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Abstract
Background  Trimethylamine N-oxide (TMAO) is a metabolite produced by gut microbiota, and its potential impact 
on lipid metabolism in mammals has garnered widespread attention in the scientific community. Bovine fatty liver 
disease, a metabolic disorder that severely affects the health and productivity of dairy cows, poses a significant 
economic burden on the global dairy industry. However, the specific role and pathogenesis of TMAO in bovine 
fatty liver disease remain unclear, limiting our understanding and treatment of the condition. This study aims to 
construct a bovine fatty liver cell model using an integrated approach that combines transcriptomic, proteomic, and 
metabolomic data. The objective is to investigate the impact of TMAO on lipid metabolism at the molecular level and 
explore its potential regulatory mechanisms.

Results  We established an in vitro bovine fatty liver cell model and conducted a comprehensive analysis of cells 
treated with TMAO using high-throughput omics sequencing technologies. Bioinformatics methods were employed 
to delve into the regulatory effects on lipid metabolism, and several key genes were validated through RT-qPCR. 
Treatment with TMAO significantly affected 4790 genes, 397 proteins, and 137 metabolites. KEGG enrichment analysis 
revealed that the significantly altered molecules were primarily involved in pathways related to the pathology of fatty 
liver disease, such as metabolic pathways, insulin resistance, hepatitis B, and the AMPK signaling pathway. Moreover, 
through joint analysis, we further uncovered that the interaction between TMAO-mediated AMPK signaling and 
oxidative phosphorylation pathways might be a key mechanism promoting lipid accumulation in the liver.

Conclusions  Our study provides new insights into the role of TMAO in the pathogenesis of bovine fatty liver disease 
and offers a scientific basis for developing more effective treatment strategies.
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Introduction
The liver, as the primary metabolic organ in animals, 
plays a pivotal role in regulating energy balance and met-
abolic pathways [1–4]. Lipid metabolism is one of the 
critical physiological processes within hepatocytes and 
is closely linked to overall energy equilibrium and health 
status [5, 6]. For dairy cows, lipids constitute the main 
form of energy storage. During lactation, cows require 
substantial energy to maintain high levels of milk produc-
tion. Hepatocytes modulate lipid metabolism to ensure 
a balance between energy supply and demand, with the 
efficiency of this metabolic process determining the syn-
thesis and secretion of milk fat, thereby directly influenc-
ing the lactational performance of dairy cows [7, 8]. The 
periparturient period, spanning from 21 days before to 21 
days after parturition, is a critical phase for dairy cows. 
Marked reductions in feed intake, coupled with the surge 
in energy requirements for the onset of lactation, lead to 
a state of negative energy balance (NEB) [9]. Studies have 
shown that NEB triggers extensive mobilization of body 
fat, precipitating metabolic disorders such as ketosis and 
fatty liver [10, 11].

The gut-liver axis plays a crucial role in the pathogen-
esis of non-alcoholic fatty liver disease (NAFLD), with 
gut microbiota and their metabolic products having pro-
found effects on liver metabolic functions [12]. Nota-
bly, TMAO, whose precursor trimethylamine (TMA) 
is generated by gut microbiota through the metabo-
lism of choline, L-carnitine, and phosphatidylcholine, 
is subsequently converted into TMAO in the liver by 
flavin-containing monooxygenases (FMO1 and FMO3) 
[13]. TMAO significantly influences the progression of 
NAFLD through the gut-liver axis. Studies indicate that 
TMAO is closely associated with an increased risk of 
cardiovascular diseases and regulates lipid metabolism 
by interfering with cholesterol metabolism, lipopro-
tein metabolism, and fatty acid oxidation [14–21]. This, 
in turn, inhibits the bile acid signaling pathway of the 
farnesoid X receptor (FXR) [22], leading to lipid accu-
mulation in the liver of mice. Additionally, TMAO can 
exacerbate hepatic inflammation by boosting the release 
of inflammatory cytokines, which aggravates hepatocyte 
injury. Furthermore, TMAO promotes the development 
of NAFLD in mice fed a high-fat diet (HFD) by modulat-
ing glucose metabolism and increasing insulin resistance 
[23]. These mechanisms suggest that TMAO, by modu-
lating the gut-liver axis, not only exacerbates the patho-
logical progression of NAFLD but may also facilitate the 
transition to more severe liver conditions such as non-
alcoholic steatohepatitis (NASH). Currently, research 
on TMAO in cattle is relatively limited, while studies in 
humans provide an important theoretical foundation. 
Although extrapolating human research findings to cattle 
involves certain limitations, this cross-species reference 

can offer valuable insights into the potential mechanisms 
of TMAO in cattle. Understanding these interactions 
is critical for developing new therapeutic strategies for 
NAFLD.

In recent years, with the rapid advancement of high-
throughput sequencing technologies, omics-based 
research methods such as transcriptomics, proteomics, 
and metabolomics have been widely applied in the 
fields of biomedical and agricultural sciences, providing 
powerful tools to uncover various physiological regula-
tory mechanisms. For instance, Liu et al. identified six 
central genes potentially involved in the production of 
TMAO-activated hepatic cell exosomes (TMAO-Exos) 
through transcriptomic analysis of the exosomes (Exos) 
released by TMAO-Exos [24]. In the study by Lin et al., 
proteomic techniques revealed that anti-atherosclerotic 
could effectively reduce plasma TMAO levels in mice and 
slow the progression of atherosclerosis by modulating the 
composition of gut microbiota [25]. Utilizing metabolo-
mics, Chen et al. discovered that TMAO interacts with 
and triggers the signaling pathway of the endoplasmic 
reticulum stress kinase (PERK), thus revealing the cen-
tral roles of TMAO and PERK in the pathogenesis of 
metabolic syndrome and suggesting that modulation 
of the gut microbiota or inhibition of TMAO synthesis 
could reduce disease risk [26].Most research on TMAO 
to date has focused on human health, particularly in rela-
tion to cardiovascular diseases and lipid metabolism dis-
orders. However, studies on lipid metabolism in bovine 
liver cells, particularly in the context of fatty liver dis-
ease, have been relatively limited, often concentrating 
on a single omics dimension rather than on the impact 
of TMAO. Therefore, this study aims to employ multi-
omics approaches and integrative multi-omics analysis 
strategies to comprehensively and deeply investigate the 
effects and mechanisms of TMAO on liver metabolism in 
dairy cows.

This study integrates transcriptomic, proteomic, and 
metabolomic data, employing a joint analysis approach 
to elucidate the effects of TMAO on lipid metabolism in 
bovine hepatic cells. It aims to further our understand-
ing of the relationship between TMAO and hepatic lipid 
metabolism, offering novel insights into the regulatory 
mechanisms of lipid metabolism in dairy cows.

Materials and methods
Culture and treatment of bovine hepatic cells
Dairy cow hepatic cells, kindly provided by Professor 
Yanfen Ma from Ningxia University, were adjusted to a 
seeding density of 1 × 106 cells/mL and inoculated into 
T75 culture flasks. The culture medium consisted of Dul-
becco’s Modified Eagle Medium (DMEM, c11995500BT, 
Thermo Fisher Scientific, Beijing, China) supplemented 
with 10% fetal bovine serum (FBS, 1099 − 141, Thermo 
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Fisher Scientific, Australia) and 1% penicillin-strepto-
mycin. Cells were cultured at 37  °C in an atmosphere 
containing 5% CO2. Upon reaching approximately 80% 
confluence, the cells were randomized into two groups 
using a computer-generated sequence to ensure unbi-
ased allocation. One group served as the control, while 
the other was designated for TMAO treatment. The cells 
were switched to serum-free DMEM and cultured for 
an additional 12  h. Subsequently, the original medium 
was removed, and the control group was replenished 
with fresh complete medium, while the TMAO treat-
ment groups received complete medium containing 100, 
200, 300, and 400 µmol/L TMAO (T833724-1  g, Mack-
lin Biochemical Co., Ltd., Shanghai, China), respectively, 
for 12 h before cell pellets were collected. The obtained 
cell pellets were initially preserved in liquid nitrogen for 
30 min and then stored at -80 °C for long-term preserva-
tion for subsequent experimental use. To achieve a more 
accurate depiction of cellular metabolism and related 
processes, we concentrated on intracellular analysis. 
RNA sequencing, proteomic, and untargeted metabolo-
mics analyses were carried out on the cell samples.

Assessment of liver injury and lipid metabolism 
biochemical markers, and oil red O staining experiment
The collected cell pellets were disrupted using an 
ultrasonic cell disruptor. Levels of aspartate amino-
transferase (AST), alanine aminotransferase (ALT), 
and triglycerides (TG) in the samples were measured 
according to the instructions of biochemical assay kits 
(microplate method; AST: C010-2-1, ALT: C009-2-1, 
and TG: A110-1-1, Nanjing Jiancheng Bioengineering 
Institute, Nanjing, China). Subsequently, lipid droplets 
were stained using the Oil Red O staining kit (C0158S, 
Beyotime Biotechnology, Shanghai, China). The col-
lected samples were fixed in 10% neutral formalin and 
then dehydrated using graded alcohols. Following rehy-
dration, samples were stained with freshly prepared Oil 
Red O solution for 15 min. Excess stain was removed by 
washing with 60% isopropanol, and the samples were 
then counterstained with hematoxylin. Stained samples 
were mounted with glycerol gelatin and examined under 
a microscope to observe and quantify lipid droplets [27].

