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Abstract: C-type natriuretic peptide (CNP) is the most conserved member of the mammalian
natriuretic peptide family, and is implicated in the endocrine regulation of growth, metabolism and
reproduction. CNP is expressed throughout the body, but is particularly abundant in the central
nervous system and anterior pituitary gland. Pituitary gonadotropes are regulated by pulsatile release
of gonadotropin releasing hormone (GnRH) from the hypothalamus, to control reproductive function.
GnRH and CNP reciprocally regulate their respective signalling pathways in αT3-1 gonadotrope
cells, but effects of pulsatile GnRH stimulation on CNP expression has not been explored. Here,
we examine the sensitivity of the natriuretic peptide system in LβT2 and αT3-1 gonadotrope cell
lines to continuous and pulsatile GnRH stimulation, and investigate putative CNP target genes in
gonadotropes. Multiplex RT-qPCR assays confirmed that primary mouse pituitary tissue express
Nppc, Npr2 (encoding CNP and guanylyl cyclase B (GC-B), respectively) and Furin (a CNP processing
enzyme), but failed to express transcripts for Nppa or Nppb (encoding ANP and BNP, respectively).
Pulsatile, but not continuous, GnRH stimulation of LβT2 cells caused significant increases in Nppc
and Npr2 expression within 4 h, but failed to alter natriuretic peptide gene expression in αT3-1 cells.
CNP enhanced expression of cJun, Egr1, Nr5a1 and Nr0b1, within 8 h in LβT2 cells, but inhibited
Nr5a1 expression in αT3-1 cells. Collectively, these data show the gonadotrope natriuretic peptide
system is sensitive to pulsatile GnRH signalling, and gonadotrope transcription factors are putative
CNP-target genes. Such findings represent additional mechanisms by which CNP may regulate
reproductive function.
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1. Introduction

The natriuretic peptides are a highly conserved group of peptide hormones, comprising of Atrial-,
B-type and C-type natriuretic peptides (ANP, BNP and CNP, respectively). They are structurally
related, sharing a common 17-membered disulphide ring, which imparts biological activity at their
respective particulate guanylyl cyclase receptors, GC-A and GC-B [1–3]. Homology between species
is high, with CNP being the most conserved member of the family, where there is greater than 90%
similarity between piscine and human sequences [4].

Both ANP and BNP are expressed in many peripheral tissues, yet their highest concentrations are
found in cardiac atria and ventricles, and have profound effects on cardiac output and cardiovascular
function [3]. In contrast, the tissue distribution of CNP is, perhaps, the broadest of the three major
mammalian natriuretic peptides, and ranges across virtually all endocrine tissues, bone, the CNS and
endothelial cells [1–3]. Initial studies that detailed the expression profile of CNP found relatively
high concentrations within the anterior pituitary gland [5,6], and pituitary gonadotropes were
subsequently shown to be the predominant endocrine cell lineage to express CNP [7]. Our subsequent
pharmacological and molecular investigations revealed gonadotropes to be major sources of both
expression and function for CNP in the pituitary [8], and also demonstrated expression of both CNP
and GC-B in normal human fetal pituitaries and a range of pituitary adenomas [9]. The elegant
mouse models of CNP/GC-B disruption not only revealed severe achondroplasia and early death, but
also suggested impaired fertility and reduced growth hormone secretion, phenotypes that strongly
implicate a pituitary role for CNP/GC-B signalling [10,11].

Gonadotropes are regulated by numerous endocrine and paracrine factors, the principal ones being
the gonadotrophin releasing hormone (GnRH) as well as the gonadal steroids [12–14]. Previous studies
have shown that the expression of natriuretic peptides and their receptors are sensitive to changes in
gonadal steroids and gonadotropins. In the uterus, estradiol rapidly induced CNP expression [15],
whereas equine chorionic gonadotropin (eCG)-treated mouse ovaries showed elevated ANP, CNP, GC-A
and GC-B expression [16]. Our recent studies have shown that the proximal murine Nppc promoter is
stimulated by chronic GnRH treatment, in a calcium and protein kinase C-dependent manner [8], and
transcription of both the Nppc and NPR2 genes appears to involve the Sp1/Sp3 family transcription
factors [8,9]. At the functional level, GnRH and CNP appear to reciprocally antagonize their respective
signaling pathways, as GnRH causes heterologous desensitization of GC-B receptors and cGMP
signaling [17,18] whereas CNP attenuates GnRH-stimulated calcium mobilization in gonadotrope cell
lines [19]. Despite these observations, CNP fails to significantly alter the secretion of LH from primary
rat pituitary cells, but does stimulate the transcriptional activity of the human glycoprotein hormone
α-subunit gene promoter in LβT2 cells [8,17]. Thus, the role of CNP in gonadotrope function still
remains somewhat enigmatic.

