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Abstract

Objective: To compare the inference regarding the effectiveness of the various non-pharmaceutical interventions (NPIs) for COVID-
19 obtained from different SIR models.

Study design and setting: We explored two models developed by Imperial College that considered only NPIs without accounting for
mobility (model 1) or only mobility (model 2), and a model accounting for the combination of mobility and NPIs (model 3). Imperial
College applied models 1 and 2 to 11 European countries and to the USA, respectively. We applied these models to 14 European
countries (original 11 plus another 3), over two different time horizons.

Results: While model 1 found that lockdown was the most effective measure in the original 11 countries, model 2 showed that
lockdown had little or no benefit as it was typically introduced at a point when the time-varying reproduction number was already
very low. Model 3 found that the simple banning of public events was beneficial, while lockdown had no consistent impact. Based on
Bayesian metrics, model 2 was better supported by the data than either model 1 or model 3 for both time horizons.

Conclusion: Inferences on effects of NPIs are non-robust and highly sensitive to model specification. In the SIR modeling framework,
the impacts of lockdown are uncertain and highly model-dependent. © 2021 Elsevier Inc. All rights reserved.
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1. Introduction

Until effective and safe vaccines can become widely
available, the levers of policy makers to manage COVID-
19 have included non-pharmaceutical interventions (NPIs),
such as social distancing mandates, travel restrictions, self-
isolation, banning of public events, closure of schools, and
ultimately complete lockdown. These measures aim to re-
duce infections by decreasing contact between individuals.
Given that multiple NPIs are often introduced in quick
succession, it is difficult to separate their effects.

Here, we compare the inferences regarding the ef-
fectiveness of various NPIs obtained from different SIR
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(susceptible-infected-removed) models. The first model
(model 1) was produced by the Imperial College COVID-
19 Response Team and led to arguably the most influential
publication to-date in support of large benefits from total
lockdown [1]. Its publication in Nature [1], concluded that
complete lockdown was responsible for 80% of the reduc-
tion in the time-varying reproduction number, Rt, and that
3.1 million deaths were avoided in 11 European countries
due to lockdown.

The Imperial College team also developed and applied a
different model (model 2) to the USA [2], which assumes
Rt varies as a function of mobility. In model 2, there is
no explicit causal link between an NPI and Rt–NPIs enter
the model indirectly via their effects on mobility. Infer-
ence regarding the (complex) impact of NPIs is possible
by observing the Rt trajectory at the time of intervention/s.

This work tries to make the point that one has
to resolve uncertainty not only about fundamental
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epidemiological variables such as the time-varying repro-
duction number, but also about the form or structure of the
model used to estimate these variables. In Bayesian statis-
tics this is known as model comparison, while in other
fields it is known as structure learning. We emphasize the
potential importance of model comparison in the context
of quantitative epidemiology using a worked example
to show that conclusions about the efficacy of various
interventions depend sensitively on the ability to compare
one model with another. We illustrate this point with a
worked example based upon an early assessment of NPIs
during the first wave of the current coronavirus outbreak.

In particular, we compare the results and performance
(fit to the data) of models 1 and 2, when applied to the
original 11 countries, plus another 3 European countries
for which data were available but had not been included
in the original publication. We also consider a third model
(model 3), a hybrid of the first two, that considers both
mobility and various NPIs together. We aim to understand
if inferences are robust to model specification and whether
some model provides a better fit than others. It is important
to note that all three models were proposed (and in the
case of the first two models) implemented by the Imperial
College team.

2. Methods

2.1. Data

We compare the impact of NPIs and mobility on Rt for
three models, two time horizons and two sets of European
countries. Specifically,
1. For all models, we examine the evolution of Rt for two

time horizons: up to May 5th (the end date chosen by
Flaxman et al. [1]), and July 12th to allow investigating
both the imposition and lifting of various NPIs.

2. The original publication by Flaxman et al. [1] had in-
cluded 11 European countries (Austria, Belgium, Den-
mark, France, Germany, Italy, Norway, Spain, Sweden,
Switzerland, United Kingdom). However, suitable data
were also available for the Netherlands, Portugal, and
Greece; therefore we also consider 14 countries.
Seeding of new infections in all models is chosen to be

10 days before the day a given country has cumulatively
observed 10 deaths so that mobility data are available for
all countries examined and thus allowing a fair compari-
son between models. Flaxman et al. [1] chose the seeding
of new infections to be 30 days before a country has cu-
mulatively observed 10 deaths. We alter the prior for the
initial infection count, which is a model parameter inferred
from the posterior distribution, to reflect this modification.
Seeding dates appear in Table A.1.

For mobility data we follow Unwin et al. [2], and
use Google’s COVID-19 Community Mobility Report [3],
which provides data measuring the percentage change in
mobility compared to a baseline level for visits to: retailers
and recreation venues, grocery markets and pharmacies,
parks, transit stations, workplaces and residential places.
We use the average change in mobility across all locations,
excluding residential places and parks. Mobility indicators
are proxies for changes in human behavior and of expo-
sure risk — the number of close contacts and duration of
contact. Behavior change could be due to one or more cen-
trally imposed interventions or the product of individuals
responding to the epidemic on their own initiative.

2.2. Model 1 (all NPIs considered)

In model 1, the evolution of Rt is given by,

Rt,m = R0,m exp

(
−

6∑
k=1

αkIk,t,m − βmI∗t,m

)
, (1)

where Rt,m is the effective reproduction rate for coun-
try m at time t and Ik,t,m is an indicator variable, where
Ik,t,m = 1 if NPI k is in place at time t, for country m
and Ik,t,m = 0 otherwise, for k = 1, . . . , 6. The subscript k
refers to the various NPIs (Table A.2) whose timeline and
definition are given in Supplementary Table 2 of Flaxman
et al. [1]. The covariate I∗t,m is an indicator variable for
the last imposed intervention allowing for country-specific
random effects given by βm. In all countries except Swe-
den, this was lockdown, see Flaxman et al. [1] for details.
For the analysis up to July 12th when some of the NPIs
have been lifted, we allow the impact of lifting an NPI on
Rt to be different in magnitude from the impact of impos-
ing that NPI in the first place. The timing of lifting NPIs
in different countries appears in Table A.3.