Transcriptomic sequencing and analysis
RNA sequencing services were provided by Shanghai 
Biotechnology Corporation (Shanghai, China). Total 
RNA was extracted from collected cell samples using the 
Trizol method (CW0580, Kangwei Century Biotech Co., 
Ltd., Jiangsu, China). For this study, a total of 6 samples 
were used, consisting of 3 biological replicates for each of 
the two treatment conditions. The samples were selected 
to pilot both the adequacy of RNA extraction and the 
sequencing depth for our experimental setup. Briefly, 

samples were homogenized in Trizol reagent, followed 
by phase separation with chloroform, RNA precipitation 
with isopropanol, and washing with ethanol. The RNA 
pellets were dissolved in RNase-free water. The qual-
ity and concentration of the extracted RNA were evalu-
ated using a NanoDrop spectrophotometer (Thermo 
Scientific) to ensure adequate purity (A260/A280 ratio 
between 1.8 and 2.0) and integrity was verified using aga-
rose gel electrophoresis. The mRNA was enriched from 
total RNA using Oligo(dT) magnetic beads to target 
polyA-tailed RNA. The enriched mRNA was fragmented 
into approximately 300 bp segments using ion fragmen-
tation. First-strand cDNA synthesis was performed using 
the fragmented RNA as a template, 6-base random prim-
ers, and reverse transcriptase. The second-strand cDNA 
was synthesized using the first-strand cDNA as a tem-
plate. Following cDNA synthesis, library construction 
involved PCR amplification to enrich library fragments, 
selecting for a final library size of approximately 450 bp. 
Libraries were then quality-checked using an Agilent 
2100 Bioanalyzer to verify size distribution. Sequencing 
of the libraries was subsequently performed on the Nova-
Seq 6000 platform (Illumina).

Raw sequencing data in FASTQ format were filtered 
using Cutadapt software (v1.15). The filtered reads were 
then aligned to the bovine genome Bos taurus, spe-
cifically using the ARS-UCD1.2 version provided by 
Ensembl 109, with the HISAT2 tool (v2.0.5) [28]. To 
quantify gene expression levels, HTSeq (v0.9.1) was 
employed to tally the read count for each gene, serving 
as the initial expression measure [29]. These expression 
levels were then normalized using the FPKM (Frag-
ments Per Kilobase of transcript per Million mapped 
reads) method. Principal component analysis (PCA) 
of gene expression levels within the transcriptome was 
conducted using the Omicshare data analysis platform 
(https://www.omicshare.com, accessed on 8 June 2023), 
developed by GENE DENovo, with default parameters. 
Identification of differentially expressed genes was per-
formed using the DESeq (v1.30.0) R package, with a 
selection criteria of |log2FoldChange| > 1 and FDR < 0.05 
[30]. Clustering analysis of gene expression patterns 
between samples was carried out using the Pheatmap 
package (v1.0.8) in R, with results presented as heatmaps 
[31] Differentially expressed genes were annotated using 
the KEGG database (http://www.kegg.jp/) [32], and their 
enrichment was analyzed using the ClusterProfiler pack-
age (v3.4.4) [33].

Proteomic sequencing and analysis
Proteomic analysis services were provided by Shang-
hai Biotechnology Corporation (Shanghai, China). Pro-
teins were extracted from cell samples utilizing an SDT 
lysis buffer composed of 4% SDS, 100 mM DTT, and 100 

https://www.omicshare.com
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mM Tris-HCl at pH 8.0. For this study, a total of 6 sam-
ples were analyzed, with 3 biological replicates for each 
of the two treatment conditions. We performed pro-
teomic analysis on the same set of samples used in the 
transcriptomics analysis to maintain consistency across 
these two OMICS datasets. The samples underwent a 
boiling process for 5  min, followed by ultrasonication, 
and were subsequently boiled for an additional 5  min. 
Insoluble cellular debris was discarded after centrifuga-
tion at 16,000×g for 15  min. The resulting supernatant 
was collected and its protein concentration was quanti-
fied employing a BCA Protein Assay Kit (Bio-Rad, USA). 
For each sample, 200  µg of protein was digested using 
the FASP (Filter-Aided Sample Preparation) method as 
described by Wisniewski et al. The peptides were then 
purified using a C18 StageTip in preparation for LC-MS 
analysis [34]. The peptide concentrations were measured 
at OD280 using a Nanodrop One spectrophotometer.

LC-MS/MS analyses were conducted using a Q Exac-
tive Plus mass spectrometer interfaced with an Easy 
1200 nLC system (Thermo Fisher Scientific). The mass 
spectrometry data were processed and analyzed uti-
lizing MaxQuant software (v1.6.0.16) [35]. Within the 
MaxQuant software, protein quantification ratios were 
weighted and normalized based on the median ratio [36]. 
PCA of protein expression levels was carried out using 
the Omicshare data analysis platform (accessed on June 
2023). The identified proteins were evaluated in terms 
of fold change (FC) and p-value through the label-free 
quantification (LFQ) values, and proteins were selected 
based on an upregulation expression multiple of ≥ 2 and 
a p-value < 0.05. Differentially expressed proteins were 
annotated and subjected to significant enrichment analy-
sis using the KEGG database [37].

Untargeted metabolomics sequencing and analysis
Untargeted metabolomics analysis services were pro-
vided by Shanghai Biotechnology Corporation (Shanghai, 
China). For metabolomics analysis, a total of 12 samples 
were used, consisting of 6 biological replicates for each of 
the two treatment conditions. This larger sample size was 
chosen to capture a broader spectrum of metabolites and 
ensure sufficient statistical power. Collected cell samples 
were homogenized with 1 mL of pre-cooled methanol/
acetonitrile/water (v/v/v, 2:2:1), followed by ultrasoni-
cation in an ice-water bath for 1  h, and then incubated 
at -20  °C for 1  h to precipitate proteins. It is important 
to note that these metabolomics samples included the 
same set of initial 3 samples used in transcriptomics and 
proteomics, plus an additional 3 samples to enhance the 
robustness of metabolite detection. The samples were 
centrifuged at 14,000 ×g and 4 °C for 20 min, after which 
800 µL of the supernatant was transferred to a sam-
pling tube. The extracts were then vacuum-dried and 

reconstituted in 50% acetonitrile, filtered through a dis-
posable 0.22  μm cellulose acetate filter, and transferred 
to 2 mL HPLC vials for storage at -80  °C. Metabolomic 
analysis was performed using a UPLC-ESI-Q-TOF-MS 
system (UHPLC, Shimadzu Nexera X2 LC-30AD, Shi-
madzu, Japan) coupled with a Q-Exactive Plus (Thermo 
Scientific, San Jose, USA).For liquid chromatography 
(LC) separation, samples were analyzed on an ACQUITY 
UPLC® HSS T3 column (2.1 × 100 mm, 1.8 μm) (Waters, 
Milford, MA, USA). The flow rate was maintained at 
0.3 mL/min with mobile phase components consisting 
of A: 0.1% formic acid in water and B: 100% acetonitrile 
(ACN). The gradient program initiated with 0% buffer 
B for 2  min, increased linearly to 48% over 4  min, then 
ramped up to 100% in the next 4 min and held for 2 min, 
before returning to 0% buffer B in 0.1 min, followed by a 
3-minute re-equilibration period. Electrospray ionization 
(ESI) was employed in both positive and negative ioniza-
tion modes for separate MS data acquisition.

Multivariate data analysis and modeling were con-
ducted using R (v4.0.3) and the ropls package (v1.36.0). 
Models were constructed employing PCA and orthogo-
nal projections to latent structures-discriminant analysis 
(OPLS-DA) [38]. OPLS-DA facilitated the identification 
of metabolites with discriminative potential through 
variable importance in projection (VIP) scores, with sig-
nificant differential metabolites being selected based on 
VIP ≥ 1 and either FC > 1.5 or FC < 0.667, coupled with 
P < 0.05. The selected differential metabolites were sub-
jected to cluster analysis using R, and key differential 
metabolites were analyzed for KEGG pathway enrich-
ment using the KEGG database to construct relevant 
metabolic pathways. To systematically investigate meta-
bolic alterations, the abundance of differential metab-
olites was used to analyze the overall trends within 
metabolic pathways. Annotation results of differential 
metabolites were quantified using the DA score, with the 
top 30 pathways graphically represented.