The vast majority of historical investigations of GnRH signalling in vitro have ignored the
physiological manner in which GnRH is usually secreted from the hypothalamus; in pulses. After the
initial observation which characterised the role of pulsatile GnRH in male rats [20], more recent
studies have highlighted the importance of utilizing a more physiologically relevant GnRH treatment
paradigm, which has been illustrated by several studies reporting differential effects of continuous
versus pulsatile GnRH on both gonadotrope gene expression and in terms of signalling responses
to GnRH [21–25]. Our own studies that investigate signalling events downstream of the GnRH
receptor, have clearly established relationships between GnRH pulse frequency and transcriptional
output [26–29]. However, despite knowing that gonadotropes are likely target cells for CNP, that GnRH
and CNP are reciprocally antagonistic in their signaling in gonadotrope cell lines, and that GnRH can
activate the Nppc promoter [8,18,19], the potential relationship between pulsatile GnRH and natriuretic
peptide expression in gonadotropes has not been investigated.
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The biological effects of natriuretic peptides are, overwhelmingly, mediated by their capacity to
increase the levels of cGMP in their target tissues [1,3,4]. Although the regulation of gene expression
by cGMP has been reported in many systems [30–34], putative target genes for natriuretic peptide
action in the pituitary have yet to be identified. Here, we investigate the sensitivity of the gonadotrope
natriuretic peptide system to pulsatile GnRH stimulation, and identify novel transcriptional targets
for CNP.

2. Materials and Methods

2.1. Materials

GnRH, CNP-22 (referred to as CNP) and all other chemicals were purchased from Sigma
(Sigma-Aldrich, Poole, UK) unless otherwise stated.

2.2. Cell Culture

LβT2 andαT3-1 gonadotrope cells were grown in monolayer culture in DMEM supplemented with
high glucose (4500 mg/L) containing 10% (v/v) FCS, 1% (v/v) antimycotic/antimicrobial, as previously
described [8]. Cells were passaged twice weekly and incubated at 37 ◦C in a humidified 5% (v/v)
CO2/95% (v/v) air incubator. For experiments, cells were plated at 1 × 106 cells/well in 6-well plates and
allowed to adhere, prior to serum starvation in DMEM supplemented with 1% (w/v) BSA overnight.
In some experiments, cells were treated in a pulsatile manner for four hours, whereby cells were
exposed to 0 or 100 nM GnRH for five minutes, every hour, after which the treatments were removed
and the cells washed three times with PBS, before being returned to the incubator in DMEM containing
1% (w/v) BSA. In addition, some cells were continuously exposed to 0 or 100 nM GnRH for four hours.
At the end of the experiments, spent media were removed and cells were washed, prior to extraction
of total RNA using RNABee (AMS Biotechnology, Abingdon, UK). For CNP experiments, cells were
treated with 0 or 100 nM CNP for up to 24 h prior to RNA extraction. All concentrations for treatments
were selected on the basis of previously published maximal effects [8,35].

