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Clustering proteomics data is a challenging problem for any traditional clustering algorithm. Usually, the number of samples is
largely smaller than the number of protein peaks. The use of a clustering algorithm which does not take into consideration the
number of features of variables (here the number of peaks) is needed. An innovative hierarchical clustering algorithm may be a good
approach. We propose here a new dissimilarity measure for the hierarchical clustering combined with a functional data analysis. We
present a specific application of functional data analysis (FDA) to a high-throughput proteomics study. The high performance of
the proposed algorithm is compared to two popular dissimilarity measures in the clustering of normal and human T-cell leukemia
virus type 1 (HTLV-1)-infected patients samples.

INTRODUCTION

A variety of mass spectrometry-based platforms are
currently available for providing information on both
protein patterns and protein identity [1, 2]. Specifically,
the first widely used such mass spectrometric technique
is known as surface-enhanced laser desorption ionization
(SELDI) coupled with time-of-flight (TOF) mass spectro-
metric detection [3, 4, 5]. The SELDI approach is based
on the use of an energy-absorbing matrix such as sinap-
inic acid (SPH), large molecules such as peptides ion-
ize instead of decomposing when subjected to a nitro-
gen UV laser. Thus, partially purified serum is crystal-
lized with an SPH matrix and placed on a metal slide. De-
pending upon the range of masses the investigator wishes
to study, there are a variety of possible slide surfaces; for
example, the strong anion exchange (SAX) or the weak
cation exchange (WCX) surface. The peptides are ionized
by the pulsed laser beam and then traverse a magnetic-
field-containing column. Masses are separated according
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to their TOFs as the latter are proportional to the square
of the mass-to-charge (m/z) ratio. Since nearly all of the
resulting ions have unit charge, the mass-to-charge ra-
tio is in most cases a mass. The spectrum (intensity level
as a function of mass) is recorded, so the resulting data
obtained on each serum sample are a series of intensity
levels at each mass value on a common grid of masses
(peaks).

Proteomic profiling is a new approach to clinical diag-
nosis, and many computational challenges still exist. Not
only are the platforms themselves still improving, but the
methods used to interpret the high-dimensional data are
developing as well [6, 7].

A variety of clustering approaches has been applied to
high-dimensional genomics and proteomics data [8, 9, 10,
11]. Hierarchical clustering methods give rise to nested
partitions, meaning the intersection of a set in the par-
tition at one level of the hierarchy with a set of the par-
tition at a higher level of the hierarchy will always be
equal to the set from the lower level or the empty set.
The hierarchy can thus be graphically represented by a
tree.

Functional data analysis (FDA) is a statistical data
analysis represented by smooth curves or continuous
functions µi(t), i = 1, . . . , n, where n is the number of
observations and t might or might not necessarily denote
time but might have a general meaning. Here t denotes the
mass (m/z). In practice, the information over µi(t) is col-
lected at a finite number of points, Ti, thus observing the
data vector yi = (yi1, . . . , yiTi)

t. The basic statistical model
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of FDA is given by

yi j = µ̂i
(
ti j
) = µi

(
ti j
)

+ εi
(
ti j
)
,

i = 1, . . . , n, j = 1, . . . , Ti,
(1)

where ti j is the mass value at which the jth measure-
ment is taken for the ith function µi. The independent
disturbance terms εi(ti j) are responsible for roughness in
yi. FDA has been developed for analyzing functional (or
curve) data. In FDA, data consists of functions not of vec-
tors. Samples are taken at time points t1, t2, . . ., and regard
µi(ti j) as multivariate observations. In this sense the orig-
inal functional yi j can be regarded as the limit of µi(ti j)
as the sampling interval tends to zero and the dimen-
sion of multivariate observations tends to infinity. Ram-
say and Silverman [12, 13] have discussed several meth-
ods for analyzing functional data, including functional re-
gression analysis, functional principal component anal-
ysis (PCA), and functional canonical correlation analy-
sis (CCA). These methodologies look attractive, because
one often meets the cases where one wishes to apply re-
gression analysis and PCA to such data. In the following
we describe how to use the FDA tools for applying FDA
and a new dissimilarity measure to classify the spectra
data.