In Equation (1), the proportional variation of Rt from
the initial R0 is modeled as a step function and only al-
lowed to change, immediately so, in response to an inter-
vention. Therefore, any decrease in Rt (even if this de-
crease is a result of the increasing proportion of the popu-
lation who are infected, changes in human behavior, clus-
tered contact structures and/or pre-existing immunity [4])
must, by construction, be attributed to interventions; the
impact of a new intervention is immediate without time
lag or gradual change. This assumption is clearly made
for simplicity but is unrealistic.

2.3. Model 2 (Mobility Only Considered)

In model 2, the proportional variation of Rt from R0

is allowed to vary with mobility. Model 2 does not pre-
sume Rt follows a step function and is therefore capable
of capturing more gradual changes over time. The impact
of mobility on Rt is allowed to vary across countries by
use of country-specific random effects terms. Specifically,

Rt,m = R0,m · f(−αXt,m − β1,m − β2,mXt,m

− εm,w(m)(t)),
(2)
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where f(x) = 2 × exp(x)
1+exp(x) is twice the inverse of the logit

function, Xt,m is the average change in mobility, exclud-
ing residential places and parks, at time t for country m
and εm,w(m)(t) is a weekly AR(2) process centered around
zero. In Equation (2), α is a measure of the impact of the
average change in mobility on Rt which is common to
all countries, while β2,m measures country-specific devia-
tions from this common value. The advantage of model 2
is that it gives a more flexible estimate of Rt, allowing it
to change with mobility trends. Although NPIs are not ex-
plicitly included in the model, the impact of an NPI can be
measured by observing the value of Rt, and its subsequent
change, when specific interventions were imposed.

2.4. Model 3 (Mobility and NPIs jointly considered)

After communication with the Imperial College team,
we also consider a third model (model 3) which jointly
includes mobility and NPIs. The motivation behind the for-
mulation of model 3 is to attempt to untangle the impacts
of mobility, lockdown and other NPIs. In our communica-
tion, the Imperial College team proposed a similar model
but only included mobility and a single NPI – lockdown –
in their model. Given that our goal is to quantify the rel-
ative contributions of several NPIs, we consider all NPIs,
and mobility.

However, we caution against using model 3 as a tool
for inference. NPIs may impact mobility in possibly non-
linear, non-additive, lagged and interactive fashions, with
possibly complex feedback. We include this model here
to compare its performance against models 1 and 2. The
functional form of Rt,m in model 3 is:

Rt,m = R0,m · f(−α0Xt,m −
∑5

k=1 αkIk,t,m − β1,m

−β2,mXt,m − εm,w(m)(t)).
(3)

In brief, we use Bayesian model inversion to evalu-
ate the evidence for a particular model and the posterior
density over the parameters of that model. The models in
question generate new confirmed cases and daily deaths
reported from a series of countries. We use a conventional
SIR (susceptible-infected-removed) model that, given ini-
tial conditions and a time-varying reproduction number,
enables us to generate the expected incidence of new cases
and fatalities over a specified time period. In these models,
the time-varying reproduction number is parameterized in
terms of known events or fluctuations (here, the onset and
offset of NPIs or fluctuations in mobility using proxy mea-
sures). The functional form relating these known fluctua-
tions to the time-varying reproduction number defines the
structure of various models. Once that form has been spec-
ified, one can then use standard sampling procedures (e.g.,
Stan) to evaluate the posterior over the model parameters
that best explain the incidence of new cases and deaths.
Finally, the quality of the model can be assessed with the
model evidence (also know as marginal likelihood). Here,
we approximate model evidence with standard information
criteria, acknowledging their limitations (please see discus-
sion in Appendix B.2).

For a more technical discussion of prior specification
and Bayesian measures of model fit for all models, see
Appendix B.

3. Results

3.1. Mobility

Figs. 1 and A.1 show that for most countries the ini-
tial reduction in mobility preceded the date of the first
lockdown. This suggests that people’s behavior changed in
response to earlier, less severe interventions such as ban-
ning of public events and social distancing, and/or as a
result of individual choices in the face of an unknown, but
potentially catastrophic, pandemic.

3.2. Convergence diagnostics

Convergence diagnostics (trace plots and R̂ [5] based
on 10 chains — see also[6]) for all three models and both
time horizons appear in Fig. A.2, providing strong evidence
that the Markov chains have converged.

3.3. Comparison of models up to May 5th

While model 1 and model 2 give very different trajecto-
ries of Rt (Figs. 2a, A.3a–A12a, Appendix C), both mod-
els produce visually similar fits to the observed daily death
counts, i.e., different trajectories of Rt may give rise to the
same data and hence different inference surrounding the
impact of various NPIs. As pointed out in Flaxman et al.
[1], the disparity between the observed and predicted num-
ber of cases is due to asymptomatic and non-documented
infections and limited testing capacities.

For the 11 countries (Table 1), the inference from model
1 indicates that lockdown had the biggest impact of all the
interventions in all countries with an average reduction in
Rt of 80%. In contrast, model 2 shows clearly that Rt

was falling well before lockdown, excluding Sweden that
had no lockdown. In the other 10 countries, Rt < 1.0 at
the time of lockdown in 4 countries and only 1.0 − 1.3 in
another 3 countries (all three 95% CIs contained 1.0).

When we considered 3 additional countries (Table C.1),
the average reduction in Rt from lockdown shrank to 73%
in model 1. Model 2 shows Rt < 1.0 in 7 countries and
1.0 − 1.3 in another 3 countries when lockdown was im-
posed. In particular, the three added countries already had
Rt < 1.0 at the time of lockdown. For Greece and Portu-
gal, Rt was already so low (0.34 and 0.67, respectively)
that even the 95% CIs excluded 1.0.