2.3. Tissue Collection, RNA Extraction and Multiplex GeXP RT-qPCR Assay

Tissue was collected from 5 to 8 C57/B6 male and female mice in accordance with UK Home
Office Guidelines (PPL70/6965), placed into either a 1.5 mL Eppendorf tube or foil (brain and heart
tissue) and snap frozen in liquid nitrogen. Total RNA was extracted from primary mouse tissue
(cardiac ventricle, adrenal, adipose, brain, pituitary, kidney, liver and testis), or from cultured αT3-1
or LβT2 cells, using RNAbee reagent, and subjected to DNase treatment (Qiagen, Poole, UK), as
described previously [8]. RNA concentrations were determined using ND-100 spectrophotometer
(Nanodrop, Thermo Fisher, Hemel Hempstead, UK). Two customised GeXP multiplex assays were
designed, to detect natriuretic peptide gene targets (Nppa, Nppb, Nppc, Npr1, Npr2, Npr3, Corin and
Furin), or gonadotrope transcription factor genes (Nr5A1, Nr0B1, cJun, cFos and Egr1) (Table S1). In all
assays, 100 ng of total RNA was used per sample. Target-specific reverse transcription and PCR
amplification was performed as previously described [36] and in accordance with manufacturer’s
instructions (Beckman Coulter, High Wycombe, UK). In brief, a master mix was prepared for reverse
transcription reactions as detailed in the GeXP Starter Kit (AB Sciex, Warrington, Cheshire, UK), and
performed using a G-Storm GS1 thermal cycler, using the programme protocol: 48 ◦C for 1 min, 42 ◦C
for 60 min, and 95 ◦C for 5 min. From this, an aliquot of each reverse transcription reaction was
added to PCR master mix containing GenomeLab kit PCR master mix (AB Sciex, Warrington, Cheshire,
UK), and Thermoscientific Thermo-Start Taq DNA polymerase (Thermo Fisher; AB Sciex, Warrington,
Cheshire, UK). PCR reaction was performed using a 95 ◦C activation step for 10 mins, followed by
35 cycles of 94 ◦C for 30 s, 55 ◦C for 30 secs and 70 ◦C for 60 secs. Products were separated and
quantified using the GeXP CEQTM 8000 Genetic Analysis System AB Sciex, Warrington, Cheshire, UK),
and GenomeLab Fragment Analysis software (eXpress Analysis Version 1.0.25, Beckman Coulter, Inc.).
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2.4. Data Presentation & Statistical Analysis

Data shown are means ± SEM from individual RNA extractions, pooled from experiments
performed in duplicate or triplicate. αT3-1 and LβT2 cells were used from a range of passages, between
10 and 35. Numerical data were subjected to ANOVA, followed by Tukey’s or Dunnett’s multiple
comparison tests (where appropriate), accepting p < 0.05, using in-built equations in GraphPad Prism
7.0a for Mac (GraphPad, San Diego, CA, USA).

3. Results

3.1. Expression Profiling of the Natriuretic Peptide System in Primary Mouse Endocrine Tissues by Multiplex
RT-qPCR

Our previous studies have identified an intact, and functional, natriuretic peptide system in
gonadotrope cell lines, mouse and rat pituitaries, and a range of human pituitary adenomas [7–9,17,18].
However, these qualitative studies in pituitary cells lines and pituitary tissue did not examine all
components of the natriuretic peptide system (such as the associated convertase enzyme genes), nor did
it compare expression of these components in other endocrine tissues. Therefore, we utilised multiplex
RT-qPCR assays to examine the expression of natriuretic peptide-associated genes. Total RNA was
extracted from heart, adrenal, adipose, brain, pituitary, kidney, liver, testis and ovarian tissue collected
from C57/B6 mice. Subsequently, target-specific reverse transcription was performed, followed by
qPCR and quantitative analyses using the GeXP Genetic Analysis System, as we have described
previously [36]. To confirm that all primer sets within the assay were functional, we performed an
initial screen of murine cardiac tissue samples. As shown (Figure 1A), the electropherogram confirmed
expression of each gene of interest included within the assay. Negative control samples were run
routinely and failed to detect any transcripts, confirming the specificity of the multiplex RT-qPCR assay.

We next examined the expression of natriuretic peptide associated genes in a range of endocrine
tissues from both male and female C57/B6 mice. As shown (Figure 1B; Figures S1 and S2), differential
expression of transcripts for natriuretic peptides (Nppa, Nppb and Nppc), receptors (Npr1, Npr2 and
Npr3) and convertase enzymes (Corin and Furin) was seen across endocrine tissues, with only heart,
brain and testis expressing detectable transcripts for all gene targets within the multiplex assay.
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Figure 1. Expression profiling of the natriuretic peptide system in primary mouse endocrine tissues. 
(A) Murine mRNA sequences obtained from NCBI Nucleotide 
(https://www.ncbi.nlm.nih.gov/nuccore), were imported into express Designer Software (Beckman 
Coulter), from which multiplex primers were designed using the following parameters: maximum 
PCR product = 300 nt, minimum PCR product = 100 nt, minimum separation size = 7 nt. Multiplex 
PCR reactions were performed, using specific primers for Nppa, Nppb, Nppc, Npr1, Npr2, Npr3, Furin, 
Corin, ActB, Gapdh and Rpl19 and an internal positive control KanR. As shown (Figure 1A), capillary 
gel electrophoresis was used to separate specific PCR products (blue peaks), and compared alongside 
the appropriate size standard (red peaks, 140–420 nt). (B) RNA was isolated from range of tissues 
from 12 week old male and female C57/B6 mice (heart, adrenal, adipose, brain, pituitary, kidney, liver, 
testis and ovaries; n = 5 to 8). Data shown are means (n = 5 to 8) of relative gene expression (normalized 
to ActB; red indicates low level expression, green indicates high level expression, white indicates no 
transcript detected). 