We propose to implement a hierarchical clustering al-
gorithm for proteomics data using FDA. We use func-
tional transformation to smooth and reduce the dimen-
sionality of the spectra and develop a new algorithm for
clustering high-dimensional proteomics data.

MATERIAL AND METHODS

Serum samples from HTLV-1-infected patients

Protein expression profiles generated through SELDI
analysis of sera from human t-cell leukemia virus type
1- (HTLV-1)-infected individuals were used to deter-
mine the changes in the cell proteome that character-
ize adult T-cell leukemia (ATL), an aggressive lympho-
proliferative disease from HTLV-1-associated myelopa-
thy/tropical spastic paraparesis (HAM/TSP), a chronic
progressive neurodegenerative disease. Both diseases are
associated with the infection of T cells by HTLV-1. The
HTLV-1 virally encoded oncoprotein Tax has been impli-
cated in the retrovirus-mediated cellular transformation
and is believed to contribute to the oncogenic process
through induction of genomic instability affecting both
DNA repair integrity and cell cycle progression [14, 15].
Serum samples were obtained from the Virginia Prostate
Center Tissue and body fluid bank. All samples had been
procured from consenting patients according to protocols
approved by the Institutional Review Board and stored
frozen. None of the samples had been thawed more than
twice.

Triplicate serum samples (n = 68) from healthy or
normal (n1 = 37), ATL (n2 = 20), and HAM (n3 = 11)
patients were processed. A bioprocessor, which holds 12
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Figure 1. Three cut expressions from a normal, an HAM, and
an ATL patient.

chips in place, was used to process 96 samples at one time.
Each chip contained one “QC spot” from normal pooled
serum, which was applied to each chip along with the
test samples in a random fashion. The QC spots served
as quality control for assay and chip variability. The sam-
ples were blinded for the technicians who processed the
samples. The reproducibility of the SELDI spectra, that
is, mass and intensity from array to array on a single
chip (intra-assay) and between chips (interassay), was
determined with the pooled normal serum QC sample
(Figure 1).

SELDI mass spectrometry

Serum samples were analyzed by SELDI mass spec-
trometry as described earlier [16]. The spectral data gen-
erated was used in this study for the development of the
novel FDA.

Hierarchical clustering using
functional data analysis

We propose to implement a hierarchical clustering
algorithm for proteomics data using FDA, which con-
sists of detecting hidden group structures within a func-
tional dataset. We apply a new dissimilarity measure to the
smoothed (transformed) proteomics functions µ̂i. Then
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Figure 2. Original curve and a smoothed curve.

we develop a new metric that calculates the dissimilar-
ity between different curves produced by protein expres-
sion. The development of metrics for curve and time-
series models was first addressed by Piccolo [17] and Cor-
duas [18]. Heckman and Zamar proposed a dissimilar-
ity measure δHZ for clustering curves [19]. Their dissim-
ilarity measure considers curve invariance under mono-

tone transformations. Let Λi = {λ(i)
1 , λ(i)

2 , . . . , λ(i)
mi} be

the collection of the estimated points where the curve
µi(t) has a local maximum and let mi be the number
of maximals per observation or per sample (i) · δHZ is
defined as

δHZ(i, l)

=
∑mi

j=1

(
r
(
λ(i)
j

)
− r
(
λ(i)
))(

r
(
λ(l)
j

)
− r
(
λ(l)
))

∑mi
j=1

(
r
(
λ(i)
j

)
− r
(
λ(i)
))2 ∑ml

j=1

(
r
(
λ(l)
)− r

(
λ(l)
))2 ,

(2)

where

r
(
λ(i)
j

)
= k(i)

j +
u(i)
j

2
, k(i)

j =
{

#i, λ(i)
i < λ(i)

j

}
,

u(i)
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}
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(
λ(i)
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mi
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j=1

r
(
λ(i)
j

)
.

