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Simple Summary: Intestinal microbiota play crucial roles for their hosts. Odontolabis fallaciosa shows
striking sexual dimorphism and male trimorphism, which represents an interesting system to study
their gut microbiota. We have compared the intestinal bacterial community structure between the
two sexes and among three male morphs of O. fallaciosa. The gut bacterial community structure was
significantly different between males and females. The females were associated with higher bacterial
alpha-diversity relative to males. Large males had a higher relative abundance of Firmicutes and
Firmicutes/Bacteroides (F/B) ratio, which contributed to nutritional efficiency. The results increased
our understanding of beetle–bacterial interactions of O. fallaciosa between the two sexes, and among
three male morphs, which might reveal the relationship among the gut microbiota, nutrition level,
and phenotypic evolution of the stag beetle.

Abstract: Odontolabis fallaciosa (Coleoptera: Lucanidae) is a giant and popular stag beetle with striking
sexual dimorphism and male trimorphism. However, little is known about their intestinal microbiota,
which might play an indispensable role in shaping the health of their hosts. The aim of this study was
to investigate the intestinal bacterial community structure between the two sexes and among three
male morphs of O. fallaciosa from China using high-throughput sequencing (Illumina MiSeq). The gut
bacterial community structure was significantly different between males and females, suggesting that
sex appeared to be the crucial factor shaping the intestinal bacterial community. Females had higher
bacterial alpha-diversity than males. There was little difference in gut bacterial community structure
among the three male morphs. However, compared to medium and small males, large individuals
were associated with the higher relative abundance of Firmicutes and Firmicutes/Bacteroides (F/B)
ratio, which might contribute to nutritional efficiency. Overall, these results might help to further our
understanding of beetle–bacterial interactions of O. fallaciosa between the two sexes, and among the
three male morphs.
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1. Introduction

The intestinal microbiota of animals are composed of densely populated microbial assemblages [1].
The gut microbiota contributes to many necessary host functions, including increasing nutritional
efficiency [2], improving host health [3], training the immune system [4], and regulating host
physiology [5]. The interaction between hosts and their gut microbiota significantly affects host
behaviors [6,7]. Gut microbiota influenced the mate choice of Drosophila melanogaster [8] and
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caused hybrid inviability in Nasonia [9]. Gut microbial community patterns are affected by a series
of complex and dynamic interactions throughout life, including diet [10], age [11], gender [12],
seasonal fluctuations [13], and genotype [14].

Empirical studies have intensively clarified intestinal microbial assemblages in vertebrates [1,15].
Insects are the most abundant species group in the animal kingdom and have unique life history
traits. Thus, they represent an interesting system for intestinal microbiota. Intestinal microbiota
have been studied in mosquitoes, bees, termites, and cockroaches [16–20] and have shown that
gut microbial communities benefited their hosts [21]. Intestinal microbiota help insects digest
recalcitrant materials [22], prevent the invasion of parasites and pathogens [23], and aid in intraspecific
communication [6,24].

Stag beetles (Coleoptera: Lucanidae) are striking insects due to their large size and prominent
mandibles. About 1800 species and subspecies have been described worldwide. Most species inhabit
tropical and sub-tropical forests. The larvae live in and feed on decaying wood, while adults utilize
tree sap and overripe fruits [25]. The larvae of beetles rely on dead wood for growth, which facilitates
wood decomposition, nutrient cycling, and vegetative growth. Thus, they are good biological
indicators of forest matter cycling [26,27]. Their gut microbiota are important for converting a food
source with low nutritional value into a nutritionally adequate substance. A fungus-storage organ
(i.e., mycangium) was found in female Platycerus and Sinodendron stag beetles [28,29]. Xylose-fermenting
yeast in Scheffersomyces has been found in the mycangium to help host increase their nutrition levels.
In addition, mycangial yeasts can be transmitted vertically from adult females to their larvae [28].

Despite studies showing gut yeast in lucanid species, knowledge about the gut bacterial community
structure of beetle species is limited. Moreover, the gut bacterial communities between conspecific
adult males and females have not been definitely verified. The yellow-spot stag beetle, O. fallaciosa,
is saproxylic species distributed in tropical and subtropical forests from northern Vietnam to southern
China. Adults of this species exhibit dramatically sexual dimorphism. In addition, the adult males
show rare phenotypic trimorphism [30,31]. Three types of male morphs, that is large-, medium-,
and small-sized males, coexist and display large variations in mandible shape and body size. Thus,
this species offers an excellent opportunity to examine the gut bacterial community structure between
the two sexes and among the three male morphs.