Figure 1. Expression profiling of the natriuretic peptide system in primary mouse endocrine tissues.
(A) Murine mRNA sequences obtained from NCBI Nucleotide (https://www.ncbi.nlm.nih.gov/nuccore),
were imported into express Designer Software (Beckman Coulter), from which multiplex primers
were designed using the following parameters: maximum PCR product = 300 nt, minimum PCR
product = 100 nt, minimum separation size = 7 nt. Multiplex PCR reactions were performed, using
specific primers for Nppa, Nppb, Nppc, Npr1, Npr2, Npr3, Furin, Corin, ActB, Gapdh and Rpl19 and an
internal positive control KanR. As shown (Figure 1A), capillary gel electrophoresis was used to separate
specific PCR products (blue peaks), and compared alongside the appropriate size standard (red peaks,
140–420 nt). (B) RNA was isolated from range of tissues from 12 week old male and female C57/B6 mice
(heart, adrenal, adipose, brain, pituitary, kidney, liver, testis and ovaries; n = 5 to 8). Data shown are
means (n = 5 to 8) of relative gene expression (normalized to ActB; red indicates low level expression,
green indicates high level expression, white indicates no transcript detected).

https://www.ncbi.nlm.nih.gov/nuccore
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3.2. Expression Profiling of the Natriuretic Peptide System in αT3-1 and LβT2 Gonadotrope Cell Lines

Having used the primary mouse tissues to optimise the multiplex RT-qPCR assays, total RNA
was then generated from αT3-1 and LβT2 cells, prior to analyses using the multiplex RT-qPCR assays.
As expected, specific transcripts were detected for Nppc, Npr1, Npr2, Npr3 and Furin in both cell lines
(Figure 2), with gene expression levels of Npr2 being significantly less in LβT2 compared with αT3-1
cell line (* p = 0.02). Corin was detected in αT3-1 but not LβT2 cells. In keeping with primary mouse
pituitary tissue, transcripts for Nppa and Nppb were absent from both cell lines.

Cells 2019, 8, 1086 6 of 17 

 

We next examined the expression of natriuretic peptide associated genes in a range of endocrine 
tissues from both male and female C57/B6 mice. As shown (Figure 1B; Figures S1 and S2), differential 
expression of transcripts for natriuretic peptides (Nppa, Nppb and Nppc), receptors (Npr1, Npr2 and 
Npr3) and convertase enzymes (Corin and Furin) was seen across endocrine tissues, with only heart, 
brain and testis expressing detectable transcripts for all gene targets within the multiplex assay. 

3.2. Expression Profiling of the Natriuretic Peptide System in αT3-1 and LβT2 Gonadotrope Cell Lines 

Having used the primary mouse tissues to optimise the multiplex RT-qPCR assays, total RNA 
was then generated from αT3-1 and LβT2 cells, prior to analyses using the multiplex RT-qPCR assays. 
As expected, specific transcripts were detected for Nppc, Npr1, Npr2, Npr3 and Furin in both cell lines 
(Figure 2), with gene expression levels of Npr2 being significantly less in LβT2 compared with αT3-1 
cell line (* p = 0.02). Corin was detected in αT3-1 but not LβT2 cells. In keeping with primary mouse 
pituitary tissue, transcripts for Nppa and Nppb were absent from both cell lines. 

 
Figure 2. Natriuretic peptide expression profile in gonadotrope-derived cell lines. mRNA expression 
of natriuretic peptide components in untreated αT3-1 and LβT2 cells (Nppa and Nppb were not 
detected). Data shown are means ± SEM (n = 5 individual RNA extractions) of relative gene expression 
(normalized to ActB). 