Model 3 provides different inference yet again. Only
the mobility and banning of public events had 95% CIs
for regression coefficients which excluded zero (Fig. A.2).
The impact of lockdown was not statistically significant
(95% CI is -0.23, 4.25).



V. Chin et al. / Journal of Clinical Epidemiology 136 (2021) 96–132 99

Fig. 1. Percentage change in average mobility from baseline level from February 15th to May 5th in each of the European countries examined in
Flaxman et al. [1], as well as an additional three countries consisting of Greece, the Netherlands and Portugal.
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Fig. 2. United Kingdom. The start time for the plots is 10 days before 10 deaths are recorded. Observed counts of daily infections and daily
deaths are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and light blue respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
In comparing the models, Table A.4 shows that model
2 provides a lower RMSE for eight of the eleven original
countries considered by Flaxman et al. [1], for the pe-
riod March 4th to May 5th. The three countries for which
model 1 had a lower RMSE are the UK, Germany and
Norway.

Table 2 demonstrates that model 2 is the best supported
by the data for all three information criteria: WAIC1,
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Table 1. Comparison of the value of Rt at lockdown (LD) and its 95% CIs between models 1 and 2 for all eleven countries analyzed in Flaxman
et al. [1] for the time horizon March 4th to May 5th. Values of basic reproduction number R0 and Rt immediately after the introduction of other
NPIs for both models are given in Table A.5 in the Appendix.

Country

Model 1 Model 2

Rt one day before LD Rt at LD % change Rt at LD

UK 3.39 0.68 −79.67 1.11

(2.84, 3.94) (0.55, 0.81) ( −85.29, −72.96) (0.75, 1.60)

Austria 2.96 0.52 −81.42 0.87

(1.67, 4.50) (0.40, 0.64) ( −88.80, −69.47) (0.42, 1.55)

Belgium 4.30 0.90 −78.31 4.83

(2.87, 6.06) (0.78, 1.02) ( −85.99, −67.26) (3.47, 6.45)

Denmark 3.25 0.68 −78.11 0.58

(1.98, 4.81) (0.57, 0.80) ( −86.01, −65.70) (0.28, 1.05)

France 4.06 0.71 −82.08 1.69

(2.98, 4.95) (0.61, 0.82) ( −87.07, −74.21) (1.16, 2.39)

Germany 3.68 0.73 −79.99 1.02

(2.94, 4.51) (0.60, 0.85) ( −85.84, −72.48) (0.68, 1.47)

Italy 2.90 0.70 −75.35 1.30

(2.17, 3.46) (0.63, 0.78) ( −80.98, −66.51) (0.86, 1.76)

Norway 2.42 0.40 −82.30 0.50

(1.36, 3.71) (0.25, 0.57) ( −91.04, −69.16) (0.27, 0.79)

Spain 4.29 0.67 −84.05 1.78

(3.35, 5.39) (0.59, 0.75) ( −88.43, −78.72) (1.22, 2.42)

Sweden – – – –

Switzerland 2.67 0.55 −78.61 0.93

(1.93, 3.48) (0.44, 0.68) ( −86.43, −67.32) (0.62, 1.31)

Table 2. Estimates and standard errors of the differences of various information criteria against model 1; the Watanabe-Akaike information criterion,
WAIC1 = −2lppd + 2pWAIC1 and WAIC2 = −2lppd + 2pWAIC2 which uses lppd as a measure of fit with pWAIC1 and pWAIC2 as the
effective number of parameters to penalize the fit respectively; the Deviance information criterion DIC = −2 log p(y|θ̂Bayes) + 2pDIC which
uses log p(y|θ̂Bayes), as the measure of fit, and pDIC as the penalty. Note that a negative value implies a better predictive model compared to
model 1, and the preferred model for each criteria and time period is shown in bold. See Appendix B for computational details.

Model Time period ΔWAIC1 ΔWAIC2 ΔDIC

2 Up to May 5th −31.21 ± 0.30 −29.95 ±0.34 −30.46±0.28

3 Up to May 5th −24.03 ± 0.31 −22.49 ± 0.36 −23.29 ± 0.29

2 Up to July 12th −54.27 ± 1.78 −49.93 ± 3.42 −51.95 ± 0.37

3 Up to July 12th −36.74 ± 1.30 −32.24 ± 3.22 −34.97 ± 0.37
WAIC2 and DIC (see Appendix B.2). Model 3 is the next
best supported by the data, while model 1 published in
Nature is the least supported.

3.4. Comparison of models up to July 12th

The analysis of the time horizon March 4th to July 12th,
leads to very similar conclusions (Figs. 2b, A.3b–A.12b,
A.13–A.15). Table 3 indicates that the impact of lockdown
on the relative reduction in Rt was 64% for model 1, while
in model 2, seven countries already had Rt ≤ 1.0 and
only two countries had 95% CIs for Rt exceeding 1.0 at
the time of lockdown. In model 3, in contrast to the pe-
riod until May 5th, with longer follow-up lockdown was
statistically significant (95% CI is 0.23,1.43).

In comparing the models, Table A.4 shows that model
2 provides a lower RMSE than model 1 for all countries
for the period March 4th to July 12th, except Austria and
Norway. Similarly, Table 2 again demonstrates that model
2 is the best supported by the data for all three information
criteria: WAIC1, WAIC2 and DIC.

3.5. Change of start date

Inferences regarding the impact of the imposition of
NPIs are not substantially affected by the start date nor
the priors for the initial infection count (Fig. A.16).
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Table 3. Comparison of the value of Rt at lockdown (LD) and its 95% CIs between models 1 and 2 for all eleven countries analyzed in Flaxman
et al. [1] and an additional three countries of Greece, Netherlands and Portugal, for the time horizon March 4th to July 12th.