There is a strong correlation between the obtained nutrients and the male mandible shape/body
size [32]. Mandible shape is highly associated with reproductive success in adult males [33–35].
This suggests that efficient conversion of indigestible food into adequate nutrition, with the help of
gut microbiota, is essential for the growth of large males. However, we found little difference in gut
bacterial diversity among three male morphs of O. fallaciosa in our previous study [36]. We expected that
certain bacterial taxa which were associated with increasing hosts’ nutritional efficiency would show
significant differences among the three male morphs. In this study, we investigated the gut bacterial
community structure of male (including three male morphs) and female O. fallaciosa by high-throughput
sequencing. In particular, we focused on two questions: (i) Are there sex-related differences in the gut
bacterial community structure of O. fallaciosa? and (ii) Do the certain intestinal bacterial taxa that are
associated with nutrition provision show differences among the three male morphs?

2. Materials and Methods

2.1. Site Selection and Sample Collection

This study was based on 46 adult individuals of O. fallaciosa, consisting of 15 females and
31 males. The males included three morphs (i.e., trimorphism) based on mandible shape and body size:
large-sized males (LM; 15 individuals), medium-sized males (MM; 10 individuals), and small-sized
males (SM; 6 individuals; Figure S1). The beetles were collected between 20–25 July 2016 at Laoshan
Mountain, Jinxiu, Guangxi Autonomous Region, P. R. China (24◦17′37′′N, 110◦25′33′′ E). Collection was
permitted by the Dept. of Forestry of Guangxi Autonomous Region. Each adult was dissected to
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collect gut tissues. Prior to collection of gut tissues, the beetles were anesthetized by holding them at
−20 ◦C for 8 min, followed by surface sterilization with 75% alcohol. After the removal of the legs
and elytra, the guts were collected by dorsal dissection. All of the gut tissues were stored at −80 ◦C
until processing.

2.2. DNA Extraction

DNA extractions were carried out on the guts of O. fallacoisa using the Qiagen QIAamp® DNA
Stool Mini Kit (Qiagen Inc. Valencia, CA, USA), based on the protocol.

2.3. High-Throughput Sequencing

An aliquot (50 ng) of purified DNA was used as a template with primer (F515/R907) to amplify
the V4–V5 hypervariable regions of the bacterial 16S rRNA genes fragments for the Illumina MiSeq
platform (PE 300) at Majorbio (Shanghai, China) [37]. The detailed parameters for amplicon library
preparation are shown in our previous study [1]. The last 50 bp of raw paired-end reads was cut off and
then merged using FLASH v.1.2.11 [38]. Quantitative Insights Into Microbial Ecology (QIIME v.1.9.0)
was used for further analysis. Sequences below an average quality score of 30 (i.e., low quality) were
filtered out. The remaining sequences were clustered into operational taxonomic units (OTUs) at 97%
similarity with the usearch algorithm. Chimera check was performed. All of the singleton OTUs were
deleted. The most abundant sequence within each OTU was selected as the representative sequence,
identified using uclust with Silva v.132 as reference database and aligned with PyNAST [39]. To equally
rarefy samples, randomly selected subsets of 8900 sequences per sample were used to compare the
bacterial community structure for all samples.

2.4. Statistical Analysis

The dominant intestinal bacterial phyla were determined by the mean relative abundance of
all individuals > 1% in this study. A one-way analysis of variance (ANOVA) was used to analyze
bacterial alpha-diversity and the relative abundance of dominant phyla. The multivariate variances in
bacterial community composition were evaluated by betadisper analysis using the vegan package in R
3.4.3 software. The differences in bacterial community compositions were analyzed by non-metric
multidimensional scaling (NMDS) and analysis of similarity (ANOSIM) among treatments using
the vegan package in R 3.4.3 software. The contribution of genera to the differences of bacterial
community composition between male and female beetles was analyzed by SIMPER analysis using the
vegan package in R software (v.3.4.3). Indicator analysis was done to identify bacterial OTUs that are
specifically associated with the certain treatment using the labdsv package in R software (v.3.4.3).

2.5. Data Availability

The raw data were submitted to the Sequence Read Archive (SRA) of National Center for
Biotechnology Information (NCBI) under the accession number SRP238193.

