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Abstract
Background: Several methodological approaches have been used to estimate distance in health service
research. In this study, focusing on cardiac catheterization services, Euclidean, Manhattan, and the less
widely known Minkowski distance metrics are used to estimate distances from patient residence to
hospital. Distance metrics typically produce less accurate estimates than actual measurements, but each
metric provides a single model of travel over a given network. Therefore, distance metrics, unlike actual
measurements, can be directly used in spatial analytical modeling. Euclidean distance is most often used,
but unlikely the most appropriate metric. Minkowski distance is a more promising method. Distances
estimated with each metric are contrasted with road distance and travel time measurements, and an
optimized Minkowski distance is implemented in spatial analytical modeling.

Methods: Road distance and travel time are calculated from the postal code of residence of each patient
undergoing cardiac catheterization to the pertinent hospital. The Minkowski metric is optimized, to
approximate travel time and road distance, respectively. Distance estimates and distance measurements
are then compared using descriptive statistics and visual mapping methods. The optimized Minkowski
metric is implemented, via the spatial weight matrix, in a spatial regression model identifying socio-
economic factors significantly associated with cardiac catheterization.

Results: The Minkowski coefficient that best approximates road distance is 1.54; 1.31 best approximates
travel time. The latter is also a good predictor of road distance, thus providing the best single model of
travel from patient's residence to hospital. The Euclidean metric and the optimal Minkowski metric are
alternatively implemented in the regression model, and the results compared. The Minkowski method
produces more reliable results than the traditional Euclidean metric.

Conclusion: Road distance and travel time measurements are the most accurate estimates, but cannot
be directly implemented in spatial analytical modeling. Euclidean distance tends to underestimate road
distance and travel time; Manhattan distance tends to overestimate both. The optimized Minkowski
distance partially overcomes their shortcomings; it provides a single model of travel over the network.
The method is flexible, suitable for analytical modeling, and more accurate than the traditional metrics; its
use ultimately increases the reliability of spatial analytical models.
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Background
Health service research is concerned with the investigation
of how social, financial, organizational, technological,
and behavioral factors affect access to health care, the
quality and cost of health care, and ultimately health and
well-being [1]. Distance plays a vital role in studies assess-
ing spatial disease patterns as well as access to hospital
services. In a highly complex health care environment,
even micro-geographic differences in the availability of
tertiary services can affect access to care [2,3]. The study of
distances from patient homes to the nearest hospital is an
example where distance is often studied as a crude but
objective indicator of geographic accessibility to hospital
services [4]. In such situations, the measurement of actual
travel distance (or travel time) on a road network is clearly
the most appropriate method [5]. Health service research,
however, encompasses a much broader investigation area,
where spatial analytical models are employed to assist in
the provision of effective accessibility to health care serv-
ices. Distance is often used indirectly in these types of
analysis as one of the parameters defining the model's
thrust and its results.

In a rapidly changing physical and social environment,
transportation means and travel modes change quickly as
do epidemic transmission modes, overturning traditional
ways of conceptualizing and measuring distance [6]. A
commonly-used distance metric is the Euclidean distance,
a straight line distance measurement between two points,
'as the crow flies' [7,8]. This method is simple and intui-
tive, but very few are the applications where it can yield
accurate distance estimates. An alternative, well-known
distance metric is the Manhattan, or taxi-cab distance: as
its name suggests, it is most appropriate for grid-like road
networks, typical of many North American cities, charac-
terized by a rectangular city block pattern. The Manhattan
metric measures distance between points along a rectan-
gular path with right angle turns [9,10]. Most commonly,
travel along road networks involves a mixture of Eucli-
dean, Manhattan, and curvilinear trajectories. There is no
firm consensus on methods for selecting a distance metric
[11], nor is there much published information on the
extent to which Euclidean, Manhattan, and road distances
relate to one another in applied distance analysis [12,13].