Country Model 1 Model 2

Rt one day before LD Rt at LD % change Rt at LD

UK 3.08 0.81 −73.25 1.20

(2.32, 3.78) (0.76, 0.86) ( −79.28, −64.03) (0.72, 1.82)

Austria 1.82 0.61 −64.58 0.72

(1.16, 2.81) (0.55, 0.67) ( −78.02, −47.53) (0.30, 1.42)

Belgium 2.10 0.70 −65.58 1.43

(1.46, 2.98) (0.67, 0.73) ( −76.83, −51.27) (0.90, 2.05)

Denmark 1.73 0.68 −59.12 0.56

(1.16, 2.48) (0.60, 0.76) ( −72.79, −41.89) (0.25, 1.05)

France 2.26 0.71 −67.37 1.77

(1.59, 3.12) (0.67, 0.75) ( −77.65, −53.86) (1.11, 2.60)

Germany 3.31 0.71 −78.13 1.12

(2.51, 4.19) (0.66, 0.76) ( −83.73, −70.87) (0.69, 1.67)

Italy 1.74 0.75 −55.66 1.41

(1.26, 2.32) (0.71, 0.79) ( −68.31, −39.35) (0.88, 2.03)

Norway 1.52 0.57 −60.72 0.53

(0.97, 2.22) (0.48, 0.66) ( −74.83, −40.59) (0.27, 0.88)

Spain 3.47 0.75 −77.74 1.74

(2.51, 4.46) (0.72, 0.79) ( −83.34, −69.56) (1.07, 2.49)

Sweden – – – –

Switzerland 1.76 0.61 −64.49 0.96

(1.25, 2.41) (0.57, 0.64) ( −75.75, −50.23) (0.58, 1.39)

Greece 1.46 0.69 −51.03 0.35

(0.90, 2.05) (0.63, 0.74) ( −67.21, −22.64) (0.16, 0.61)

Netherlands 1.77 0.66 −62.14 1.00

(1.34, 2.25) (0.61, 0.70) ( −72.27, −49.34) (0.61, 1.44)

Portugal 1.74 0.83 −50.31 0.66

(1.12, 2.39) (0.80, 0.86) ( −65.50, −25.24) (0.36, 1.07)
4. Discussion

We demonstrate that effects of NPIs are non-robust
and highly sensitive to model specification, assumptions
and data employed to fit models. We obtained very dif-
ferent inferences regarding the effectiveness of lockdown
measures in terms of curbing the epidemic wave and
reducing fatalities. Lockdown appeared the most effective
measure to save lives in the original analysis of 11
European countries performed by the Imperial College
team through model 1. This analysis was published in
Nature and has probably had a major impact to maintain
a mentality among policy makers that lockdown should
be used during the advent of second waves in many coun-
tries in the Fall of 2020. However, model 2 (which was
also originally developed by the same team), suggested
little or no benefit from lockdown in most of the same
countries.

Importantly, model 2 typically outperformed model 1
in data fit. Consideration of longer follow-up that included
also the lifting of many measures still suggested that the
originally [1] claimed effects of lockdown were grossly
overstated. Fitting yet a third model, resulted in yet fur-
ther variant conclusions, with only mobility and event ban
having regression coefficients with 95% CIs that did not
contain 0 for the period until May 5th.

The different results and inferences of these models
may be partly explained by the highly correlated struc-
ture of NPIs and mobility data, as well as the dense time
clustering of the different NPIs being applied typically in
close sequence. NPIs largely reduce Rt by reducing con-
tact among individuals. An indirect measure of the reduc-
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tion in individual contact is the mobility data, and so these
data will be highly correlated with NPIs, making any infer-
ence difficult by default. Moreover, as different NPIs are
typically introduced in close sequence, their exact time lag
before impact is difficult to model. Interaction effects be-
tween different NPIs may also exist. The effectiveness of
different NPIs may also vary across locations and across
time based on adherence, acceptability, and enforcement.
Any collateral harms may also affect acceptability and ad-
herence.

Given that the inference around the effectiveness of var-
ious NPIs is highly model-dependent and that more ag-
gressive NPIs have more adverse effects on other aspects
of health, society, and economy [7–26], it is ill-advised
to ignore the substantial model uncertainty. Failing to re-
port this uncertainty may ultimately undermine the public’s
trust in the value of policy decisions based on statistical
modeling. Flaxman et al. [1] made the statement “We find
that, across 11 countries, since the beginning of the epi-
demic, 3,100,000 [2,800,000–3,500,000] deaths have been
averted due to intervention”. Both the provided estimate
and the accompanying limited uncertainty are uncertain.
When results vary widely based on model specification,
strong inferences should be avoided. Equally careful mod-
eling and evaluation of uncertainty needs to be performed
also for the potential postulated harms of lockdown and
other NPIs.

Given that modeling studies are typically not pre-
registered, multiple analytical approaches and model spec-
ifications may be used on the same data [27], and data and
results may be filtered by modelers according to whether
they fit their prior beliefs. Clearly, an important issue in
model comparison is the selection of the models to be
compared [28]. In one sense, this selection can be cast
in terms of priors over models. For example, investiga-
tors who just report one model may have prior beliefs
that this is the only plausible model. The key argument
made in this paper is that there are formal procedures
for evaluating these prior assumptions that may lead to
very different conclusions. Similarly, one can use Bayesian
model comparison to optimize the priors over the pa-
rameters of any given structural form. In other words, a
model can be specified in terms of the priors over pa-
rameters and the priors themselves can then be optimized
with respect to Bayesian model evidence. When the func-
tional form of the posterior is known, there are procedures
that can do this very quickly and efficiently. For example,
Bayesian model reduction allows one to optimize priors an-
alytically by using a generalization of the Savage-Dickey
ratio.