Integrated transcriptomic, proteomic, and metabolomic 
analysis
We conducted a comprehensive integration of transcrip-
tomic, proteomic, and metabolomic data to identify key 
differential genes, proteins, and metabolites closely asso-
ciated with the induction of fatty liver, guided by the 
enrichment analysis results of KEGG pathways (P < 0.05). 
We utilized Cytoscape software (v3.10.1) to construct a 
multi-omics functional network diagram [39]. The cor-
relation analysis was conducted using the OmicShare 
tool (accessed on June 2023). Specifically, we performed 
pairwise correlation analyses among the differentially 
expressed genes, proteins, and metabolites involved 
in the system network diagram. We applied stringent 
thresholds of |cor| > 0.9 and P < 0.01 to select significant 



Page 5 of 17Li et al. BMC Genomics           (2025) 26:10 

correlations. The selected genes, proteins, and metabo-
lites were then used to construct a correlation network 
diagram using Cytoscape software (v3.10.1). Ultimately, 
we synthesized the multi-omics data to illustrate a model 
depicting the potential impact of TMAO on lipid metab-
olism in bovine hepatic cells, and the mechanism dia-
gram was created using Figdraw ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​f​i​g​d​r​a​w​.​c​o​
m​​​​​)​. A detailed analysis workflow is provided in Supple-
mentary Figure S5.

qRT-PCR
The reliability of the transcriptomic data was verified 
using qRT-PCR to measure the expression levels of genes 
related to lipid metabolism. Gene primer sequences 
were synthesized by Sangon Biotech Co., Ltd. (Shanghai, 
China) (Supplementary Table S1). The acquired qRT-
PCR data were analyzed using the 2−∆∆CT method to cal-
culate the relative gene expression levels.

Statistical analysis
In our statistical analysis, data were initially organized 
and screened using Excel to ensure accuracy and com-
pleteness. Subsequently, we utilized GraphPad Prism 
software (v8.0) to perform in-depth analyses of quantita-
tive data [40], specifically focusing on SREBF1,MO25 and 
AMPK levels. Using this software, we applied ANOVA 
for comparisons of means across multiple groups, fol-
lowed by Duncan’s test to evaluate significant differences 
between groups. Statistical differences were considered 
significant at P < 0.05 and highly significant at P < 0.01.

Result
The impact of TMAO on bovine hepatic cell damage and 
lipid droplet accumulation
In this study, we investigated the effects of various con-
centrations of TMAO on bovine hepatic cells. The extent 
of liver cell damage inflicted by TMAO was assessed by 
measuring the intracellular content of AST, ALT, and TG. 
The experimental results indicated that TMAO led to 

an increase in AST, ALT, and TG levels across all tested 
concentrations (Fig. 1). Notably, at concentrations of 200 
µmol/L,  300 µmol/L and 400 µmol/L, there was a sig-
nificant increase in AST levels compared to the control 
group (P < 0.05, Fig. 1A). Concurrently, ALT and TG lev-
els significantly increased after treatment with different 
concentrations of TMAO (P < 0.05, Fig. 1B and C). These 
data suggest that TMAO can cause hepatic cell dam-
age at various concentrations, with the most significant 
increase in liver cell damage and TG content observed at 
400 µmol/L.

To further elucidate the impact of TMAO on lipid 
accumulation in hepatic cells, we conducted Oil Red O 
staining on liver cells treated with 400 µmol/L TMAO. 
The control group’s bovine hepatic cell nuclei appeared 
dark blue with sparse red lipid droplets scattered in the 
cytoplasm (Fig.  2A). After treatment with 400 µmol/L 
TMAO, numerous dispersed red lipid droplets were 
observed in the hepatic cell cytoplasm (Fig.  2B), fur-
ther substantiating that TMAO at 400 µmol/L signifi-
cantly promoted the accumulation of lipid droplets in 
bovine hepatic cells. In summary, TMAO exerts a clear 
damaging effect on bovine hepatic cells at certain con-
centrations, with its impact on lipid metabolism being 
particularly pronounced at a concentration of 400 
µmol/L. Subsequent omics studies are thus focused on 
investigating the effects of 400 µmol/L TMAO on liver 
metabolism.

Identification and comparison of differentially expressed 
genes
PCA based on expression levels was performed on the 
samples, and the results showed that biological replicates 
within the same experimental group clustered together 
significantly (PC1: 66.5% and PC2: 11.5%), while samples 
from different experimental groups were clearly separated 
along PC1, confirming the stability and reliability of the 
sequencing results in this experiment (Fig.  3A). Further 
differential analysis identified a total of 4790 significantly 

Fig. 1  The effects of TMAO on the levels of AST, ALT, and TG in bovine hepatic cells. (A) Changes in AST levels under treatment with different concentra-
tions of TMAO. (B) Changes in ALT levels under treatment with different concentrations of TMAO. (C) Changes in TG levels under treatment with different 
concentrations of TMAO. Compared to the control group, * indicates P < 0.05, ** indicates P < 0.01
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differentially expressed genes (Supplementary Table S2, 
FDR < 0.05), with 735 genes upregulated and 4055 genes 
downregulated (Fig. 3B and C). A heatmap was generated 
through cluster analysis of the differentially expressed 
genes, demonstrating good reproducibility within groups 

and clear differences between groups (Fig.  3D). This 
indicates that TMAO treatment of bovine hepatic cells 
can significantly alter the gene expression levels in liver 
cells. To present the significant differences more visually 
between the two comparison groups, a radar chart was 

Fig. 3  Transcriptomic analysis reveals the impact of 400 µmol/L TMAO treatment on gene expression in bovine hepatic cells. (A) PCA plot demonstrates 
the overall expression pattern differences between control and TMAO-treated bovine hepatic cell samples. (B) A volcano plot depicts the relationship 
between the significance of differentially expressed genes (-log10(p-value)) and the magnitude of expression change (log2 fold change), with red points 
indicating significantly upregulated genes, blue points denoting significantly downregulated genes, and black points representing genes with no sig-
nificant difference. (C) A bar chart of the number of differentially expressed genes illustrates the count of significantly upregulated and downregulated 
genes in the TMAO-treated group. (D) A heatmap of differentially expressed genes displays the genes with significant expression differences between 
the control and TMAO-treated groups. The color gradient from blue (low expression) to red (high expression) indicates the level of expression change. 
(E) A radar chart shows the functional distribution of the top 20 genes with the most significant expression changes. (F) A KEGG enrichment analysis plot 
presents the enrichment of differentially expressed genes in metabolic pathways, with the size indicating the number of genes and the color intensity 
reflecting the level of enrichment significance

 

Fig. 2  Oil Red O staining illustrating the effect of TMAO treatment on lipid accumulation in bovine hepatic cells. (A) Oil Red O staining of control group 
bovine hepatic cells. (B) Oil Red O staining of bovine hepatic cells treated with 400 µmol/L TMAO. Oil Red O staining is used to visualize the accumulation 
of intracellular lipid droplets, with the red areas representing lipid droplets
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created, detailing the expression patterns of the top 20 
differentially expressed genes (Fig. 3E).

The KEGG pathway enrichment analysis of differen-
tially expressed genes revealed several key pathways 
related to metabolism, inflammation and oxidative stress, 
and signal transduction. The analysis indicated that path-
ways related to metabolism were mainly concentrated 
in steroid biosynthesis, and thyroid hormone synthesis. 
Pathways related to inflammation and oxidative stress 
were primarily enriched in lipid and atherosclerosis, 
hepatitis B pathways (P < 0.05, Fig.  3F). As for signal 
transduction, the involved pathways included insulin 
resistance, MAPK signaling pathway, thyroid hormone 
signaling pathway, and insulin signaling pathway, which 
are critical pathways.

Identification and comparison of differentially abundant 
proteins
To elucidate the mechanism of action of TMAO in 
bovine hepatic cell lipid metabolism, this study employed 
a LFQ proteomics approach to identify proteins within 

bovine hepatic cells. As shown in Fig. 4A, the identified 
peptide lengths were primarily concentrated above 10 
amino acids (aa), indicating high data quality and provid-
ing a reliable foundation for subsequent analyses. PCA 
scatter plots revealed a clear separation between the 
TMAO-treated group and the control group along the 
first principal component (PC1), suggesting that TMAO 
treatment significantly altered the overall protein expres-
sion pattern in bovine hepatic cells (see Fig. 4B). Further 
differential expression analysis yielded a total of 397 sig-
nificantly different proteins (Supplementary Table S3, 
P < 0.05), with 232 proteins upregulated and 165 down-
regulated (Fig. 4C and D). Cluster heatmap analysis visu-
ally displayed the expression differences of these proteins 
between different treatment groups (Fig. 4E).