Travel along a complex, or mixed network can be usefully
modeled by a class of distance metrics, known as
Minkowski distance [14], which is a general distance met-
ric, of which the Euclidean and Manhattan metrics are
special cases. This array of metrics provides flexibility and
generality, in that, within a single class of metrics, a range
of parameters can be selected; therefore, a single yet flexi-
ble method for measuring distance can be defined for the
optimal estimation of distance on a variety of empirical
road networks. One further important aspect is the funda-

mental role of time in accessing health care services: if dis-
tance is a crude estimate of accessibility, travel time is a
more relevant estimate. Travel time computation is no
longer a prohibitively time consuming and computation-
ally intensive task, thanks to powerful GIS software, hard-
ware, and rich road network datasets [14-17]. However,
actual travel time on a road network is highly variable due
to local (spatial and temporal) conditions which are
hardly predictable and controllable. Because of this char-
acteristic, travel time computations lack general validity,
requiring adjustments to account for specific temporal
conditions, e.g., weekend vs. weekdays, rush vs. non-rush
hours, season, and weather, as well as local spatial condi-
tions, e.g., local traffic congestion, lane closures, or prox-
imity to amenities or popular destinations. All these
reasons hamper the implementation of travel time com-
putations in spatial analytical models, since even local
analytical models require the definition of a single rule for
distance measurement. A crude solution to this problem
is the use of average travel time in spatial models; a more
realistic solution can be obtained through the use of
Minkowski distance: an optimal value of Minkowski dis-
tance can be selected to model travel time on a complex
road network.

Spatial data tend to exhibit characteristics that negatively
impact the statistical properties of quantitative models,
decreasing their reliability: spatial analytical models are
designed to mitigate these negative effects. The most cru-
cial properties of spatial data are spatial dependence (near
things tend to be more similar than distant things) and
non-stationarity (inconstant variability of phenomena
across space) [18]. Two broad categories of spatial analyt-
ical models include spatially autoregressive (SAR) meth-
ods, which deal with spatial dependence [19], and
geographically weighted (GWR) methods, which deal
with spatial non-stationarity [20].

In empirical situations, spatial dependencies and non-sta-
tionarities take up specific forms, which are a function of
many factors, including the nature of the phenomena
under investigation and the representation of space
underpinning the model. For this reason, a simplistic
application of spatial analysis, one that does not carefully
model the salient aspects of phenomena, often fails to ful-
fill the model's primary objective, which is to enhance the
model reliability. The transition from a simplistic to a cus-
tomized implementation of spatial analysis requires the
calibration of each parameter defining the analysis: one of
the most crucial parameters, affecting the analytical
results, is the distance measurement method.

Cardiac catheterization is a procedure that is performed to
determine presence or absence of coronary artery block-
ages. The procedure involves the percutaneous insertion
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of a catheter into the arterial system, after which it is
guided into the aorta where the coronary arteries are posi-
tioned. Contrast dye is then injected into the coronary
arteries so that blockages can be located and identified. In
some instances, cardiac catheterization can lead to imme-
diate use of percutaneous coronary intervention with bal-
loon angioplasty and the insertion of coronary stents that
open up partially or completely blocked arteries to restore
blood flow. In some instances, this procedure is per-
formed in stable patients where distance and travel times
are a minor concern. In other instances, however, the pro-
cedure is done urgently, and for such situations, consider-
ation of distances and travel times become a central
consideration in the planning of health services.

In the context of an applied study of distance between
patient residence and a tertiary cardiac catheterization
facility in a large city, this paper analyzes the effectiveness
of a selection of distance metrics in providing a useful
model of travel distance and travel time along an urban
road network. The comparison of different metrics leads
to the identification of a metric that is conceptually sound
and computationally effective. The metric thus identified
is experimentally used in a spatial autoregressive model
analyzing the spatial distribution of cardiac catheteriza-
tion cases in the city.

Methods
Study Area
The study area encompasses the City of Calgary, one of the
largest Canadian cities, with approximately 1 million res-
idents [21], distributed over a large geographic area
(roughly 750 Km2), characterized by diversity of popula-
tion, housing type, residential density, and accessibility to
heath services.