We do not claim that lockdown measures definitely had
no impact in the first wave of COVID-19. Indeed model
2 showed that Rt was still above 1 in some countries and
thus it is possible that in these locations it may have some
impact on the course of the epidemic wave. Other investi-
gators using a different analytical approach have suggested
also some benefits from lockdown; however, these benefits
were of a smaller magnitude (e.g., 13% relative risk re-
duction [29]). Small benefits of such modest size would be
less likely to match complete lockdown-induced harms in a
careful decision analysis. Another modeling approach has
found that benefits can be reaped by simple self-imposed
interventions such as washing hands, wearing masks, and
some social distancing [30]. Brauner et al. [31] analyze
lockdown as a continuum with various measures to restrict
contacts.

Some limitations of our work should be acknowledged.
Besides model fit and parsimony metrics, theoretical and
subjective considerations, as well as experience from other
countries should be considered in model choice. However,
given the observational nature of the data and the dynamic
course of epidemic waves, one should avoid strong priors
about effectiveness of different NPIs. Similarly, our results
should not be interpreted with a nihilistic lens, i.e., that
NPIs are totally ineffective. Decreasing exposures makes
sense as a way to reduce epidemic wave propagation and
eventually fatalities. However, if exposures can be reduced
with less aggressive measures and fewer or no harms, this
would be optimal. Finally, we did not examine very long-
term time horizons. In theory, even effective measures may
achieve only temporary mitigation and epidemic waves
may surge again, when measures are relieved. We did ob-
serve this for the uplifting of measures in the July 12th
analyses and empirical data from the emergence of second
waves in many European countries and the USA in the fall
of 2020 validate this hypothesis [32]. Availability of effec-
tive and safe vaccines may also affect risk-benefit ratios
of NPI measures of different aggressiveness and different
duration of implementation. It is noted that other investiga-
tors [33–35] have raised similar concerns using alternative
approaches.

Overall, observational data that are fed into complex
epidemic models should be dissected very carefully and
substantial uncertainty may remain despite the best ef-
forts of modelers [27,36]. While there has been resis-
tance to testing NPIs with randomized trials, such tri-
als are feasible, and more thought and effort should
be devoted on how to complement the available, tenu-
ous observational data [37]. Regardless, causal interpre-
tations from non-robust models should be avoided. In
any decision analysis the accurate quantification of the
size, not just the existence, of the impact of lockdown
on Rt is also critical. This is difficult task when one
considers all the confounds between NPIs and mobility,
as well as the several behavioral changes such as hand
washing and wearing masks. This is an interesting area
for research, and crucial for the management of future
pandemics.
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Table A.2. Correspondence of subscripts for k to each NPI.

k NPIs

1 School closure

2 Event ban

3 Lockdown

4 Self-isolation

5 Social distancing

6 Government intervention

Table A.3. End dates for school closure [38], event ban [38] and lock-
down in each country [39–41]. NPIs that are still in place as of July
12th are shown in �, while NPIs that were not implemented are shown
in ✗.

Country School closure Event ban Lockdown

UK � � May 13th

Austria May 18th � May 1st

Belgium July 1st � June 7th

Denmark � � April 20th

France June 22th � May 11th

Germany July 7th � May 6th

Greece June 1st June 15th May 30th

Italy � � May 4th

Netherlands June 15th July 1st May 11th

Norway May 11th June 2nd April 21st

Portugal � � July 5th

Spain � � May 26th

Sweden ✗ � ✗

Switzerland June 6th � June 21st
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Appendix A. Additional Figures and Tables
Table A.1. Seeding dates of new infections. Two seeding dates were
used for Belgium – March 9th and March 4th for the data up to May
5th and July 12th respectively due to a reporting correction in the
data.

Country Seeding date

Austria March 13th

Belgium March 9th/March 4th

Denmark March 12th

France February 27th

Germany March 6th

Greece March 12th

Italy February 16th

Netherlands March 5th

Norway March 15th

Portugal March 12th

Spain February 29th

Sweden March 9th

Switzerland March 5th

Table A.4. RMSE of daily death counts for models 1 and 2 for the data
up to May 5th and July 12th. A lower RMSE between models 1 and 2
for each country is shown in bold.

Country

Up to May 5th Up to July 12th

Model 1 Model 2 Model 1 Model 2

UK 145.41 145.64 134.26 129.68

Austria 5.88 5.88 4.48 4.57

Belgium 71.16 52.91 25.20 15.84

Denmark 3.27 3.08 2.42 2.39

France 242.07 227.22 187.33 168.34

Germany 48.62 48.75 37.04 36.32

Italy 85.96 71.29 63.47 57.42

Norway 3.06 3.07 2.21 2.22

Spain 95.23 92.43 143.82 135.03

Sweden 35.82 35.55 33.12 33.09

Switzerland 14.61 14.34 10.37 10.31

Greece 1.72 1.51

Netherlands 21.48 21.01

Portugal 6.29 5.75

https://github.com/dare-centre/imperial-covid19-model
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Table A.5. Basic reproduction number R0 and time-varying reproduction number Rt immediately after the introduction of NPIs given by models
1 and 2 using data up to May 5th for all eleven countries analyzed in Flaxman et al. [1] These NPIs are self-isolation (SI), social distancing (SD),
school closure (SC), event ban (EB) and lockdown (LD). 95% credible intervals are given in parentheses below the corresponding point estimates.
Countries where the seeding of new infections occur after the introduction of NPIs are denoted with an asterisk.

Country R0 Rt immediately after NPIs introduction

SI SD SC EB LD

Model 1.