3. Results

3.1. Intestinal Bacterial Alpha-Diversity

A total of 2552 bacterial OTUs (97% similarity) were found, ranging from 189 to 503 across all
samples, 18.3% of which (468) were found in all treatments (Figure S2). The unique bacterial OTUs of
O. fallaciosa were 450 (17.6%), 264 (10.3%), 130 (5.1%), and 470 (18.4%) for treatments of large-sized
males (LM), medium-sized males (MM), small-sized males (SM), and females (FE), respectively
(Figure S2). The one-way ANOVA showed that the bacterial alpha-diversity of O. fallaciosa (i.e., OTU
richness and phylogenetic diversity) was significantly different between males and females (p < 0.001),
with higher alpha-diversity in females (Figure 1). The intestinal bacterial alpha-diversity did not show
any difference among three male morphs (Figure 1).
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Figure 1. Intestinal bacterial alpha-diversity of Odontolabis fallaciosa across different treatments.
The bottom and top of the box denote the first and third quartiles; the band inside the box denotes the
median; letters above bars represent significant differences from the one-way ANOVA with Tukey’s
honestly significant difference (HSD) post-hoc testing (p < 0.05). LM: large male; MM: medium-sized
male; SM: small male; FE: female; OTU: operational taxonomic unit.

3.2. Intestinal Bacterial Community Structure

The dominant intestinal bacterial phyla of O. fallaciosa were Proteobacteria (58.9%), Bacteroidetes
(14.5%), Firmicutes (11.1%), Tenericutes (3.05%), Cyanobacteria (1.51%), Fusobacteria (1.28%),
and Armatimonadetes (1.06%) (Figure 2). LMs had a higher relative abundance of Firmicutes
and lower relative abundance of Proteobacteria relative to other treatments (Figure 2). The female
beetles had a higher relative abundance of Armatimonadetes relative to the males (Figure 2). The ratio
of intestinal Firmicutes/Bacteroidetes (F/B) was significantly higher in LMs relative to MMs and SMs
(Figure 2). Indicator analysis was used to identify bacterial OTUs that are specifically associated with
different treatments. The results showed that there were 10, 1, 3, and 16 indicator species in the LMs,
MMs, SM, and FEs, respectively (Table S1).
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Figure 2. Relative abundances of dominant bacterial phyla of Odontolabis fallaciosa across treatments.
Error bars denote standard deviation; different letters represent significant differences from a one-way
ANOVA with Tukey’s honestly significant difference (HSD) post-hoc testing (p < 0.05). LM: large male;
MM: medium-sized male; SM: small male; FE: female.

Similar multivariate variance was found in the gut bacterial community compositions among
different treatments (p < 0.05 in all cases; Table S2). The gut bacterial community compositions were
significantly different between males and females of O. fallaciosa (Table S2; Figure 3). Compared
to the females, the gut bacterial community composition of large males (i.e., r = 0.420) showed a
greater difference than medium (i.e., r = 0.234) and small (r = 0.267) males. However, there was little
difference in the intestinal bacterial community composition among the three male morphs (Table S2;
Figure 3). SIMPER analysis was performed to clarify which gut bacterial OTUs primarily contributed
to community dissimilarities between the males and females. The results revealed that OTU_782
(Acinetobacter; 15.42%), OTU_3378 (Pseudomonas; 9.48%), and OTU_117 (Chryseobacterium; 6.64%) made
primary contributions to the differences in gut bacterial community between the male and female
beetles (Table 1).
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Figure 3. The intestinal bacterial community compositions across different treatments. LM: large male;
MM: medium-sized male; SM: small male; FE: female.

Table 1. SIMPER analysis showing the contribution of intestinal bacterial OTUs to the difference
between male and female beetles. Taxonomic leaves: o, order; c, class; f, family; g, genus. MA: Male
beetle; FE: Female beetle.

OTU Taxa
Contribution (%)

MA vs. FE

782 g__Acinetobacter 15.42
3378 g__Pseudomonas 9.48
117 g__Chryseobacterium 6.64
906 f__Moraxellaceae 4.74
2845 f__Enterobacteriaceae 3.99
1435 c__Chthonomonadetes 3.18
434 f__Bartonellaceae 2.56
1184 o__Entomoplasmatales 2.11

4. Discussion

Dramatic shifts in intestinal bacterial community structures were found between male and female
O. fallaciosa (Figures 1–3), suggesting that sexual variation was a crucial factor shaping the intestinal
bacterial structure [40]. The gut bacterial genera Acinetobacter (15.42%) and Pseudomonas (9.48%)
primarily contributed to the differences in bacterial community composition between males and
females (Table 1). Previous studies have found that both Acinetobacter and Pseudomonas helped hosts’
digestion and increased the availability of nutrients [41,42]. However, males showed higher relative
abundance of Acinetobacter, while females had greater relative abundance of Pseudomonas. The result
indicated that sexual variations might be closely linked to their gut bacterial functions.