(3)

This measure is powerful for regression curves which
are mainly monotone. On the other hand, Cerioli et al
[20] propose a dissimilarity measure δC extending the one
proposed by Ingrassia et al [21]. Cerioli’s dissimilarity δC

is defined by

d(i, l) =
mi∑
j=1

∣∣λ(i)
j − λ(l)

∗ j

∣∣
mi

,

λ(l)
∗ j =

{
λ(l)
j′ :
∣∣λ(i)

j − λ(l)
j′
∣∣ = min, i = 1, . . . , n

}
,

δC(i, l) =
(
dil + dli

2

)
.

(4)

Both dissimilarity measures show good performance
for time-series data. Dissimilarity δC does not involve all
the indices mi of the smoothed curve. It also uses the
shortest distance between curves by involving few data
points obtained by FDA smoothing.

A flexible dissimilarity measure is the one that may
combine the characteristic of both measures δHZ and δC .
This means that a potential dissimilarity measure should
use the collected estimated points of the original curve ob-
tained from FDA so that no information is lost and should
work on different type of smoothed curves without using
the monotonicity restriction.

In this sense, we propose a functional-based dissimi-
larity δB measure which uses the rank of the curve pro-
posed by Heckman and Zamar and generalizes Cerioli et
al dissimilarity measure as follows:

dil =
mi∑
j=1

∣∣∣r(λ(i)
j

)
− r
(
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∗ j
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(5)

Obviously, dii = 0 and dil = 0, if µi and µl have the
same shape (Ti = Tl). We can adjust the formula above to
obtain a dissimilarity measure that satisfies symmetry, by
taking δB as our proposed dissimilarity measure:

δB(i, l) =
(
dil + dli

2

)
. (6)

We used three powerful hierarchical methods to derive
clusters or patterns using δB and we compare the perfor-
mance of δB to δC and δHZ . The hierarchical algorithms
we used are (1) Pam which partitions the data into dif-
ferent clusters “around their medoids,” (2) Clara which
works as in “Pam.” Once the number of clusters is spec-
ified and representative objects have been selected from
the sub-dataset, each observation of the entire dataset is
assigned to the nearest medoid [22]. The sum of the dis-
similarities of the observations to their closest medoid is
used as a measure of the quality of the clustering. The sub-
dataset for which the sum is minimal, is retained. Each
sub-dataset is forced to contain the medoids obtained



2005:2 (2005) Functional Clustering Algorithm for Proteomics Data 83

400

300

200

100

0

1 63 65 45 3 47 10 10 31 46 43 64 68 49 55 16 60 32 37 40 48 2 36 51 53 13 62 22 30 54 17 21 26 23 57 58 4 47 59 41 5 36 6 61 44 50 7 18 52 67 12 24 34 15 26 33 14 66 20 27 25 35

H
ei

gh
t

11

Figure 3. Clustering proteomics data with Diana.
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Figure 4. Pattern recognition using dissimilarity matrix δC .

from the best sub-dataset until then. (3) Diana is prob-
ably unique in computing a divisive hierarchy, whereas
most other software for hierarchical clustering is agglom-
erative. Moreover, Diana provides the divisive coefficient
which measures the amount of clustering structure found.
The Diana-algorithm constructs a hierarchy of clustering
starting with one large cluster containing all n observa-
tions. Clusters are divided until each cluster contains only
a single observation. At each stage, the cluster with the
largest diameter is selected [22].

RESULTS

Functional data transformation reduces
the dimensionality of the spectra

The spectral data were collected from proteomics
analysis of a total number of serum samples (n = 68) in-
cluding healthy or normal (n1 = 37), ATL (n2 = 20), and
HAM (n3 = 11) patients. The dataset is represented by
an n × p matrix X, where p = 25, 196 is the number of
variables (peaks) measured on each sample and n = 68
is the number of samples (patients). Any clustering algo-
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Figure 5. Pattern recognition using δHZ .
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Figure 6. Pattern recognition using δB .

rithm on a datum (68 × 25, 196) will fail because of the
singularity of the covariance matrix (n < p) and it will
be difficult in manipulating matrices with 68 rows and
25, 196 columns which has 1.7133 × 106 elements. This
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problem would not be raised for heuristic-based (ie, pair-
wise similarity-based) clustering algorithms.