UK 3.55 3.45 3.42 3.39 0.68 0.68

(2.99, 4.27) (2.95, 4.00) (2.92, 3.96) (2.84, 3.94) (0.55, 0.81) (0.55, 0.81)

Austria∗ 3.14 0.52 0.52 2.96 – 0.52

(1.91, 4.66) (0.40, 0.64) (0.40, 0.64) (1.67, 4.50) (0.40, 0.64)

Belgium 4.72 4.59 4.30 4.30 4.38 0.90

(3.38, 6.46) (3.23, 6.32) (2.87, 6.06) (2.87, 6.06) (2.92, 6.23) (0.78, 1.02)

Denmark 3.56 3.31 3.25 3.25 3.31 0.68

(2.27, 5.06) (2.01, 4.84) (1.98, 4.81) (1.98, 4.81) (2.01, 4.84) (0.57, 0.80)

France 4.45 4.06 4.06 4.18 4.22 0.71

(3.78, 5.27) (2.98, 4.95) (2.98, 4.95) (3.14, 4.99) (3.20, 5.03) (0.61, 0.82)

Germany 3.86 3.75 3.72 3.68 0.73 0.73

(3.07, 4.90) (3.00, 4.65) (2.97, 4.58) (2.94, 4.51) (0.60, 0.85) (0.60, 0.85)

Italy 3.18 2.90 2.90 3.13 2.90 0.70

(2.80, 3.61) (2.17, 3.46) (2.17, 3.46) (2.69, 3.57) (2.17, 3.46) (0.63, 0.78)

Norway∗ 2.65 2.44 2.42 – – 0.40

(1.57, 3.99) (1.36, 3.73) (1.36, 3.71) (0.25, 0.57)

Spain 4.39 0.67 4.34 4.29 0.67 0.67

(3.49, 5.50) (0.59, 0.75) (3.43, 5.43) (3.35, 5.39) (0.59, 0.75) (0.59, 0.75)

Sweden 2.05 1.99 1.98 – 0.86 –

(1.51, 2.74) (1.48, 2.60) (1.48, 2.57) (0.63, 1.10)

Switzerland∗ 2.94 – 2.67 2.69 2.72 0.55

(2.18, 3.86) (1.93, 3.48) (1.95, 3.51) (1.96, 3.57) (0.44, 0.68)

Model 2.

UK 4.17 4.26 4.08 2.34 1.11 1.11

(2.62,6.39) (3.28,5.35) (3.13,5.11) (1.76,3.00) (0.75,1.60) (0.75,1.60)

Austria∗ 3.34 0.87 0.87 1.88 – 0.87

(1.46,6.09) (0.42,1.55) (0.42,1.55) (0.92,3.33) (0.42,1.55)

Belgium 4.33 4.38 4.52 4.52 4.81 4.83

(2.55,6.72) (2.77,6.48) (2.87,6.69) (2.87,6.69) (3.06,7.11) (3.47,6.45)

Denmark 2.43 1.51 0.87 0.87 1.51 0.58

(1.16,4.87) (0.80,2.66) (0.45,1.57) (0.45,1.57) (0.80,2.66) (0.28,1.05)

France 4.10 3.77 3.77 4.36 5.10 1.69

(2.66,6.11) (3.00,4.65) (3.00,4.65) (3.52,5.37) (4.04,6.35) (1.16,2.39)

Germany 4.56 4.43 4.39 4.12 1.02 1.02

(2.72,7.11) (2.72,6.69) (2.69,6.63) (2.97,5.56) (0.68,1.47) (0.68,1.47)

Italy 4.55 2.12 2.12 2.91 2.12 1.30

(2.76,6.98) (1.47,2.80) (1.47,2.80) (2.20,3.65) (1.47,2.80) (0.86,1.76)

Norway∗ 2.10 0.46 0.68 – – 0.50

(1.06,4.39) (0.21,0.87) (0.33,1.26) (0.27,0.79)

Spain 4.68 1.78 4.97 3.77 1.78 1.78

(2.98,6.96) (1.22,2.42) (3.81,6.28) (2.85,4.80) (1.22,2.42) (1.22,2.42)

Sweden 3.49 3.25 2.50 – 1.55 –

(1.91,5.96) (1.93,5.25) (1.73,3.51) (1.11,2.06)

Switzerland∗ 3.48 – 2.62 2.57 3.16 0.93

(1.84,5.85) (1.79,3.66) (1.76,3.59) (2.13,4.44) (0.62,1.31)
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Fig. A.1. Percentage change in mobility from baseline level from February 15th to July 12th, by locations in each of the European countries
examined in Flaxman et al. [1], as well as an additional three countries consisting of Greece, the Netherlands and Portugal. Average mobility is
computed based on the trends in retailers and recreation venues, grocery markets and pharmacy, transit stations and workplaces. Black dashed
lines in each plot indicate the lockdown start and end dates.
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Fig. A.2. Trace plots, posterior means, 95% CIs and R̂ of regression coefficients in Rt for all three models based on 10 MCMC chains, for both
time horizons. All our analyses use the iterates from chains which had no more than 5% of divergent transitions. Black crosses (×) denote chains
with more than 5% of divergent transitions.
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Fig. A.3. Austria. The start time for the plots is 10 days before 10 deaths are recorded. Observed counts of daily infections and daily deaths are
shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and light blue, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.4. Belgium. The start time for the plots is 10 days before 10 deaths are recorded. Observed counts of daily infections and daily deaths are
shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and light blue, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.5. Denmark. The start time for the plots is 10 days before 10 deaths are recorded. Observed counts of daily infections and daily deaths are
shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and light blue, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)