Consistent with previous studies, female beetles had higher gut bacterial diversity than
males [40,43,44]. Heritable taxa have been demonstrated in stag beetles [6,45,46], suggesting that higher
intestinal bacterial diversity in females might contribute to the vertical transmission (i.e., larva acquire
diverse bacterial taxa). A sex-specific metabolic pathway and immune system might be important
reasons for differences in bacterial diversity between the two sexes of beetles [40,47,48]. Differences in
gut bacterial diversity might also be induced by differences in the preferential diet of beetles between
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the sexes. However, we did not investigate diet data of the beetles. Thus, the limitation should be
clearly clarified in a future study.

Interestingly, there was little difference in gut bacterial community composition and diversity
among the three male morphs of O. fallaciosa (Figures 1 and 3), suggesting that mandible shape and
body size had little effect on their gut bacterial community structure. However, large males were
associated with a lower relative abundance of Proteobacteria. Previous studies have demonstrated
that many animal pathogens belong to Proteobacteria [49], suggesting that large males might be
at lower risk of diseases relative to other male morphs. In addition, we found a higher relative
abundance of Firmicutes and Firmicutes/Bacteroidetes (F/B) ratio in large males relative to other
males. Intestinal Firmicutes contribute to the decomposition of complex carbohydrates, fatty acids,
and polysaccharides [50,51], which might improve the ability of the host to derive nutrients from a
nutrient-poor diet [52]. Nutrition level has been proven as the crucial factor to regulate size of body and
mandible in male beetles [32,53]. The higher F/B ratio might be of significant relevance to body size by
providing a stronger capacity for energy harvest and nutrition provision [54–56]. The large male was
associated with a higher reproductive success among the three male morphs [35]. Thus, these results
suggested that large males were associated with a higher relative abundance of favorable bacterial taxa
(i.e., Firmicutes and F/B ratio) and a lower relative abundance of pathogenic taxa (i.e., Proteobacteria),
which allow them to increase their nutrition levels and decrease the risk of diseases, resulting in their
being more attractive to female beetles.

5. Conclusions

Gut bacterial community structure showed significant differences between males and females
of O. fallaciosa, suggesting that the gut bacterial community of beetles may have strong sexual
preferences. The males were associated with higher bacterial diversity, which might contribute to
vertical transmission. The bacterial community structure showed little difference among the three
male morphs. However, the guts of large males might contain a higher relative abundance of favorable
bacterial taxa and lower relative abundance of pathogenic taxa that allows them to increase their
nutrition levels and decrease the risk of diseases. This study provided a better picture of beetle–bacterial
interactions between the two sexes, and among three male morphs. Future work should focus on the
intestinal microbial abundance and community structure at different growth stages to clarify intestinal
microbial functions in controlling the life history of stag beetles.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/12/2352/s1,
Table S1: Indicator bacterial species in guts of Odontolabis fallaciosa across different treatments. Taxonomic leaves:
c, class; f, family; g, genus; s, species. LM: large-sized male beetle; MM: medium-sized male beetle; SM: small-sized
male beetle; FE: female beetle; Table S2: The multivariate variance across the different treatments was evaluated
by betadisper analysis. Differences in gut bacterial community composition across the different treatments
examined by the dissimilarity test of ANOSIM. LM: large-sized male beetle; MM: medium-sized male beetle;
SM: small-sized male beetle; FE: female beetle. Figure S1: The mandible shape and body size of O. fallaciosa
between two sexes, and among three male morphs. LM: large-sized male beetle; MM: medium-sized male beetle;
SM: small-sized male beetle; FE: female beetle, Figure S2: Venn diagram showing the co-occurrence of OTUs
among samples from different treatments. Numbers inside the Venn diagram indicate unique and shared OTUs.
OTU, operational taxonomic unit; LM: large-sized male beetle; MM: medium-sized male beetle; SM: small-sized
male beetle; FE: female beetle.
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