3.3. Effect of Continuous or Pulsatile Exposure to GnRH on Natriuretic Peptide Gene Expression 

We next investigated whether the expression of the natriuretic peptide genes was sensitive to 
GnRH stimulation. To do this, we employed a more physiologically relevant treatment paradigm, by 
comparing the effects of either continuous (4 h) or pulsatile (5 min/h for 4 h) GnRH administration 
(Figure 3A). In LβT2 cells (Figure 3B), Nppc, Npr2 and Npr3 were significantly up-regulated by 
pulsatile GnRH treatment (by 2.2 ± 0.2-fold, 1.7 ± 0.2-fold and 1.8 ± 0.2-fold, for Nppc, Npr2 and Npr3 
respectively; ** p < 0.01). In contrast, only Npr3 was upregulated by continuous GnRH administration 
(by 2.2 ± 0.2-fold, **** p < 0.0001). GnRH failed to alter gene expression of any of these transcripts in 
αT3-1 cells, regardless of continuous or pulsatile delivery (Figure 3C). 

Figure 2. Natriuretic peptide expression profile in gonadotrope-derived cell lines. mRNA expression of
natriuretic peptide components in untreated αT3-1 and LβT2 cells (Nppa and Nppb were not detected).
Data shown are means± SEM (n = 5 individual RNA extractions) of relative gene expression (normalized
to ActB).

3.3. Effect of Continuous or Pulsatile Exposure to GnRH on Natriuretic Peptide Gene Expression

We next investigated whether the expression of the natriuretic peptide genes was sensitive to
GnRH stimulation. To do this, we employed a more physiologically relevant treatment paradigm,
by comparing the effects of either continuous (4 h) or pulsatile (5 min/h for 4 h) GnRH administration
(Figure 3A). In LβT2 cells (Figure 3B), Nppc, Npr2 and Npr3 were significantly up-regulated by
pulsatile GnRH treatment (by 2.2 ± 0.2-fold, 1.7 ± 0.2-fold and 1.8 ± 0.2-fold, for Nppc, Npr2 and Npr3
respectively; ** p < 0.01). In contrast, only Npr3 was upregulated by continuous GnRH administration
(by 2.2 ± 0.2-fold, **** p < 0.0001). GnRH failed to alter gene expression of any of these transcripts in
αT3-1 cells, regardless of continuous or pulsatile delivery (Figure 3C).

To ensure that the lack of responsiveness to GnRH of natriuretic peptide gene transcripts in αT3-1
cells did not indicate an artifactual observation, we performed additional multiplex RT-qPCR assays
to quantify changes in relevant gonadotrope transcription factors (cFos, cJun, Egr1, Nr5a1, Nr0b1).
As shown (Figure 4A), transcripts for all five transcription factors were detected in both cell lines,
albeit at differing expression levels. Analyses of the same GnRH-treated LβT2 samples revealed
differential responsiveness of cFos and Egr1 transcripts to continuous and pulsatile GnRH (Figure 4B);
cFos was increased by 3.6 ± 0.2-fold (**** p < 0.0001) and 2.5 ± 0.5-fold (** p < 0.01; continuous and
pulsatile GnRH, respectively); Egr1 expression was increased by 2.7 ± 0.2-fold (**** p < 0.0001) and
1.6 ± 0.2-fold (**** p < 0.0001; continuous and pulsatile GnRH, respectively). Gene expression changes
were similar when the same αT3-1 samples were analysed, with both cFos and Egr1 transcripts showing
differential responsive need to GnRH treatment (cFos increased by 2.0 ± 0.2-fold (* p < 0.05) and
2.2 ± 0.2-fold (** p < 0.01) with continuous and pulsatile GnRH treatment, respectively; Egr1 increased
by 1.9 ± 0.1-fold (**** p < 0.0001) with continuous GnRH exposure. Collectively, these data suggest
that components of the natriuretic peptide system are differentially sensitive to GnRH treatment in
LβT2 cells, dependent upon the pattern of stimulation.
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Figure 3. Effect of continuous or pulsatile GnRH stimulation on natriuretic peptide gene expression in
LβT2 and αT3-1 cell lines. (A) Schematic of pulsatile or continuous GnRH treatment protocol, including
wash periods. LβT2 cells (B) or αT3-1 cells (C) were treated with 0 or 100 nM GnRH, for either 4 h
continuously, or as 5 min pulses every hour for 4 h, before extracting RNA and performing multiplex
RT-qPCR to examine alterations in gene expression profiling of natriuretic peptide system (Nppc, Furin,
Corin, Npr1, Npr2, Npr3). Data shown are means ± SEM (n = 6 to 9 individual RNA extractions) of
relative gene expression (normalized to ActB); *** p < 0.001, ** p < 0.01, significantly different from
basal, or continuous vs pulsatile, as indicated).
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Figure 4. Effect of continuous or pulsatile GnRH stimulation on gonadotrope transcription factor
gene expression in LβT2 and αT3-1 cell lines. (A) Comparison of gonadotrope transcription factor
expression (cFos, cJun, Egr1, Nr5a1, Nr0b1) in LβT2 and αT3-1 cells. Data shown are means (n = 5 to 8
individual RNA extractions) of relative gene expression (normalized to ActB; red indicates low level
expression, green indicates high level expression. (B,C) LβT2 cells (B) or αT3-1 cells (C) were treated
with 0 or 100 nM GnRH, for either 4 h continuously, or as 5 min pulses every hour for 4 h, before
extracting RNA and performing multiplex RT-qPCR for gonadotrope transcription factors. Data shown
are means ± SEM (n = 6 to 9 individual RNA extractions) of relative gene expression (normalized to
ActB); *** p < 0.001, ** p < 0.01, * p < 0.05, significantly different from basal, or continuous vs pulsatile,
as indicated).
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3.4. CNP Effects on Expression Levels of Gonadotrope Transcriptional Regulators and Signaling Genes