V. Chin et al. / Journal of Clinical Epidemiology 136 (2021) 96–132 111

Fig. A.6. France. The start time for the plots is 10 days before 10 deaths are recorded. Observed counts of daily infections and daily deaths are
shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and light blue, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.7. Germany. The start time for the plots is 10 days before 10 deaths are recorded. Observed counts of daily infections and daily deaths are
shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and light blue, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.8. Italy. The start time for the plots is 10 days before 10 deaths are recorded. Observed counts of daily infections and daily deaths are
shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and light blue, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.9. Norway. The start time for the plots is 10 days before 10 deaths are recorded. Observed counts of daily infections and daily deaths are
shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and light blue, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.10. Spain. The start time for the plots is 10 days before 10 deaths are recorded. Observed counts of daily infections and daily deaths are
shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and light blue, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.11. Sweden. The start time for the plots is 10 days before 10 deaths are recorded. Observed counts of daily infections and daily deaths are
shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and light blue, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.12. Switzerland. The start time for the plots is 10 days before 10 deaths are recorded. Observed counts of daily infections and daily deaths
are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and light blue, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.13. Greece. The start time for the plots is 10 days before 10 deaths are recorded. Observed counts of daily infections and daily deaths
until July 12th are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and light blue, respectively. Column 4 is a
magnification of column 3 showing the changes in Rt around the period of the NPIs. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. A.14. Netherlands. The start time for the plots is 10 days before 10 deaths are recorded. Observed counts of daily infections and daily deaths
until July 12th are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and light blue, respectively. Column 4 is a
magnification of column 3 showing the changes in Rt around the period of the NPIs. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. A.15. Portugal. The start time for the plots is 10 days before 10 deaths are recorded. Observed counts of daily infections and daily deaths
until July 12th are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and light blue, respectively. Column 4 is a
magnification of column 3 showing the changes in Rt around the period of the NPIs. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. A.16. Comparison of the effectiveness of NPIs in terms of the relative percentage reduction in Rt when assuming two different seeding periods
of new infections.
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Appendix B. Priors and Measures of Fit

B.1. Priors

For posterior inference in model 1, we use the same
priors as in Flaxman et al. [1] for the analysis up to May
5th and July 12th. For model 2, we use the same prior
distributions as in Unwin et al. [2] except for R0, and α
in Equation (2).

For R0, we use a weakly informative prior of a nor-
mal distribution truncated below at 1 with mean 3.28 and
standard deviation 2. This prior is chosen so that approxi-
mately 95% of the prior density is between 1 and 7 [42],
and that R0 is above the critical value of 1 at the start of
the epidemic.

For α, we examine the sensitivity of the posterior to
two priors. The first prior that we consider is that used
by Unwin et al. [2]–this prior is very informative, with
α ∼ N(0, 0.5). That is, a priori they assume α lies in
the interval [−1, 1] with probability 0.95. In contrast, the
second prior we considered is an uninformative prior,
α ∼ N(0, 5), and the posterior mode of α in model 2 up to
May 5th is found to be approximately -4. This means that
the prior used by Unwin et al. [2] has almost no support
over this posterior distribution. This has two consequences,
first it makes convergence of the Markov chain very dif-
ficult and sensitive to starting values. Second, it shrinks
the value of α towards zero, underestimating the impact
of mobility on Rt. The second prior, α ∼ N(0, 5), makes
the convergence of the chain more robust to poor starting
values.

We also change the prior for the number of initial infec-
tion count at the start of the time period for two reasons.
First, due to data constraints, we chose to start the seed-
ing of infections only 10 days before the date of the 10th
cumulative death. In contrast, Flaxman et al. [1] chose to
start the seeding of infections 30 days prior to the date
of the 10th cumulative death. Flaxman et al. [1] chose a
prior for initial infection count which was relatively tight,
the probability that the initial infection count was greater
than 500 is ≈ 0. Using this prior for the number of infec-
tions 20 days later again is not realistic and again leads
to convergence problems. We therefore chose a less infor-
mative prior for the initial infection count. Plots of these
prior distributions can be found in Fig. B.1, and the pos-
terior distributions of the parameter in the 11 countries for
the analysis until May 5th are shown in Fig. B.2.

Notably, Bayesian data analysts typically examine a va-
riety of priors to gauge the sensitivity of results to the prior
specification [6].

B.2. Bayesian measures of model fit

To compare the fit of the three models to the data,
we consider four metrics: three estimates of various in-
formation criteria, as well as the root mean square error
(RMSE). The information criteria metrics are two versions
of the Watanabe-Akaike information criteria[43], denoted
by WAIC1 and WAIC2 and the Deviance information crite-
rion DIC[44]. Both WAIC1 and WAIC2 use the log point-
wise predictive density (lppd) as a measure of fit.

When comparing the evidence for one model relative to
another, one is effectively comparing the marginal likeli-
hood of the data under a particular model with the likeli-
hood of the same data under a different model. This can
be taken as the relative likelihood of the two models if
both models were equally likely a priori. Crucially, the
log evidence can always be decomposed into accuracy and
complexity, where complexity is the Kullback-Leibler di-
vergence between the prior and the posterior. Generally,
this is extremely difficult to evaluate using sampling pro-
cedures, and is usually approximated with a function of
the number of free parameters. This leads to various in-
formation criteria, some of which we report in this work
(i.e., the WAIC and DIC).

The differences in these information criteria can be
taken as the log odds ratio of two models. For example, a
difference in the DIC of three corresponds roughly to an
odds ratio of 20 to one, in terms of the marginal likelihood
of the two models. For completeness, we also report the
accuracy in terms of the root mean square error (RMSE).
A key aspect of model comparison is the evaluation of
model complexity. In other words, simply maximizing ac-
curacy will generally lead to overfitting and a failure to
generalize - that goes hand-in-hand with a poor predictive
validity.

To penalize the fit, WAIC1 uses

pWAIC1 = 2
n∑

i=1

(log Epost[p(yi|θ)] − Epost[log p(yi|θ)]),

(4)

as an estimate of the effective number of parameters, where
Epost denotes the expectation over the posterior distri-
bution of model parameters θ given the observed data
y = {yi; i = 1, . . . , n}. The criteria WAIC2 uses

pWAIC2 =
n∑

i=1

Vpost(log p(yi|θ)), (5)

where Vpost denotes the variance over the posterior dis-
tribution of θ. The DIC metric uses log p(y|θ̂Bayes), with
θ̂Bayes being the posterior mean of θ, as a measure of fit
and

pDIC = 2(log p(y|θ̂Bayes) − Epost[log p(y|θ)]), (6)

as the penalty. It is well known [45] that it is notoriously
difficult to evaluate model evidence from sample distri-
butions (especially in hierarchical Bayesian models where
it is difficult to count the true number of parameters re-
quired in such metrics as AIC or BIC), both in terms of
computational costs, as well as mathematically. This may
be why model comparison may be generally lacking in
epidemiology.
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Fig. B.1. Prior distributions of initial infection count used in Flaxman et al. [1] (left) and our analysis (right).