The KEGG enrichment results of differentially abun-
dant proteins indicated that metabolic pathways were 
mainly enriched in metabolic pathways, central car-
bon metabolism in cancer, inositol phosphate metab-
olism, and carbohydrate digestion and absorption. 
Pathways related to inflammation and oxidative stress 

Fig. 4  Overview of proteomic analysis results depicting the impact of 400 µmol/L TMAO treatment on protein expression in bovine hepatic cells. (A) 
The peptide length distribution chart ensures the quality of protein identification by reflecting the distribution of identified peptide lengths. (B) PCA 
plots demonstrate the overall differences in protein expression patterns between control and TMAO-treated bovine hepatic cell samples. (C) Volcano 
plots reveal the relationship between the significance of differentially expressed proteins and the fold change in expression, with red points representing 
significantly upregulated proteins, blue points indicating significantly downregulated proteins, and black points denoting proteins with no significant 
difference. (D) A bar chart of the number of significantly differentially abundant proteins provides a clear visualization of the counts of proteins that are 
significantly upregulated and downregulated in the TMAO-treated group. (E) A heatmap of differentially expressed proteins shows those with the most 
significant expression differences between the control and TMAO-treated groups, with a color gradient from blue to red indicating decreasing and 
increasing protein expression levels, respectively. (F) A KEGG enrichment analysis plot reveals the enrichment of differentially expressed proteins in meta-
bolic pathways, with the size of the circles representing the number of proteins and the color intensity indicating the level of enrichment significance
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were primarily enriched in lipid and atherosclerosis and 
hepatitis B pathways (P < 0.05, Fig. 4F). In contrast, signal 
transduction-related pathways included the AGE-RAGE 
signaling pathway in diabetic complications and the 
phosphatidylinositol signaling system, among other criti-
cal pathways.

Identification and comparison of differential metabolites
To delve into the metabolic mechanisms of TMAO’s 
effects on bovine hepatic cells, this study utilized an 
untargeted metabolomics approach to analyze the 
metabolites of the experimental and control groups. The 
results of the PCA revealed significant differences in the 
metabolic profiles between the two groups, with good 
biological reproducibility within each group ( Fig.  5A). 
Moreover, the OPLS-DA score plots indicated a dis-
tinct separation between the two sample groups under 
both positive and negative ion modes. The validity of 
the OPLS-DA models was confirmed by 200 permuta-
tion tests, yielding model quality parameters (R2Y = 0.998 
and Q2 = 0.952 for positive ion mode; R2Y = 0.992 and 
Q2 = 0.931 for negative ion mode) that demonstrated high 
stability and the absence of overfitting ( Fig. 5B and C). 
Differential analysis identified a total of 137 significantly 
altered metabolites (Fig. 5D and E), with 89 metabolites 
significantly upregulated (67 in positive ion mode and 22 

in negative ion mode, Supplementary Table S4) and 48 
significantly downregulated (34 in positive ion mode and 
14 in negative ion mode). These differential metabolites 
were subsequently used for cluster analysis (Fig. 6A).

KEGG pathway enrichment analysis was conducted 
on the 137 differential metabolites to investigate the bio-
logical pathways potentially affected by TMAO in bovine 
hepatic cells. The results indicated that the pathways 
related to metabolism were predominantly concentrated 
in beta-alanine metabolism, central carbon metabolism 
in cancer, and the metabolism of glycine, serine, and 
threonine, as well as oxidative phosphorylation. Path-
ways associated with inflammation and oxidative stress 
were mainly enriched in type II diabetes and neurode-
generative diseases - multiple diseases (P < 0.05, Fig. 6B). 
Signal transduction-related pathways included key path-
ways such as the AMPK signaling pathway and insulin 
secretion.

Integrated multi-omics data analysis
By integrating transcriptomic, proteomic, and metabolo-
mic data, and analyzing pathways significantly enriched 
(P < 0.05), we constructed a comprehensive regulatory 
network for lipid metabolism. As shown in Fig.  7, this 
network reveals the multifaceted impact of TMAO on 
lipid metabolism in bovine hepatic cells, demonstrating 

Fig. 5  Analytical results of the impact of 400 µmol/L TMAO treatment on the metabolic spectrum of bovine hepatic cells. (A) PCA plots illustrate the over-
all distribution and variability of the metabolites at the metabolic level between the control and TMAO-treated groups. (B and C) The quality parameters 
of the orthogonal partial least squares discriminant analysis (OPLS-DA) scoring models under positive and negative ion modes provide information on 
the model fitting quality and predictive capability, including R² and Q² values. (D and E) Volcano plots under positive and negative ion modes depict the 
relationship between the significance of metabolites (-log10(p-value)) and fold changes (log2 fold change), with red and blue points indicating signifi-
cantly upregulated and downregulated metabolites, respectively
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that TMAO treatment significantly affects signaling 
pathways, lipid metabolism pathways, and inflammation-
related pathways. To further explore the interactions 
between key genes, proteins, and metabolites related to 
lipid metabolism in bovine hepatic cells after TMAO 
treatment, we conducted Pearson correlation analy-
sis (Supplementary Figs.  1, 2, and 3) and constructed 
a correlation network diagram (Fig.  8). The analysis 
revealed that NADH has a highly significant correla-
tion (P < 0.01) with most key genes and proteins, which 
are significantly enriched in signaling pathways, lipid 
metabolism pathways, and inflammation-related path-
ways (P < 0.05), suggesting that they may play important 
roles in TMAO-mediated lipid metabolism regulation. 
Finally, by integrating multi-omics data analysis, we 
revealed the potential mechanisms of TMAO’s impact 
on lipid metabolism in bovine hepatic cells. As illus-
trated in Fig. 9, the schematic diagram details the inter-
play between the TMAO-mediated AMPK signaling 
pathway and oxidative phosphorylation pathway, reveal-
ing how they cooperatively regulate the lipid metabolism 

process. Specifically, NADH, the primary electron donor 
in aerobic respiration, exhibited a significant downregu-
lation, leading to reduced efficiency of the electron trans-
port chain, which affects the synthesis of ATP and ADP. 
Notably, our data show a significant increase in ATP lev-
els following TMAO treatment, which may be attribut-
able to metabolic regulation induced by TMAO. With 
the significant upregulation of ATP levels, the ratio of 
ADP to ATP decreases, placing the bovine hepatic cells 
in a high-energy state, which further inhibits the AMPK 
signaling pathway. AMPK is an intracellular energy sen-
sor, typically activated during energy scarcity to promote 
energy production and inhibit energy-consuming path-
ways. Therefore, we hypothesize that under the influence 
of TMAO, the suppression of the AMPK signaling path-
way activates lipid synthesis pathways, thereby promot-
ing lipid accumulation.

Quantitative real time-PCR validation
To verify the reliability of our transcriptomic data, we 
performed qRT-PCR validation. Nine differentially 

Fig. 6  Characterization of Differential Metabolites. (A) A heatmap of differential metabolites illustrates the variations in metabolite expression levels 
between TMAO-treated and control bovine hepatic cells. The color gradient in the heatmap transitions from blue (low expression) to red (high expres-
sion), indicating changes in metabolite abundance and representing the relative expression levels of various metabolites across the samples. (B) The Dif-
ferential Abundance (DA) score results display the overall trend of metabolite changes in pathways relative to the control group. The x-axis represents the 
collective trend changes of all metabolites within a metabolic pathway, while the y-axis corresponds to the pathways themselves. The size of the circles 
indicates the number of metabolites annotated within that pathway, and the color transitions from blue to red represent DA scores ranging from − 1 to 1. 
A DA score of -1 implies that the abundance of all metabolites in that pathway has decreased, whereas a DA score of 1 indicates an increase in abundance 
of all metabolites within the pathway. The closer the DA score is to 1 or -1, the more the overall expression in the pathway tends toward upregulation or 
downregulation, respectively
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expressed genes associated with lipid metabolism path-
ways were randomly selected for this purpose, includ-
ing Acyl-CoA Synthetase Long Chain Family Member 
3 (ACSL3, log2FC=-1.717), Acetyl-CoA Carboxylase 
Alpha (ACACA, log2FC = 1.15), Carnitine Palmitoyl-
transferase 2 (CPT2, log2FC = 1.03), CREB Binding Pro-
tein (CREBBP, log2FC = 1.26), Cytochrome P450 Family 
1 Subfamily A Member 1 (CYP1A1, log2FC = 2.71), Low 
Density Lipoprotein Receptor (LDLR, log2FC = 1.04), 
Lipin 2 (LPIN2, log2FC = 1.01), Sterol Carrier Protein 2 
(SCP2, log2FC=-1.95), and Sterol Regulatory Element 
Binding Transcription Factor 1 (SREBF1, log2FC = 1.85). 
The results demonstrated that the expression trends of 
the genes verified by qRT-PCR were generally consistent 
with the transcriptome sequencing results (Supplemen-
tary Fig.  4), indicating that the experimental transcrip-
tomic data are stable and reliable. To further investigate 
the impact of TMAO on the AMPK signaling path-
way, we examined three key genes within this pathway: 
MO25, AMPK, and SREBF1. The experimental outcomes 
revealed that under the influence of TMAO, the expres-
sion of the MO25 gene was significantly downregulated 

(Fig. 10B, P < 0.01), and the expression of the AMPK gene 
was notably decreased (Fig. 10C, P < 0.05). These findings 
suggest that TMAO may inhibit the core components of 
the AMPK signaling pathway, thereby affecting its activ-
ity and function. Concurrently, we observed a significant 
increase in the expression of the critical lipid metabo-
lism regulatory transcription factor gene SREBF1 in the 
TMAO-treated group (Fig. 10A, P < 0.05). This observa-
tion aligns with our hypothesis that TMAO promotes the 
expression of genes related to lipid synthesis by inhibiting 
the AMPK signaling pathway. These quantitative valida-
tion results provide robust support for our multi-omics 
analysis and further confirm the regulatory effects of 
TMAO on the AMPK signaling pathway.