Although the pituitary was identified as a major site of production for CNP [5], the biological
function of this peptide in anterior pituitary cells is still poorly understood. As Nppc was the only
natriuretic peptide transcript detected in both gonadotrope cells lines and in primary mouse pituitaries,
we focused our examination of natriuretic peptide affects to gonadotrope gene expression on CNP
alone. LβT2 and αT3-1 cells were treated with 100 nM CNP (maximally effective at stimulating cGMP
accumulation, [8,18]) for up to 24 h, before extracting total RNA and analyses using the gonadotrope
transcription factor multiplex assay. As shown (Figure 5), in LβT2 cells, CNP significantly stimulated
cJun (by 1.5 ± 0.1-fold, *** p < 0.001, 8 h), Egr1 (by 2.1 ± 0.1-fold, **** p < 0.0001, 24 h), Nr5a1 (by
1.8 ± 0.1-fold, *** p < 0.001, 24 h), and Nr0b1 (by 1.4 ± 0.1-fold, ** p < 0.01, 8 h) expression. In marked
contrast, CNP failed to alter the expression of cFos, cJun, Egr1 or Nr0b1 expression in αT3-1 cells, and
caused a significant reduction to Nr5a1 (by 0.25 ± 0.02-fold, **** p < 0.0001, 24 h) transcript expression.
Together, these data identify the first transcriptional targets for CNP signalling in the more mature,
LβT2 gonadotrope lineage cells.
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Figure 5. Effect of CNP on gonadotrope transcription factor gene expression in LβT2 and αT3-1 cells.
LβT2 (A) and αT3-1 (B) cells were stimulated with 0 or 100 nM CNP for 0, 4, 8, and 24 h, before
extracting RNA and performing multiplex RT-qPCR for gonadotrope transcription factors. Data shown
are means ± SEM (n = 6 individual RNA extractions) of relative gene expression (normalized to ActB);
**** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05, significantly different from basal (0 h).
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4. Discussion

Initial expression profiling studies identified the anterior pituitary as a major source of CNP [5],
with subsequent investigations highlighting the importance of pituitary gonadotrope cells [8,17,18].
Despite limited data describing a relationship between CNP and GnRH signalling [8,17,18], very little
is understood with regards to the regulation and role of CNP in pituitary gonadotropes, although there
is much greater understanding of the role of CNP in other parts of the hypothalamo–pituitary–gonadal
(HPG) axis [4,37–40]. In the current study, we have used multiplex RT-qPCR technology to conduct a
comprehensive expression profile of natriuretic peptide-associated genes in primary mouse endocrine
tissues, as well as the widely used αT3-1 and LβT2 gonadotrope-derived cells. In addition, we have
identified the first potential transcriptional targets of CNP action in gonadotrope-derived cells.