To reduce the dimensionality of the spectral data, we
applied FDA by fitting a P-spline curve µ̂i(t) to each sam-
ple yi. P-splines satisfy a penalized residual sum of squares
criterion, where the penalty involves a specified degree
of derivation for µi(t). For example, cubic splines func-
tions are P-splines of second order, penalizing the second
derivative of µi(t). P-splines curves of order 3 penalize the
third derivative of µi(t). P-splines curves of order 4 lead
to an estimate of µi(t) with continuous first and second
derivatives. We choose here to fit a P-spline curve of or-
der 4 (Figure 2). The fitting step is performed by fixing
the number of degrees of freedom that are implicit in the
smoothing procedure [23].

The next step performed on the smoothed curves is
to find the landmarks or indices Ti. We collected the first
derivative of µ̂i(t), say µ̂

′
i(t), using a smoothing P-spline

function available in R. Those derivatives are crucial at
determining the cut-off points or indices of µi(t). We
performed this step by computing an approximate 95%
pointwise confidence interval for the first derivative of
µi(t) [24]. When the lower limit of this interval is posi-
tive, we have the confidence that µi(t) will be increasing.
When the upper limit of this interval is negative, we have
the confidence that µi(t) will be decreasing. Inside the in-
terval, when the derivative changes from negative to posi-
tive, we have an optimal value which is a minimum. When
the derivative changes from positive to negative, we have
an optimal value which is a maximum. The maximum is
set, for convenience, as the largest value of µ̂

′
i(t) in that

interval. In this study, we restricted the choice of indices

to maximal values. Let Λi = {λ(i)
1 , λ(i)

2 , . . . , λ(i)
mi} be the col-

lection of the estimated points where the curve µi(t) has a
local maximum and let mi be the number of maximals per
observation or per sample (i). Consequently, dissimilarity
measure is calculated to derive the dissimilarity matrices
of size (n× n) for all samples using the maximum values.

Clustering spectral data using
functional data analysis

The application of functional data transformation led
to the reduction of the dimensionality of the spectra to
half. The size of mass indices become 12, 598. To cluster
the reduced data, we calculated the three dissimilarity ma-
trices MδC ,MδB , and MδHZ . It appears that an unusual sam-
ple (patient 11) hides a possible pattern that we are trying
to discover. Figure 3 shows a clustering dendrogram of the
data using Diana approach. Pam and Clara gave the same
results. This suggests that sample 11 would be important
for further investigation.

When we removed observation 11, we detected a fewer
fuzzy patterns with δC (Figure 4), δHZ (Figure 5), and δB
(Figure 6). To be more specific, we investigated clusters
proposed by δC and δHZ . A large number of clusters were
proposed by both approaches (about 10 clusters). This
strange result might be caused by the monotonicity as-

Table 1. Confusion matrix to show the performance of δB using
Diana.

Predicted

Classification HAM ATL NOR Total

Clinical

HAM 8 3 0 11

ATL 5 14 1 20

NOR 1 2 34 37

Classification rate 0.73 0.70 0.92 0.84

Table 2. Confusion matrix to show the performance of δB using
Clara.

Predicted

Classification HAM ATL NOR Total

Clinical

HAM 10 1 0 11

ATL 2 18 0 20

NOR 1 1 35 37

Classification rate 0.91 0.90 0.95 0.93

sumption when using δHZ or the loss of information when
using δC .

For δB, we provided the dendogram of the data using
Diana approach (Figure 7). Three clusters were apparent.
One well-separated cluster and two overlapped ones. For
δHZ and δC , no structure was apparent which confirms the
limitations of both dissimilarities as explained before.