Discussion
In contemporary animal husbandry, the health and pro-
ductive efficiency of dairy cows are intricately linked to 
the equilibrium of their lipid metabolism. Dysregulation 
of lipid metabolism not only poses a threat to the quality 
and yield of dairy products but may also precipitate met-
abolic disorders such as fatty liver and ketosis. Therefore, 

Fig. 7  Lipid Metabolism Regulatory Network Revealed by Multi-Omics Data Analysis. The figure presents a lipid metabolism regulatory network con-
structed through the integration of proteomic, transcriptomic, and metabolomic data. The nodes in the network diagram represent categories, including 
genes, proteins, metabolites, and pathways, while edges denote the interactions or regulatory relationships between these molecules. The color of the 
nodes indicates the biological functions in which the molecules are involved
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a profound understanding of the intrinsic regulatory 
mechanisms governing bovine lipid metabolism is of 
paramount importance for enhancing dairy cattle welfare 
and milk production levels. TMAO a ubiquitous nutri-
tional metabolite in humans and animals, has garnered 
extensive attention for its impact on lipid metabolism 
[41–44]. However, the specific role of TMAO in bovine 
lipid metabolism remains incompletely elucidated. This 
study is dedicated to uncovering the regulatory role of 
TMAO in lipid metabolism within bovine hepatic cells. 
Adopting a systems biology approach, we considered 
the interactive network between molecules and path-
ways. Initially, we determined the optimal concentration 
of TMAO based on hepatic function indicators and TG 
content in bovine hepatic cells. Through multi-omics 
sequencing analysis, we elucidated that TMAO signifi-
cantly modulates the expression of a suite of key genes, 
proteins, and metabolites related to lipid metabolism. 
These components play pivotal roles in signal transduc-
tion pathways, lipid metabolism pathways, and inflam-
matory response pathways. Notably, in our constructed 
lipid metabolism regulatory network, NADH occupies 
a central position in metabolic regulation. Ultimately, 
we developed a dynamic interaction model between the 

TMAO-mediated AMPK signaling pathway and oxida-
tive phosphorylation pathway, thereby revealing their 
synergistic roles in lipid metabolism regulation. Our 
research provides new insights into how TMAO affects 
lipid metabolism in bovine hepatic cells, findings that 
may have significant implications for improving the 
health and productive performance of dairy cattle.

In dairy cows, especially high-yielding ones, fatty liver 
is primarily related to inadequate postpartum nutri-
tional intake, a condition exacerbated by the significant 
increase in energy demands after calving, leading to 
massive breakdown of body fat and ultimately promot-
ing lipid deposition in liver cells [45, 46]. The develop-
ment mechanism of fatty liver in dairy cows is similar to 
that of human NAFLD, involving an imbalance in lipid 
metabolism pathways. In dairy cows, the formation of 
fatty liver is closely linked to various metabolic processes 
such as fatty acid synthesis, oxidation, and export. The 
high energy demands postpartum trigger the release of a 
large amount of fatty acids from adipose tissue, but the 
liver’s capacity for fatty acid oxidation is limited, unable 
to effectively process these excess fatty acids, resulting in 
lipid accumulation within liver cells [47–50]. In exploring 
the mechanisms of lipid metabolism disorder, the AMPK 

Fig. 8  Pearson Correlation Network of Lipid Metabolism-Related Molecules in Bovine Hepatic Cells Following TMAO Treatment. This figure, based on 
Pearson correlation analysis results, depicts the interaction network among key genes, proteins, and metabolites in bovine hepatic cells after TMAO treat-
ment. The types of nodes in the network diagram represent categories, including genes, proteins, metabolites, and pathways. Edges represent different 
regulatory relationships, with dashed lines indicating highly significant correlations (P < 0.01) and solid lines representing direct regulatory relationships. 
The color and size of the nodes reflect the relative importance of the molecules within the network
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Fig. 10  qRT-PCR validation of key genes in the AMPK pathway. (A) Relative expression level of the SREBF1 gene. (B) Relative expression level of the MO25 
gene. (C) Relative expression level of the AMPK gene. * indicates P < 0.05, ** indicates P < 0.01

 

Fig. 9  Schematic Model of TMAO-Mediated Lipid Metabolism Regulatory Mechanism. This figure provides a detailed illustration of the interplay between 
the AMPK signaling pathway and the oxidative phosphorylation pathway in bovine hepatic cells following TMAO treatment, as well as the potential 
mechanisms by which they cooperatively regulate lipid metabolism. Rectangles in the diagram represent genes, proteins, enzymes, and metabolites, 
with arrows indicating the direction of signal transduction or metabolic flux. Different colors denote regulatory relationships, with red indicating upregu-
lation and blue indicating downregulation
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signaling pathway is considered to play a significant role. 
Studies by Fang et al. have underscored the role of AMPK 
in improving dysregulated lipid metabolism, indicating 
that the activation of the AMPK signaling axis is cru-
cial for preventing and mitigating liver damage, and that 
AMPK activation can alleviate liver damage caused by 
alcohol or insulin resistance [51]. while Yan et al. found 
that Schisandrin B could induce autophagy through 
the AMPK/mTOR signaling pathway, thereby alleviat-
ing liver steatosis and promoting fatty acid oxidation 
[52]. We examined three key genes within this pathway: 
MO25, AMPK, and SREBF1. The experimental outcomes 
revealed that under the influence of TMAO, the expres-
sion of the MO25 gene was significantly downregulated 
(Fig. 10B, P < 0.01), and the expression of the AMPK gene 
was notably decreased (Fig. 10C, P < 0.05). These findings 
suggest that TMAO may inhibit the core components of 
the AMPK signaling pathway, thereby affecting its activ-
ity and function. Concurrently, we observed a significant 
increase in the expression of the critical lipid metabo-
lism regulatory transcription factor gene SREBF1 in the 
TMAO-treated group (Fig.  10A, P < 0.05). Our study 
results indicate that TMAO may regulate fatty acid syn-
thesis and oxidation by affecting the AMPK signaling 
pathway, consistent with AMPK’s core regulatory role in 
energy metabolism. Moreover, the reduction in AMPK 
activity is closely related to the development of NAFLD, 
aligning with our observation of TMAO’s inhibitory 
effect on the AMPK signaling pathway, providing further 
evidence of TMAO’s potential role in regulating bovine 
lipid metabolism. The occurrence of postpartum insulin 
resistance in dairy cows is also related to the formation 
of fatty liver. The role of insulin resistance in the forma-
tion of fatty liver in dairy cows may be realized through 
multiple molecular mechanisms. Firstly, insulin resis-
tance reduces the responsiveness of liver cells to insu-
lin, leading to a decrease in insulin-mediated fatty acid 
synthesis and an obstruction in the activation of fatty 
acid oxidation pathways, thereby promoting lipid accu-
mulation in the liver [53–55].Sudies by Hosokawa et al. 
have revealed mechanisms by which insulin resistance in 
adipose tissue and a high-fat diet (GAN diet) may exac-
erbate liver damage through promoting inflammation 
and fibrosis [56]. These findings corroborate our KEGG 
pathway enrichment analysis results. Through transcrip-
tomic and proteomic analyses, we detected significant 
expression changes in several key molecules within the 
insulin signaling pathway. For example, the Ras gene 
was significantly upregulated (Log2FC = 1.2), with a cor-
responding increase in protein levels (Log2FC = 1.6). 
Similarly, the GRF2 gene expression was upregulated 
(Log2FC = 1.1), and its protein level markedly increased 
(Log2FC = 5.3). Conversely, both the GK gene and its pro-
tein levels were downregulated (Log2FC = -1.1, protein 

Log2FC = -1.2). These results indicate that the upregula-
tion of mRNA levels generally corresponds to an increase 
in protein levels. Moreover, the consistent significant 
changes observed at both the transcriptional and pro-
tein levels for key metabolic enzymes underscore the 
coordinated regulation between transcription and trans-
lation. Furthermore, the postpartum inflammatory and 
oxidative stress states in dairy cows may also exacerbate 
lipid deposition in the liver, further impairing liver func-
tion. Research by Zhang et al. suggests that liver inflam-
mation and oxidative stress are often associated with 
the occurrence and progression of chronic liver disease 
(CLD). In this process, key molecular signaling pathways 
such as AMPK and peroxisome proliferator-activated 
receptors (PPARs) are closely related to the pathological 
mechanisms of CLD [57]. Studies by Qiu et al. found that 
Panax japonicus (PJ) could upregulate the AMPK-ACC/
PPARα axis, reduce liver lipid deposition, and decrease 
the expression of IL-6 and TNF-α, indicating a reduc-
tion in lipid peroxidation in the liver [58]. Our KEGG 
enrichment analysis results also significantly enriched 
pathways closely related to liver inflammation, such as 
hepatitis B, type 2 diabetes, and hepatocellular carci-
noma, further indicating that the development of fatty 
liver is not merely a single metabolic disorder event but 
a complex pathological state involving multiple biologi-
cal processes and signaling pathways. The dysregulation 
of these pathways may reflect the internal inflammation 
and oxidative stress response triggered by increased post-
partum metabolic stress. Accordingly, we speculate that 
inflammatory and oxidative stress pathways are also key 
factors driving the development of fatty liver. This find-
ing further emphasizes the importance of maintaining 
anti-inflammatory and antioxidative balance in the liver 
during the critical postpartum period in dairy cows. In 
summary, the formation of fatty liver in dairy cows is a 
complex multi-step process involving the AMPK signal-
ing pathway, insulin signal transduction, and other links. 
These include reduced downstream signal transduction 
efficiency of insulin receptors, regulatory imbalances in 
key metabolic pathways, and the activation of inflamma-
tion and fibrosis processes. In-depth research on these 
pathways is crucial for developing effective prevention 
and treatment strategies, not only helping to improve the 
health and welfare of dairy cows but also contributing to 
the overall economic efficiency of the dairy industry.