The use of multiplex RT-qPCR technology allows the detection of multiple gene transcripts from
a single sample [36,41,42]. Our expression profiling of murine endocrine tissues revealed that all
components of the natriuretic peptide system were ubiquitously expressed, apart from Nppa and
Nppb (which were predominantly expressed in the heart). These findings are in keeping with CNP
performing an autocrine/paracrine role throughout the periphery, as well as the CNS [4,43]. The failure
to detect either Nppa or Nppb transcripts in the pituitary was mimicked when expression profiling was
performed in the two gonadotrope-derived cell lines, again supporting previous studies that indicate
CNP to be the predominant pituitary natriuretic peptide [7–9,18]. The relative abundance of Furin in
both primary pituitary tissue and in LβT2 and αT3-1 cells, also suggests that gonadotrope-lineage cells
are primed to process CNP, as opposed to ANP/BNP (as Corin was either absent, or expressed at very
low levels). The only transcript which showed differential expression in the gonadotrope cell lines
was Npr2, which was significantly less abundant in LβT2 cells. However, this supports our previous
pharmacological profiling of particulate guanylyl cyclase activity in these cells [8].

Endocrine control of natriuretic peptide gene expression has been shown in several tissues, and
involves transcriptional regulation by gonadal steroids and peptide hormones [44–47]. Our previous
studies suggested that the Nppc promoter could be activated by GnRH in αT3-1 cells [8], via a
combination of calcium and MAPK signalling pathways. The data described herein are the first
descriptions to show regulation of endogenous Nppc expression in response to GnRH signalling,
whereby pulsatile GnRH significantly increased Nppc, Npr2 and Npr3 expression in LβT2 cells, without
altering expression in αT3-1 cells. A possible explanation for these differences in responsiveness
could be a reflection of the stimulation paradigm. Firstly, early studies using gonadotrope cell lines to
investigate the effects of GnRH pulsatility used a priming protocol [48], whereas our paradigm has used
pulse-naive LβT2 and αT3-1 cells. Secondly, in the current study we have examined gene expression
changes at the end of a 4hr protocol, to better reflect primary transcriptional effects of GnRH; but this
would fail to take account of any longer term/secondary transcriptional effects. Furthermore, the pattern
of the pulsatile GnRH administration (5 min/h) is slightly longer than would be expected in vivo, which
might result in altered decoding of the GnRH effect. Nevertheless, the robust Nppc response to pulsatile
GnRH is further evidence that GnRH is a regulator of natriuretic peptides in gonadotrope derived
cells, supporting previous studies that have implicated just such a relationship [7,8,17]. As the major
role of Npr3/NPR-C is to clear natriuretic peptide from the circulation [1] and reduce bioavailability, it
is surprising that both continuous and pulsatile GnRH administration caused a significant increase
in both Npr3 transcripts as well as Nppc and Npr2. However, this may simply represent a normal
physiological upregulation in Npr3 to counteract the increase to the CNP/GC-B pathway.

The lack of any natriuretic peptide gene expression response to GnRH in αT3-1 cells might have
reflected a loss of overall responsiveness in this cell line. Expression of Gnrhr was not affected by
continuous or pulsatile exposure to GnRH in either cell line (Figure S3A). Furthermore, when examining
the transcriptional response of key gonadotrope transcription factors, both cFos and Egr1 were
significantly up-regulated in both cell lines, as shown previously [21,29,49], confirming that an
appropriate signalling response to GnRH in these αT3-1 cells was intact. Downstream activation of
MAPK signalling pathways following GnRH signalling has been identified as a major mechanism
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of action in gonadotrope cells [14,50–54], often providing the membrane-to-nucleus link to control
gene transcription. In the current study, we have not identified the likely mechanism by which
GnRH affects Nppc and Npr2 expression. However, given the sensitivity of the Nppc promoter to
calcium/MAPK stimulation [8], and the wealth of literature linking pulsatile GnRH signalling to MAPK
activation [16,55], it is possible that these pathways are at least partially involved in the control of
endogenous Nppc and Npr2 expression in gonadotrope cells.