Fig. B.2. Posterior distributions of initial infection count in the 11 countries for the analysis until May 5th in all three models.
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es
Appendix C. Analysis up to May 5th for all 14 countri
Fig. C.1. Daily infections, daily deaths and Rt in the United Kingdom until May 5th. The start time for the plots is 10 days before 10 deaths are
recorded. Observed counts of daily infections and daily deaths are shown in red, and their corresponding 50% and 95% CIs are shown in dark
blue and light blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. C.2. Daily infections, daily deaths and Rt in Austria until May 5th. The start time for the plots is 10 days before 10 deaths are recorded.
Observed counts of daily infections and daily deaths are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and
light blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. C.3. Daily infections, daily deaths and Rt in Belgium until May 5th. The start time for the plots is 10 days before 10 deaths are recorded.
Observed counts of daily infections and daily deaths are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and
light blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. C.4. Daily infections, daily deaths and Rt in Denmark until May 5th. The start time for the plots is 10 days before 10 deaths are recorded.
Observed counts of daily infections and daily deaths are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and
light blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. C.5. Daily infections, daily deaths and Rt in France until May 5th. The start time for the plots is 10 days before 10 deaths are recorded.
Observed counts of daily infections and daily deaths are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and
light blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. C.6. Daily infections, daily deaths and Rt in Germany until May 5th. The start time for the plots is 10 days before 10 deaths are recorded.
Observed counts of daily infections and daily deaths are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and
light blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. C.7. Daily infections, daily deaths and Rt in Italy until May 5th. The start time for the plots is 10 days before 10 deaths are recorded. Observed
counts of daily infections and daily deaths are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and light blue,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. C.8. Daily infections, daily deaths and Rt in Norway until May 5th. The start time for the plots is 10 days before 10 deaths are recorded.
Observed counts of daily infections and daily deaths are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and
light blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. C.9. Daily infections, daily deaths and Rt in Spain until May 5th. The start time for the plots is 10 days before 10 deaths are recorded.
Observed counts of daily infections and daily deaths are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and
light blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. C.10. Daily infections, daily deaths and Rt in Sweden until May 5th. The start time for the plots is 10 days before 10 deaths are recorded.
Observed counts of daily infections and daily deaths are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and
light blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



128 V. Chin et al. / Journal of Clinical Epidemiology 136 (2021) 96–132

Fig. C.11. Daily infections, daily deaths and Rt in Switzerland until May 5th. The start time for the plots is 10 days before 10 deaths are recorded.
Observed counts of daily infections and daily deaths are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and
light blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. C.12. Daily infections, daily deaths and Rt in Greece until May 5th. The start time for the plots is 10 days before 10 deaths are recorded.
Observed counts of daily infections and daily deaths are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and
light blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



V. Chin et al. / Journal of Clinical Epidemiology 136 (2021) 96–132 129

Fig. C.13. Daily infections, daily deaths and Rt in the Netherlands until May 5th. The start time for the plots is 10 days before 10 deaths are
recorded. Observed counts of daily infections and daily deaths are shown in red, and their corresponding 50% and 95% CIs are shown in dark
blue and light blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. C.14. Daily infections, daily deaths and Rt in Portugal until May 5th. The start time for the plots is 10 days before 10 deaths are recorded.
Observed counts of daily infections and daily deaths are shown in red, and their corresponding 50% and 95% CIs are shown in dark blue and
light blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table C.1. Comparison of the value of Rt at lockdown (LD) and its 95% CIs between models 1 and 2 for all eleven countries analyzed in Flaxman
et al. [1] and an additional three countries of Greece, Netherlands, and Portugal, for the time horizon March 4th to May 5th

Country Model 1 Model 2

Rt one day before LD Rt at LD % change Rt at LD

UK 3.31 0.68 −79.18 1.11

(2.55, 3.87) (0.57, 0.80) (−84.65, −70.85) (0.74, 1.60)

Austria 2.08 0.52 −73.01 0.87

(1.17, 3.57) (0.41, 0.64) (−85.48, −57.22) (0.41, 1.55)

Belgium 2.90 0.72 −74.14 1.46

(2.06, 4.01) (0.62, 0.83) (−83.75, −61.69) (1.00, 1.99)

Denmark 2.28 0.68 −68.63 0.57

(1.39, 3.53) (0.57, 0.79) ( −80.92, −51.75) (0.28, 1.04)

France 3.03 0.75 −74.61 1.70

(2.18, 4.14) (0.65, 0.84) ( −83.60, −63.22) (1.16, 2.40)

Germany 3.65 0.73 −79.78 1.02

(2.90, 4.40) (0.62, 0.84) ( −85.08, −72.05) (0.68, 1.44)

Italy 2.11 0.71 −65.31 1.28

(1.51, 2.86) (0.64, 0.78) ( −75.81, −51.48) (0.86, 1.73)

Norway 1.72 0.44 −72.77 0.50

(0.99, 2.77) (0.28, 0.60) ( −85.98, −55.88) (0.28, 0.79)

Spain 4.19 0.68 −83.53 1.78

(3.09, 5.24) (0.60, 0.75) ( −87.98, −77.23) (1.22, 2.42)

Sweden – – – –

Switzerland 2.15 0.60 −71.14 0.93

(1.57, 2.90) (0.49, 0.71) ( −82.00, −57.72) (0.62, 1.30)

Greece 1.20 0.36 −68.90 0.34

(0.68, 1.89) (0.21, 0.51) ( −83.34, −48.58) (0.18, 0.54)

Netherlands 1.97 0.62 −68.09 0.93

(1.58, 2.42) (0.50, 0.73) ( −78.27, −55.73) (0.63, 1.28)

Portugal 2.04 0.65 −66.93 0.67

(1.32, 2.92) (0.53, 0.76) ( −79.89, −47.70) (0.42, 0.99)
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