Cardiac catheterization is an invasive procedure for
patients experiencing cardiovascular symptoms and
defines coronary anatomy, left ventricular and valvular
function; it provides important prognostic information
for individuals affected by cardiovascular conditions [22].
During the study period the procedure was only per-
formed at the Foothills Medical Centre, located in the
northwest of the city.

Data Sources
Three types of data are used in this study: cardiac catheter-
ization patient database, postal code locations, and the
Calgary road network. Cardiac catheterization patient
data were obtained from the Alberta Provincial Project for
Outcome Assessment in Coronary Heart Disease
(APPROACH), an ongoing data collection initiative,
begun in 1995, producing information on all patients
undergoing catheterization in Alberta [22]. The data are
released at the postal code spatial aggregation level. Data

were extracted for Calgary residents only and catheteriza-
tions performed over the year 2002, resulting in a total of
2, 445 catheterization cases, distributed over 2, 138 postal
codes.

A postal code conversion file (PCCF) [23] was obtained
from Statistics Canada. Only postal codes that have at
least one catheterization case are retained for the analysis.
It shall be observed that postal code locations refer to the
primary residence of catheterization patients, not to the
place where symptoms were felt or where emergency care
was first administered.

The Calgary road network data were obtained from the
University of Calgary data holdings, based on street infor-
mation collected and compiled in 2005 by DMTI Spatial
[24]. This road network was used to calculate shortest
road distances from patient residence location to hospital
for cardiac catheterization services.

Distance Metric Calculation
Straight line (Euclidean) distance and Manhattan distance
are often used in health service research [25]. Each of
these distance metrics may appropriately estimate dis-
tance in some parts of a study area, but their application
at the city level tends to yield large errors in areas that
depart from the dominant pattern, and may lead to highly
inaccurate distance estimations. One of the reasons for
using Euclidean and/or Manhattan distance is the relative
ease of their implementation; in contrast, it is more prob-
lematic to design algorithms implementing actual road
network distance in spatial analytical models.

In order to reduce the error associated with the Euclidean
and Manhattan metrics while maintaining the computa-
tional simplicity of a single, intuitive mathematical for-
mula, the general Minkowski metric is examined, to
devise a single method that best approximates the average
pattern of an empirical road network. Optimizing values
of the Minkowski formula are calculated for road distance
as well as travel time; the results are compared with more
traditional distance measures in the context of assessing
geographic accessibility to cardiac facilities. The
Minkowski distance has the potential to provide a more
accurate estimate of road network distance and travel time
than the Euclidean and Manhattan metrics.

A set of 2, 138 distances between each patient's postal
code of residence and the Foothills hospital are calculated
according to each of the distance measurement methods
considered. The geographic locations of each postal code
from the PCCF and the hospital are recorded in latitude
and longitude; therefore, in order to implement distance
computations, the road network is projected using an
equidistant projection system, which is chosen in order to
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preserve distance and produce consistent distance meas-
urements [26]. Latitude and longitude coordinates are
then converted into Eastings and Northings, i.e., x and y
values, expressed in kilometers. Alternative methods
could have been used, for example the great circle distance
formula [27], which, however, provides rougher estima-
tions. The ArcGIS 9.3 [28] Geometry calculator was used
to calculate the x and y coordinates based on the projected
dataset and the resulting x and y values were used in the
distance formulas defined below.

Euclidean [7,8], Manhattan [9,10], and Minkowski [14]
distance can be calculated by the formula:

where, for this application:

d is the distance between a patient's residence and the hos-
pital;

xi, yi are the geographic coordinates of the centroid of each
postal code of residence;

xj, yj are the geographic coordinates of the Foothills hospi-
tal.

The generic p parameter in Equation 1 can be replaced by
the value 2 to yield the well known Euclidean distance;
the value 1 would yield the Manhattan distance, and all
the intermediate values in the in the [1 <p < 2] interval
yield an array of Minkowski distances (Figure 1).