TMA is the precursor of TMAO, primarily origi-
nates from foods rich in choline, phosphatidylcholine, 
and L-carnitine, such as red meat, fish, eggs, and dairy 
products [59]. Under the action of gut microbiota, these 
substances are broken down into TMA, which is subse-
quently absorbed into the bloodstream through the intes-
tinal wall. In the liver, TMA is oxidized to TMAO by the 
enzyme flavin-containing monooxygenase 3 (FMO3) [60, 
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61]. Research has shown that TMAO interferes with the 
AMP-activated protein kinase (AMPK) signaling path-
way, affecting the synthesis and breakdown of fatty acids, 
leading to lipid accumulation in the liver and non-alco-
holic fatty liver disease (NAFLD) [62, 63]. Additionally, 
TMAO enhances inflammatory responses and oxidative 
stress, promoting the development of atherosclerosis. It 
is also associated with insulin resistance and type 2 diabe-
tes, potentially by promoting inflammation and lipid met-
abolic disorders that interfere with insulin signaling [14]. 
Our study reveals significant alterations in the levels of 
ATP, NADH, and ADP following TMAO treatment. Spe-
cifically, NADH levels were significantly downregulated 
(Log2FC = -2.07), ADP levels were significantly upregu-
lated (Log2FC = 0.66), and ATP levels showed a substan-
tial increase (Log2FC = 3.38). These metabolic changes 
may be attributed to a redistribution of cellular energy 
metabolism, with TMAO potentially triggering other 
metabolic pathways such as glycolysis to compensate 
for the increased ATP demand [64, 65].AMPK, a cellular 
energy sensor, is typically activated when cellular energy 
levels (ATP) are low to enhance energy production and 
inhibit energy consumption [66, 67]. However, in the con-
text of significantly elevated ATP levels (Log2FC = 3.38), 
the AMPK pathway is inhibited. Our data indicate a sig-
nificant downregulation in the expression of MO25 and 
AMPK. MO25, a critical component of the AMPK com-
plex, interacts with the AMPK α-subunit and liver kinase 
B1 (LKB1) and is essential for the activation and stability 
of AMPK. The downregulation of MO25 compromises 
the stability and activity of the AMPK complex, subse-
quently inhibiting AMPK activation and weakening its 
regulatory role in energy metabolism [68].The inhibition 
of AMPK activity further affects downstream metabolic 
pathways, including the expression of hormone-sensitive 
lipase (HSL) and SREBP1c. Normally, AMPK activation 
suppresses the activities of HSL and SREBP1c, reducing 
lipid catabolism and anabolism [69–72]. However, when 
AMPK is inhibited, we observed a significant upregula-
tion in HSL and SREBP1c expression, with Log2FC values 
of 3.72 and 1.8, respectively. This upregulation indicates 
increased fatty acid release and synthesis, leading to lipid 
metabolic imbalance. This lipid metabolic imbalance may 
cause excessive lipid accumulation in the liver. If these 
fatty acids are not efficiently utilized, such as through 
mitochondrial β-oxidation, they may be re-esterified 
into TG and stored in the liver. This process contributes 
to the development of hepatic steatosis and increases 
the risk of metabolic disorders such as non-alcoholic 
fatty liver disease (NAFLD) and cardiovascular diseases 
[47, 73].In conclusion, our research reveals that TMAO, 
by influencing the gut-liver axis, alters the levels of key 
metabolites such as ATP, NADH, and ADP, thereby 
inhibiting the AMPK signaling pathway. The inhibition 

of the AMPK pathway further affects HSL and SREBP1c 
expression, leading to lipid metabolic imbalance and 
increased hepatic lipid accumulation. These findings are 
crucial for understanding the role of the gut-liver axis 
in TMAO-induced lipid metabolic disorders and their 
potential implications in NAFLD.

In this study, we explored the implications of TMAO 
on the development of NAFLD in cattle. Although 
direct research on TMAO in cattle remains sparse, find-
ings from human studies provide valuable insights. This 
cross-species reference is supported by the similar roles 
TMAO plays in lipid metabolism and inflammation in 
both humans and potentially cattle. However, it is cru-
cial to acknowledge the limitations of this extrapolation. 
Physiological differences between species can impact 
the direct applicability of human findings to cattle. For 
instance, metabolic pathways and gut microbiota compo-
sitions are known to vary, which may influence TMAO’s 
effects. Furthermore, the criteria and thresholds used 
in our correlation analysis (e.g., log2FC > 1, VIP ≥ 1, and 
FC > 1.5 or FC < 0.667) were chosen to ensure a focus on 
significant changes, potentially impacting the broader 
interpretation of our results. While these thresholds help 
filter out less significant data, they may also exclude sub-
tle yet important interactions. These limitations highlight 
the importance of cautious interpretation of our find-
ings and suggest a need for further investigation, possibly 
incorporating more flexible criteria or additional comple-
mentary analyses. Future research should focus on exper-
imental validation of these findings in cattle to confirm 
the hypothesized pathways and regulatory mechanisms 
derived from human studies and our current analysis.

In summary, we have discovered that TMAO exerts 
a significant impact on lipid metabolism in bovine liver 
cells, further elucidating the potential molecular mecha-
nisms of TMAO in the metabolic regulation of dairy 
cows. Nonetheless, the current study relies on data 
obtained from in vitro cell models, which limits our abil-
ity to apply these findings directly to practical dairy pro-
duction. Therefore, to validate our discoveries and ensure 
their biological significance, it is imperative to conduct 
subsequent research under in vivo conditions. Future 
work should focus on the actual role of TMAO in lipid 
metabolism within bovine liver cells in vivo, and extend 
to its impact on the overall metabolic processes of the 
animals. Moreover, exploring the potential applications 
of TMAO production mechanisms in enhancing dairy 
production efficiency and health status holds significant 
research value. For instance, by adjusting feed formula-
tions to reduce TMAO production, we could alleviate 
the metabolic burden on the liver, thereby improving 
dairy yield and quality. Through in-depth research, we 
aim not only to deepen our understanding of the role of 
TMAO in bovine lipid metabolism but also to provide a 
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solid scientific basis for the nutritional management and 
health maintenance of dairy cows.

Conclusion
In this study, a bovine hepatic steatosis cell model 
was established, and a systems biology approach was 
employed to integrate transcriptomic, proteomic, and 
metabolomic data, thereby comprehensively dissect-
ing the impact of TMAO on lipid metabolism in bovine 
liver cells. Through in-depth bioinformatics analysis, we 
unveiled the mechanisms of action of TMAO in bovine 
liver cells. Specifically, this research meticulously eluci-
dated the mechanism by which the interaction between 
the TMAO-mediated AMPK signaling pathway and the 
oxidative phosphorylation pathway promotes hepatic 
lipid deposition. The findings of this study offer new 
insights into the prevention and treatment of fatty liver 
in dairy cows. By conducting such multidimensional 
research, we can better understand the complexity of 
metabolic diseases in dairy cows, contributing to the sus-
tainable development of the dairy industry.

Supplementary Information
The online version contains supplementary material available at ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​
g​/​1​0​.​1​1​8​6​/​s​1​2​8​6​4​-​0​2​4​-​1​1​0​6​7​-​7​​​​​.​​

Supplementary Material 1

Supplementary Material 2

Acknowledgements
We would like to express our gratitude to the College of Animal Science and 
Technology at Ningxia University for providing the experimental platform. 
We also thank Bioprofile Biotechnology Co., Ltd. (Shanghai, China) for their 
contribution to the UHPLC-MS/MS analysis.

Author contributions
C.L. Li wrote the main manuscript text, curated the data, conducted 
visualization, formal analysis, and developed the methodology. F.F. Wang 
and Y.X. Mao contributed to the conceptualization and validation, with 
Y.X. Mao also involved in writing—review & editing. Y.F. Ma was involved in 
conceptualization and formal analysis. Y.S. Guo led the project administration 
and acquired funding, as well as provided resources and supervision. All 
authors reviewed and approved the final manuscript.

Funding
The author(s) declare financial support was received for the research, 
authorship, and/or publication of this article. This study was supported by the 
National Natural Science Foundation of China (32360895), the Ningxia Natural 
Science Foundation of Province (2023AAC03103).

