aitchison distance, which showed significantly different compositions between the 
bowel habit type (PERMANOVA, R2=0.007, p<0.001). (b) RDA triplot of CLR vectors of the samples constrained by bowel habit group.
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observed genera number appeared to be associated with better 
health [57]. A recent meta-analysis proposed reduced alpha-
diversity as a reliable indicator of diarrhea-associated dysbiosis 
[58]. These microbiota diversity indices (Shannon index and 
observed OTUs) revealed significant differences in the healthy 
aging group, indicating that a healthy, diverse diet promotes 
greater diversity in the gut microbiota [57].

Previous studies have proposed that Bifidobacterium is 
inversely associated with inflammatory bowel disease (IBD) 
and diarrhea-associated dysbiosis [59] and the consumption of 
probiotics, inulin, and oligofructoses promotes an increase in 
Bifidobacterium abundance [60]. Additionally, Faecalibacterium 
has been proposed to be a dominant member of the human 
intestinal microbiota in healthy adults and especially to be 
a health sensor for active Crohn’s disease patients [61]. A 
recent meta-analysis showed a reduction in butyrate-producing 
Clostridiales, including Coprococcus, Roseburia, Butyricicoccus, 
Faecalibacterium, Anaerostipes, and Butyricimonas, which are 

associated with a healthy gut [59].
Although not all genera within the order Lactobacillales are 

verified lactic acid producers, the dominant genera within this 
order (including Lactobacillus, Pediococcus, Leuconostoc, 
Lactococcus, and Weissella) are known to harbor genes for lactic 
acid production and are often enriched in the case of patients 
across multiple diseases [58]. Lactobacillales genera have been 
shown to adapt to the lower pH of the upper gastrointestinal tract 
[62]. Thus, the shared disease-associated taxa may be indicators 
of shorter stool transit times and disruptions in the redox state 
and/or pH of the lower intestine, rather than specific pathogens. 
Genera within Lactobacillaceae and Streptococcaceae families 
are dominant in the upper gastrointestinal tract and are present 
in the stool of many individuals at low frequency [58]. These 
taxa likely become enriched with faster stool transit time (i.e., a 
diarrhea signature) [58].

Previous studies have proposed Fusobacterium to be associated 
with various human diseases [63]. Dysbiosis associated with 

Table 4.	 Reference ranges from healthy Japanese subjects for 11 clinically relevant indices

Microbiome Index unit group lower limit
[10%]

median 
[50%]

upper limit 
[90%] Reference

Shannon value all 5.08 6.01 6.88 [58, 59]
male 5.15 6.03 6.93

female 5.05 6 6.85
Observed genera genus all 54 65 80 [58, 59]

male 54 65 81
female 54 66 79

Bifidobacterium % all 0.18 2.47 9.6 [60, 61]
male 0.12 2.18 8.45

female 0.21 2.79 10.41
Faecalibacterium % all 0.55 6.83 12.87 [62]

male 0.37 6.36 12.09
female 0.57 7.23 13.27

Butyric acid-producing genera group *1 % all 4.25 12.16 20.47 [59]
male 3.64 11.53 20.03

female 4.66 12.88 20.89
Clostridium % all 0 0.19 0.79 [59]

male 0 0.19 0.7
female 0 0.2 0.89

Lactobacillales genera group verified 
lactic acid producers *2

% all 0 0.01 0.22 [59, 63]
male 0 0.01 0.24

female 0 0.01 0.21
Streptococcus % all 0.05 0.38 2.58 [63, 65]

male 0.03 0.34 2.46
female 0.05 0.41 2.65

Genera group popular in oral cavity *3 % all 0.18 1.4 9.74 [63, 65]
male 0.15 1.31 9.71

female 0.2 1.48 9.9
Fusobacterium % all 0 0 1.37 [59, 64]

male 0 0 2.92
female 0 0 0.83

Observed genera within class 
Gammaproteobacteria

class all 2 5 8 [59, 65]
male 2 5 8

female 2 5 8

*1: This index included Coprococcus, Roseburia, Butyricicoccus, Faecalibacterium, Anaerostipes, and Butyricimonas.
*2: This index included Lactobacillus, Pediococcus, Leuconostoc, Lactococcus, and Weissella.
*3: This index included Streptococcus, Fusobacterium, and Enterobacter genera.
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colorectal cancer is generally characterized by increased 
prevalence of known pathogenic or pathogen-associated 
Fusobacterium and Enterobacter genera, which were shown to be 
higher in colorectal cancer patients in two or more studies [58]. 
Furthermore, other oral community genera, such as members 
of Porphyromonas, Peptostreptococcus, and Parvimonas, were 
found with Fusobacterium on colonic tumors [64].

Limitations
We concede that this study has several limitations. First, 

this research was a participatory observational study. This kind 
of study may be self-selecting and have a tendency for illness 
behaviors, which may create a biased cohort rather than a true 
representation of the Japanese population [65]. As shown in 
Supplementary Table 1, the study cohort contained mostly 
females in their 30s and 40s, followed by males in their 30s 
and 40s. In addition, as shown in Table 3, in the cohort of the 
adult (20–59) age group, 50% or more of individuals in the 
group answered that they had diarrhea or constipation, a higher 
prevalence than in the general Japanese population. On the other 
hand, we believe that it was possible to adjust for these biases by 
screening the analysis dataset as shown in Supplementary Fig. 
1. We excluded individuals with a medical history, the elderly, 
the young, and those with diarrhea/constipation symptoms to 
extract the reference value population. We did not exclude obese 
individuals from our reference dataset because Japan has one of 
the lowest rates of prevalence of obesity (about 4–4.5% of the 
adult population) in the world [66], and the obese population 
(BMI >30) in our healthy reference dataset was even lower (3.8% 
for men, 3.5% for women). Therefore, we believe they did not 
make a strong impact on the reference range values. However, 
it might be better to reconsider adding the BMI criterion for a 
more rigorous definition of “healthy” in future studies. Second, 
the scope of the present study did not extend to analysis of the 
influence of medication such as antibiotics on the gut microbiota 
profile, thus representing a qualitative limitation.

CONCLUSION

Regardless of health status, there are many microorganisms 
that are clinically related to health and disease in the intestines 
of all people, and the exquisite balance of these microorganisms 
varies greatly from person to person, making the definition of 
“good flora” difficult. However, to understand and monitor the 
health and balance of an individual’s gut microbiota, it is essential 
to first know the reference ranges available from a large, healthy 
population such as the one presented here. By further expanding 
the cohort of healthy subjects and accumulating a cohort of 
various health conditions and attributes, more valuable indicators 
can be identified, leading to the realization of personalized 
precision medicine using microbiome information in the future.
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