Road Network Distance and Travel Time Calculation
The computation of road network distances (shortest dis-
tance between two locations along a road network) is
implemented directly in GIS software [28] using a shortest
path algorithm. It is recognized a priori that this method
depicts the actual travel trajectory and is likely to produce
the most accurate distance estimates for patient travel
routes to a hospital. Likewise, travel time calculated over
the road network using an appropriate algorithm is likely
to yield the most accurate travel time estimates. The basic
need for road distance calculation is a road network with
information on all the segments constituting the network,
as well as on all existing constraints such as prohibited left
or right turns, one way streets, etc.

Travel time calculations, likewise, are implemented in GIS
software [28]. Additional information required for travel
time calculation include estimated speed and length of
road segments, along with an algorithm capable of taking
all these factors into consideration [15]. The Network
Analyst extension within ArcGIS [28] enables the mode-
ling of spatial networks and provides the tools for road

distance calculations [28,29] and travel time calculations
[15,16] from multiple postal code locations to a hospital.
Figure 1 illustrates road network distance, along with the
distance metrics considered in this study.

Computing Minkowski Coefficients
A simple procedure can be implemented to select, within
the [1 ≤ p ≤ 2] interval, the value of the parameter p in the
distance formula that best approximates distance along a
given road network. In light of the applied focus of this
analysis, an empirical solution to this problem is sought
for the set of 2, 138 patient-to-hospital distances. As a first
step for determining the best Minkowski distance, Equa-
tion 1 is transformed into Equation 2:

Two new quantities are defined as X = (xi - xj) and Y = (y i-
yj), and replaced in Equation 2, which is also further mod-
ified by means of a logarithmic transformation. Equation
2 is solved for p values in the [1 ≤ p ≤ 2] interval, sampled
at regular intervals. The set of distances thus calculated are
considered approximations of the road distance. A simple
regression model is defined, where the dependent variable
is the road distance, and the independent variable is, in
turn, the distance obtained by each p value. Goodness-of-
fit, residuals, and other regression diagnostics are then
compared over the entire interval [30,31]. This simple
method helps assess and rank the various coefficients,
identifying the one that produces the highest R2 value,
which is considered the best Minkowski coefficient.

The procedure is then modified to determine the optimal
Minkowski coefficient for travel time: conceptually, this
experiment is less straightforward, because travel time is a
measure of time, whereas Minkowski remains a measure-
ment of distance in space. Once travel time is computed,
in order to make the transition between time and space, in
terms that are valid both conceptually and computation-
ally, the concept of speed, a simple ratio between space
and time, is introduced. Average speed over the city is cal-
culated, yielding the following values: the average dis-
tance traveled in one hour is 58.71 km; conversely, the
average time required to travel 1 kilometer is 1.02 min-
utes. For the sake of simplicity, in order to make the argu-
ment more intuitive, these values were rounded to an
average speed of 60 km/h or 1 minute to travel 1 kilom-
eter. It shall be observed that these values are obtained
under optimal conditions, i.e., without considering delays
due to rush hour, traffic congestion, traffic lights, stop
signs, road closures, weather, etc.

Travel time calculations are then used as the dependent
variable, while the independent variables remain
unchanged. To this end, actual travel times are converted

d x x y yi j
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to distances, using the average travel time, and replaced in
the procedure for the calculation of the optimal
Minkowski p value to approximate travel time. Once the
two optimal Minkowski coefficients are identified, stand-
ard descriptive statistics are used to analyze and compare
the four distance metrics and the two empirical distance
measurements.

Results
The results of the regression models estimated to identify
the optimal Minkowski coefficients are summarized in
Figure 2. Figure 2a summarizes the regressions for the
road distance coefficient optimization, and Figure 2b for
the optimization of the travel time coefficient. Figure 2
shows different values of a goodness-of-fit indicator (R2)
obtained from a regular sample of p values throughout the
[1 ≤ p ≤ 2] interval. Figure 2a shows that the R2 increases
gradually for p values between 1.00 and 1.50, it levels out
for p values between 1.50 and 1.60, and then decreases
again for p values ranging from 1.61 to 2.00. The range of
values for a 'best' Minkowski p value is therefore in the