Despite being expressed at relatively high tissue concentrations in the anterior pituitary, the role
of CNP in pituitary function has remained unclear [4]. CNP is the most potent activator of cGMP
production in the anterior pituitary and gonadotrope cell lines, whilst failing to alter gonadotropin
secretion from rat pituitary cells [8,17,18]. Our identification of putative CNP-target genes in LβT2
and αT3-1 cells represents the first biological role for CNP beyond simply elevating cGMP production.
Interestingly, the gene expression response to CNP was different in the two cell lines; CNP stimulated
expression of cJun, Egr1, Nr5a1 and Nr0b1 in LβT2 cells, but reduced Nr5a1 expression in αT3-1 cells.
These cell lines represent gonadotrope cells at different stages of pituitary development; αT3-1 cells
being more representative of a gonadotrope progenitor cell, and LβT2 cells closely resembling the more
mature gonadotrope [56,57]. It would be tempting to speculate that the differential gene expression
response to CNP is associated with a differential developmental role for CNP in gonadotropes. Whilst
there is some evidence in the CNS of developmental changes to the natriuretic peptide system [58],
we have not specifically addressed whether this occurs in the pituitary. However, we have previously
described the presence of an intact natriuretic peptide system (NPPC, NPR2) in human fetal pituitaries,
normal adult pituitaries, and in human pituitary adenomas, regardless of origin [9]; as these tissues
represent a broad range of developmental ages (fetal to adult), the lack of any substantial difference
in the expression of NPPC or NPR2 would suggest that developmental changes to CNP/GC-B in the
anterior pituitary do not occur.

The mechanisms by which cGMP mediate gene expression are not fully elucidated, although both
nitric oxide and natriuretic peptide signalling has been shown to have direct effects on the transcription
of many genes [30–34]. For example, cGMP/PKG can drive cFos expression, via a number of response
elements, including AP-1, CRE and an SRE [59]. cGMP signalling can also directly regulate CREB
by activation of PKA, or indirectly, through the activation of MAPK [60]. As cJun, Egr1, Nr5a1 and
Nr0b1 have all been shown to be transcriptionally regulated via the cAMP/PKA/CRE pathway [61–64],
this represents a likely mechanism to explore in LβT2 cells. Additionally, we, and others, have
previously shown that CNP can directly activate MAPK signalling in both rat pituitary tumour GH3
cells and LβT2 cells [65] or in melanoma cells [66]. Therefore, the differential effects of CNP on gene
expression in LβT2 and αT3-1 cells could reflect differences in which signalling pathways are activated
downstream of the GC-B receptor.

The role of CNP as an important regulator of gonadal and reproductive function is becoming
increasingly clear, yet our understanding of how CNP influences other levels of the HPG remains
enigmatic. Our data provide an indication of how CNP signalling might alter gonadotrope function, by
controlling the expression of key transcription factors. As mutations to either Nppc or Npr2 are linked
with poor reproductive development and function, a thorough understanding of how CNP and cGMP
regulate pituitary gonadotrope lines cells is important for the development of future fertility therapies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/8/9/1086/s1.
Table S1: Primer sequences for multiplex RT-qPCR assays for natriuretic peptide genes, and gonadotrope
transcription factor genes. Murine mRNA sequences were obtained from NCBI Nucleotide (https://www.ncbi.nlm.
nih.gov/nuccore), were imported into express Designer Software (Beckman Coulter). Figure S1: Representative
electropherograms of multiplex RT-qPCR analyses of expression for natriuretic peptides (Nppa, Nppb, Nppc),
natriuretic peptide receptors (Npr1, Npr2, Npr3), and proconvertase enzymes (Furin and Corin) (blue peaks).
Total RNA was extracted from adipose, adrenal, liver, kidney, forebrain, pituitary, testis and ovary. Genes were
detected in order of size corresponding to size standards run alongside the products (140nt-420nt) (red peaks) and
quantified by capillary electrophoresis. Figure S2: Multiplex RT-qPCR data of natriuretic peptide gene expression
from murine adipose, adrenal, liver, kidney, forebrain, pituitary, testis and ovary. Tissue was collected from
n = 5 to n = 8, 12 week-old C57/B6 males or females and total RNA extracted. Figure S3 A) Effect of continuous
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or pulsatile GnRH stimulation on Gnrhr expression in LβT2 and αT3-1 cell lines. Cells were treated with 0 or
100nM GnRH, for either 4hr continuously, or as 5 min pulses every hour for 4hr, before extracting RNA and
performing multiplex RT-qPCR for Gnrhr (as part of the same multiplex described in Figure 4). Data shown
are means±SEM (n = 6 to 9 individual RNA extractions) of relative gene expression (normalized to ActB). B)
Total cGMP accumulation in LβT2 and αT3-1 cells treated with 0 or 100 nM CNP for 1h in physiological saline
solution containing 1mM IBMX, before measuring with a commercially available cGMP-EIA kit (R&D Systems) as
described previously [8]. Data shown are means±SEM representative of three independent experiments, each
performed in triplicate. ** p <0.01, **** p <0.0001, significantly different from Control cells.
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