Data availability
The raw sequencing data have been uploaded to the NCBI database under 
BioProject ID PRJNA1028383. For further information, please feel free to 
contact the corresponding author.

Declarations

Ethics approval and consent to participate
The animal study was approved by the Institutional Animal Care and Use 
Committee of Ningxia University (NXUC20220220). The study was conducted 
in accordance with the local legislation and institutional requirements.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 22 August 2024 / Accepted: 19 November 2024

References
1.	 Shahryari M, Keller S, Meierhofer D, Wallach I, Safraou Y, Guo J, Marticorena 

Garcia SR, Braun J, Makowski MR, Sack I, et al. On the relationship between 
metabolic capacities and in vivo viscoelastic properties of the liver. Front 
Bioeng Biotechnol. 2022;10:1042711.

2.	 Hyun J, Han J, Lee C, Yoon M, Jung Y. Pathophysiological aspects of Alcohol 
Metabolism in the liver. Int J Mol Sci 2021, 22(11).

3.	 Alannan M, Fayyad-Kazan H, Trézéguet V, Merched A. Targeting lipid metabo-
lism in Liver Cancer. Biochemistry. 2020;59(41):3951–64.

4.	 Badmus OO, Hillhouse SA, Anderson CD, Hinds TD, Stec DE. Molecular 
mechanisms of metabolic associated fatty liver disease (MAFLD): functional 
analysis of lipid metabolism pathways. Clin Sci. 2022;136(18):1347–66.

5.	 Bian X, Liu R, Meng Y, Xing D, Xu D, Lu Z. Lipid metabolism and cancer. J Exp 
Med 2021, 218(1).

6.	 Johnson AA, Stolzing A. The role of lipid metabolism in aging, lifespan regula-
tion, and age-related disease. Aging Cell. 2019;18(6):e13048.

7.	 Ghaffari MH, Sanz-Fernandez MV, Sadri H, Sauerwein H, Schuchardt S, Martín-
Tereso J, Daniel JB. Longitudinal characterization of the metabolome of dairy 
cows transitioning from one lactation to the next one: investigations in the 
liver. J Dairy Sci 2024.

8.	 Martens H. [The lipidosis in the liver of the dairy cow: part 2 genetic 
predisposition and prophylaxis]. Tierarztl Prax Ausg G Grosstiere Nutztiere. 
2023;51(5):305–13.

9.	 Wang J, Zhu X, She G, Kong Y, Guo Y, Wang Z, Liu G, Zhao B. Serum hepato-
kines in dairy cows: periparturient variation and changes in energy-related 
metabolic disorders. BMC Vet Res. 2018;14(1):236.

10.	 Zhang F, Nan X, Wang H, Zhao Y, Guo Y, Xiong B. Effects of propylene glycol 
on negative energy balance of Postpartum dairy cows. Anim (Basel) 2020, 
10(9).

11.	 Xu W, van Knegsel A, Saccenti E, van Hoeij R, Kemp B, Vervoort J. Metabo-
lomics of milk reflects a negative energy balance in cows. J Proteome Res. 
2020;19(8):2942–9.

12.	 Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev 
Endocr Metab Disord. 2019;20(4):461–72.

13.	 Gatarek P, Kaluzna-Czaplinska J. Trimethylamine N-oxide (TMAO) in human 
health. Excli j. 2021;20:301–19.

14.	 Thomas MS, Fernandez ML. Trimethylamine N-Oxide (TMAO), Diet and 
Cardiovascular Disease. Curr Atheroscler Rep. 2021;23(4):12.

15.	 Din AU, Hassan A, Zhu Y, Yin T, Gregersen H, Wang G. Amelioration of TMAO 
through probiotics and its potential role in atherosclerosis. Appl Microbiol 
Biotechnol. 2019;103(23–24):9217–28.

16.	 Lombardo M, Aulisa G, Marcon D, Rizzo G. The influence of animal- or plant-
based diets on blood and urine Trimethylamine-N-Oxide (TMAO) levels in 
humans. Curr Nutr Rep. 2022;11(1):56–68.

17.	 Saaoud F, Liu L, Xu K, Cueto R, Shao Y, Lu Y, Sun Y, Snyder NW, Wu S, Yang 
L et al. Aorta- and liver-generated TMAO enhances trained immunity for 
increased inflammation via ER stress/mitochondrial ROS/glycolysis pathways. 
JCI Insight 2023, 8(1).

18.	 Nian F, Zhu C, Jin N, Xia Q, Wu L, Lu X. Gut microbiota metabolite TMAO 
promoted lipid deposition and fibrosis process via KRT17 in fatty liver cells in 
vitro. Biochem Biophys Res Commun. 2023;669:134–42.

19.	 Li Y, Zhang L, Ren P, Yang Y, Li S, Qin X, Zhang M, Zhou M, Liu W. Qing-Xue-
Xiao-Zhi formula attenuates atherosclerosis by inhibiting macrophage lipid 
accumulation and inflammatory response via TLR4/MyD88/NF-κB pathway 
regulation. Phytomedicine. 2021;93:153812.

20.	 Vourakis M, Mayer G, Rousseau G. The role of gut microbiota on cholesterol 
metabolism in atherosclerosis. Int J Mol Sci 2021, 22(15).

21.	 Fei’erdun T, Zhang W, Yilihamujiang K, Zhang M, Wang M. [Correlation 
between plasma trimethylamine N-Oxide and lipid levels in hyperlipidemic 
patients]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2023;54(5):1030–4.

https://doi.org/10.1186/s12864-024-11067-7
https://doi.org/10.1186/s12864-024-11067-7


Page 16 of 17Li et al. BMC Genomics           (2025) 26:10 

22.	 Tan X, Liu Y, Long J, Chen S, Liao G, Wu S, Li C, Wang L, Ling W, Zhu H. Trimeth-
ylamine N-Oxide aggravates liver steatosis through modulation of bile acid 
metabolism and inhibition of farnesoid X receptor signaling in nonalcoholic 
fatty liver disease. Mol Nutr Food Res. 2019;63(17):e1900257.

23.	 Chu H, Duan Y, Yang L, Schnabl B. Small metabolites, possible big changes: 
a microbiota-centered view of non-alcoholic fatty liver disease. Gut. 
2019;68(2):359–70.

24.	 Liu X, Tu J, Zhou Z, Huang B, Zhou J, Chen J. TMAO-Activated Hepatocyte-
Derived Exosomes Are Widely Distributed in Mice with Different Patterns and 
Promote Vascular Inflammation. Cardiol Res Pract 2022, 2022:5166302.

25.	 Lin K, Wang X, Li J, Zhao P, Xi X, Feng Y, Yin L, Tian J, Li H, Liu X, et al. Anti-
atherosclerotic effects of geraniin through the gut microbiota-dependent 
trimethylamine N-oxide (TMAO) pathway in mice. Phytomedicine. 
2022;101:154104.

26.	 Chen S, Henderson A, Petriello MC, Romano KA, Gearing M, Miao J, Schell 
M, Sandoval-Espinola WJ, Tao J, Sha B, et al. Trimethylamine N-Oxide 
binds and activates PERK to promote metabolic dysfunction. Cell Metab. 
2019;30(6):1141–e11511145.

27.	 Riva G, Villanova M, Cima L, Ghimenton C, Bronzoni C, Colombari R, Crestani 
M, Sina S, Brunelli M, D’Errico A, et al. Oil Red O is a useful Tool to assess 
Donor Liver steatosis on frozen sections during transplantation. Transpl Proc. 
2018;50(10):3539–43.

28.	 Gill N, Dhillon B. RNA-seq data analysis for Differential expression. Methods 
Mol Biol. 2022;2391:45–54.

29.	 Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-
throughput sequencing data. Bioinformatics. 2015;31(2):166–9.

30.	 Anders S, Huber W. Differential expression analysis for sequence count data. 
Genome Biol. 2010;11(10):R106.

31.	 Hu K. Become Competent in Generating RNA-Seq heat maps in one day for 
novices without prior R experience. Methods Mol Biol. 2021;2239:269–303.

32.	 Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG 
for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 
2023;51(D1):D587–92.

33.	 Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, et al. 
clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. 
Innov (Camb). 2021;2(3):100141.

34.	 Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation 
method for proteome analysis. Nat Methods. 2009;6(5):359–62.

35.	 Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass 
spectrometry-based shotgun proteomics. Nat Protoc. 2016;11(12):2301–19.

36.	 Sinitcyn P, Gerwien M, Cox J. MaxQuant Module for the identifica-
tion of genomic variants propagated into peptides. Methods Mol Biol. 
2022;2456:339–47.

37.	 Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res. 2000;28(1):27–30.

38.	 Worley B, Powers R. PCA as a practical indicator of OPLS-DA model reliability. 
Curr Metabolomics. 2016;4(2):97–103.

39.	 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, 
Schwikowski B, Ideker T. Cytoscape: a software environment for inte-
grated models of biomolecular interaction networks. Genome Res. 
2003;13(11):2498–504.

40.	 Mitteer DR, Greer BD. Using GraphPad prism’s heat maps for efficient, fine-
grained analyses of single-Case Data. Behav Anal Pract. 2022;15(2):505–14.