To check the performance of our method, we calcu-
lated the confusion matrix between the predicted clusters
and the clinical clusters using Diana (Table 1) and Clara
(Table 2). We find that 3 patients out of 11 were misclassi-
fied for cluster 1 (HAM), 6 out of 20 were misclassified for
cluster 2 (ATL), and 3 out of 37 were misclassified for clus-
ter 3 (normal). Ham and ATL shared the majority of the
misclassified observations which makes sense since both
groups gather patients with a disease caused by the same
retrospective virus. The error rate of misclassification for
both clusters (HAM and ATL) is about 20%. For normal
patient, the error rate of misclassification is about 8%. The
total rate of misclassification is about 16%.

When we used Clara-based hierarchical cluster algo-
rithm with δB, the classification result has dramatically
been improved (Figure 8). The error rate of misclassifi-
cation is reduced to 7%.The error rate of misclassification
between HAM and ATL is about 9%, 5% of normal pa-
tients was misclassified. This result shows that a hierar-
chical δB dissimilarity algorithm based on minimizing the
dissimilarity of observations to their closest medoid per-
forms better than a divisive hierarchical clustering algo-
rithm based on δB.

DISCUSSION

Cancer biomarkers can be used to screen asymp-
tomatic individuals in the population, assist diagnosis in
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suspected cases, predict prognosis and response to spe-
cific treatments, and monitor patients after primary ther-
apy. The introduction of new technologies to the pro-
teome analysis field, such as mass spectrometry, have
sparked new interest in cancer biomarkers allowing for
more effective diagnosis of cancer by using complex pro-
teomic patterns or for better classification of cancers,
based on molecular signatures, respectively. These tech-
nologies provide wealth of information and rapidly gen-
erate large quantities of data.

Processing the large amounts of data will lead to use-
ful predictive mathematical descriptions of biological sys-
tems which will permit rapid identification of novel ther-
apeutic targets and diseases biomarkers.

Clustering and analyzing proteomics data has been
proven to be a challenging task.

Proteomics data are provided usually as curves or
spectra with thousand of peaks. A clustering algorithm
based on a matrix of n observations (n samples which
is usually small) and p peaks (p variables which is usu-
ally a large number) will be unsuccessful. A matrix of size
(n� p) will be singular and any method based on a ma-
trix M (n× p) will not be robust enough and will induce
errors. A clustering algorithm based on a well-chosen dis-
similarity matrix (n × n) is more appropriate and more
robust given the relatively moderate size of the matrix.

The use of a smoothing function for the spectra per-
forms better for time series or for monotonic curves. We
have previously successfully applied this smoothing func-
tion to large-scale proteomics data [25].

The application of Euclidean or Mahalanobis dis-
tances for instance may not perform well for this pro-
teomics dataset, since those distances usually successfully
applied to a typical data with specific expression, spheri-
cal or ellipsoidal (normally distributed data). A new dis-
similarity measure has to involve other criteria such as the
wealth of data points for each observation and the par-
allel nature expressed by the proteomics curve (or time
series). On the other hand, a robust dissimilarity measure
may perform badly on a curve with large data points or
peaks.

Functional smoothing of proteomics expression pro-
files or spectra has proven to be very helpful. This has
allowed us to minimize the number of peaks to retain
only the ones that passed the performance of the FDA
smoothing. In this study, after using FDA, we succeeded
in retaining 50% of the smoothed peaks. The FDA with
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the dissimilarity measure δB shows better performance by
comparison to δC and δHZ known to perform well along
with FDA on times-series data or on monotonic curves.

The two remaining difficulties that naturally arose are
(1) to find meaningful peaks that can be used to provide
better discrimination between the clusters, (2) to propose
the optimal number of clusters instead of choosing them
a priori. The model selection criteria might be useful to
answer those questions. In fact, model selection scores
use two components for selecting the number of vari-
ables and the number of clusters in a given density-based
cluster analysis. The first term is the lack of fit gener-
ally proportional to the likelihood function. The second
term is the penalty term (complexity term). For such pro-
teomics dataset, we propose to use the sum of the negative
δB dissimilarity measure between all the observations to
their closest medoids as a lack of fit function. The penalty
term might be simple to derive but biased using AIC and
BIC, for example, or it can be more difficult to derive
if one used a more robust method such as information
complexity-based criteria.
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