41.	 Li Y, Ji X, Wu H, Li X, Zhang H, Tang D. Mechanisms of traditional Chinese 
medicine in modulating gut microbiota metabolites-mediated lipid metabo-
lism. J Ethnopharmacol. 2021;278:114207.

42.	 Yang Y, Karampoor S, Mirzaei R, Borozdkin L, Zhu P. The interplay between 
microbial metabolites and macrophages in cardiovascular diseases: a com-
prehensive review. Int Immunopharmacol. 2023;121:110546.

43.	 Ding H, Liu J, Chen Z, Huang S, Yan C, Kwek E, He Z, Zhu H, Chen ZY. Proto-
catechuic acid alleviates TMAO-aggravated atherosclerosis via mitigating 
inflammation, regulating lipid metabolism, and reshaping gut microbiota. 
Food Funct 2024.

44.	 Huang Q, Zhang Y, Chu Q, Song H. The influence of polysaccharides 
on lipid metabolism: insights from Gut Microbiota. Mol Nutr Food Res. 
2024;68(1):e2300522.

45.	 Swartz TH, Moallem U, Kamer H, Kra G, Levin Y, Mamedova LK, Bradford BJ, 
Zachut M. Characterization of the liver proteome in dairy cows experiencing 
negative energy balance at early lactation. J Proteom. 2021;246:104308.

46.	 Batista CP, Gonçalves RS, Contreras LVQ, Valle SF, González F. Correlation 
between liver lipidosis, body condition score variation, and hepatic analytes 
in dairy cows. Braz J Vet Med. 2022;44:e005121.

47.	 Lee E, Korf H, Vidal-Puig A. An adipocentric perspective on the develop-
ment and progression of non-alcoholic fatty liver disease. J Hepatol. 
2023;78(5):1048–62.

48.	 Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic 
fatty liver disease development and progression. Cell Mol Life Sci. 
2019;76(1):99–128.

49.	 Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic 
lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 
2018;75(18):3313–27.

50.	 Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver. Compr 
Physiol. 2017;8(1):1–8.

51.	 Fang C, Pan J, Qu N, Lei Y, Han J, Zhang J, Han D. The AMPK pathway in fatty 
liver disease. Front Physiol. 2022;13:970292.

52.	 Yan LS, Zhang SF, Luo G, Cheng BC, Zhang C, Wang YW, Qiu XY, Zhou XH, 
Wang QG, Song XL, et al. Schisandrin B mitigates hepatic steatosis and 
promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR 
signaling pathway. Metabolism. 2022;131:155200.

53.	 Tanase DM, Gosav EM, Costea CF, Ciocoiu M, Lacatusu CM, Maranduca 
MA, Ouatu A, Floria M. The Intricate Relationship between Type 2 Diabetes 
Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease 
(NAFLD). J Diabetes Res 2020, 2020:3920196.

54.	 Muzurović E, Mikhailidis DP, Mantzoros C. Non-alcoholic fatty liver disease, 
insulin resistance, metabolic syndrome and their association with vascular 
risk. Metabolism. 2021;119:154770.

55.	 Khan RS, Bril F, Cusi K, Newsome PN. Modulation of Insulin Resistance in 
nonalcoholic fatty liver disease. Hepatology. 2019;70(2):711–24.

56.	 Hosokawa Y, Hosooka T, Imamori M, Yamaguchi K, Itoh Y, Ogawa W. Adipose 
tissue insulin resistance exacerbates liver inflammation and fibrosis in a diet-
induced NASH model. Hepatol Commun 2023, 7(6).

57.	 Zhang CY, Liu S, Yang M. Antioxidant and anti-inflammatory agents in 
chronic liver diseases: molecular mechanisms and therapy. World J Hepatol. 
2023;15(2):180–200.

58.	 Qiu L, Feng R, Wu QS, Wan JB, Zhang QW. Total saponins from Panax japoni-
cus attenuate acute alcoholic liver oxidative stress and hepatosteatosis by 
p62-related Nrf2 pathway and AMPK-ACC/PPARα axis in vivo and in vitro. J 
Ethnopharmacol. 2023;317:116785.

59.	 Kuka J, Liepinsh E, Makrecka-Kuka M, Liepins J, Cirule H, Gustina D, Loza 
E, Zharkova-Malkova O, Grinberga S, Pugovics O, et al. Suppression of 
intestinal microbiota-dependent production of pro-atherogenic trimeth-
ylamine N-oxide by shifting L-carnitine microbial degradation. Life Sci. 
2014;117(2):84–92.

60.	 Zhang Y, Wang Y, Ke B, Du J. TMAO: how gut microbiota contributes to heart 
failure. Transl Res. 2021;228:109–25.

61.	 Coutinho-Wolino KS, de Oliveira Leal FCLFM, Mafra V, Stockler-Pinto D. Can 
diet modulate trimethylamine N-oxide (TMAO) production? What do we 
know so far? Eur J Nutr. 2021;60(7):3567–84.

62.	 Zhou S, Xue J, Shan J, Hong Y, Zhu W, Nie Z, Zhang Y, Ji N, Luo X, Zhang T 
et al. Gut-Flora-Dependent Metabolite Trimethylamine-N-Oxide Promotes 
Atherosclerosis-Associated Inflammation Responses by Indirect ROS Stimula-
tion and Signaling Involving AMPK and SIRT1. Nutrients 2022, 14(16).

63.	 Li Q, Wu T, Liu R, Zhang M, Wang R. Soluble Dietary Fiber reduces trimethyl-
amine metabolism via gut microbiota and co-regulates host AMPK Pathways. 
Mol Nutr Food Res 2017, 61(12).

64.	 Zhou B, Caudal A, Tang X, Chavez JD, McMillen TS, Keller A, Villet O, Zhao M, 
Liu Y, Ritterhoff J et al. Upregulation of mitochondrial ATPase inhibitory factor 
1 (ATPIF1) mediates increased glycolysis in mouse hearts. J Clin Investig 2022, 
132(10).

65.	 Jiang M, Zhang YX, Bu WJ, Li P, Chen JH, Cao M, Dong YC, Sun ZJ, Dong DL. 
Piezo1 channel activation stimulates ATP production through enhancing 
mitochondrial respiration and glycolysis in vascular endothelial cells. Br J 
Pharmacol. 2023;180(14):1862–77.

66.	 Steinberg GR, Hardie DG. New insights into activation and function of the 
AMPK. Nat Rev Mol Cell Biol. 2023;24(4):255–72.

67.	 Trefts E, Shaw RJ. AMPK: restoring metabolic homeostasis over space and 
time. Mol Cell. 2021;81(18):3677–90.

68.	 Xia T, Chen D, Liu X, Qi H, Wang W, Chen H, Ling T, Otkur W, Zhang CS, Kim J, 
et al. Midkine noncanonically suppresses AMPK activation through disrupting 
the LKB1-STRAD-Mo25 complex. Cell Death Dis. 2022;13(4):414.

69.	 Przygrodzka E, Hou X, Zhang P, Plewes MR, Franco R, Davis JS. PKA and AMPK 
Signaling pathways differentially regulate Luteal Steroidogenesis. Endocrinol-
ogy 2021, 162(4).



Page 17 of 17Li et al. BMC Genomics           (2025) 26:10 

70.	 Althaher AR. An Overview of Hormone-Sensitive Lipase (HSL). ScientificWorld-
Journal 2022, 2022:1964684.

71.	 Xu H, Lyu X, Guo X, Yang H, Duan L, Zhu H, Pan H, Gong F, Wang L. Distinct 
AMPK-Mediated FAS/HSL pathway is implicated in the alleviating effect of 
Nuciferine on obesity and hepatic steatosis in HFD-Fed mice. Nutrients 2022, 
14(9).

72.	 Lee G, Kim YY, Jang H, Han JS, Nahmgoong H, Park YJ, Han SM, Cho C, 
Lim S, Noh JR, et al. SREBP1c-PARP1 axis tunes anti-senescence activity of 
adipocytes and ameliorates metabolic imbalance in obesity. Cell Metab. 
2022;34(5):702–e718705.

73.	 Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein 
metabolism. Mol Metab. 2021;50:101238.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	﻿Multi-omics reveals the mechanism of Trimethylamine N-oxide derived from gut microbiota inducing liver fatty of dairy cows
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Culture and treatment of bovine hepatic cells
	﻿Assessment of liver injury and lipid metabolism biochemical markers, and oil red O staining experiment
	﻿Transcriptomic sequencing and analysis
	﻿Proteomic sequencing and analysis
	﻿Untargeted metabolomics sequencing and analysis
	﻿Integrated transcriptomic, proteomic, and metabolomic analysis
	﻿qRT-PCR
	﻿Statistical analysis

	﻿Result
	﻿The impact of TMAO on bovine hepatic cell damage and lipid droplet accumulation
	﻿Identification and comparison of differentially expressed genes
	﻿Identification and comparison of differentially abundant proteins
	﻿Identification and comparison of differential metabolites
	﻿Integrated multi-omics data analysis
	﻿Quantitative real time-PCR validation

	﻿Discussion
	﻿Conclusion
	﻿References