range of 1.50 ≤ p ≤ 1.59. The overall pattern displayed by
R2 is very important, as it indicates a consistent behavior
over the interval. In practice, this plot represents R2 as a
function of the Minkowski coefficient. The observed trend
suggests that indeed the function does have a unique max-
imum in the range 1.50 ≤ p ≤ 1.59. It is possible, therefore,
to confidently accept a value within this range as the max-
imum. Less consistent trends would decrease the confi-
dence in the choice of an optimal value. For simplicity
sake, one single value, p = 1.54, is chosen as the optimal
Minkowski coefficient for the road distance.

Based on this result, Equation 1 can now be re-written as:

Equation 3 expresses the Minkowski distance metric that
best approximates distance on the road network. This
metric is consequently used to produce a model of the dis-
tance separating cardiac patients from the Foothills hospi-
tal. It is worth noting the coefficient identified is
approximately halfway between the Euclidean (p = 2) and
Manhattan (p = 1) distance, leading to two alternative
interpretations: either the dominant pattern of Calgary
road network is an intermediate trajectory between the
Euclidean and Manhattan models, or the road network,
overall, is a mixture of the two patterns, with approxi-
mately equal contributions from each one.

Figure 2b shows the corresponding R2 values for the travel
time optimization of p in the [1 <p < 2] interval. The R2

increases gradually for p values between 1.00 and 1.25,
then it levels out for p values between 1.25 and 1.35. The
curve decreases more sharply from 1.35 to 2.0. The range
of values for the best candidate of p value for travel time is
in the range of 1.25 ≤ p ≤ 1.35. The values of R2 suggest the
best p value in this range, which is 1.31. Based on this
result, the general Minkowski formula (Equation 1) can
be written as

where tt is the travel time that is based on the average
speed, whereby one minute corresponds to one kilometer.
The p value for travel time (1.31) is lower than the p value
for distance (1.54), suggesting that travel pattern is closer
to the Manhattan model if travel time is considered.

Table 1 presents summary descriptive statistics of the five
measured distances. Road network distances range from
0.43 to 30.68, with a mean of 11.82 km distance from a
patient's residence to the Foothills Medical Centre. Of all

d x x y yi j i j= −( ) + −( )⎡
⎣⎢

⎤
⎦⎥

1 54 1 54 1 1 54. . / .
(3)

tt x x y yi j i j= −( ) + −( )⎡
⎣⎢

⎤
⎦⎥

1 31 1 31 1 1 31. . / .
(4)

Visual illustration of road distance and distance metricsFigure 1
Visual illustration of road distance and distance met-
rics.
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the methods used to measure distance, it displays the sec-
ond largest standard deviation and range. Travel time can
be immediately compared with all the distance metrics, as
1 minute corresponds to 1 kilometer: in comparison with
road network distance, travel time displays a lower stand-
ard deviation and a shorter range, with a minimum travel
time of 1.51 minutes, and a maximum of 26.76 minutes,
under optimal conditions. Conversely, its mean displays
the highest value, 12.11 minutes. Shorter range and
higher mean are likely due to the opposite effects of speed
limits on road segments of different length: in general,
longer travel paths include large segments that occur on
major roads, where speed limits are higher, whereas
shorter trips tend to occur on minor roads, which are asso-
ciated with lower speed limits. As a consequence, a model
that takes speed into consideration produces a shorter
travel range. Consistently, the standard deviation is lower.
The higher mean value suggests that overall speed limits
tend to slow down travel; that is, segments with low speed
limits have a large impact on the overall travel pattern
throughout the road network.

Euclidean distance tends to underestimate road distance,
as shown by the mean and range; the standard deviation
is lower than for road distance, with values that are fairly
close to those for travel time. This is probably due to the
smoothing effect of a uniform distance model, which pro-
duces lower values than actual road distance for curvilin-
ear segments and the most complex paths.

Manhattan distance tends to overestimate road distance
and produces values consistently larger than those of
Euclidean distance. Its mean value is very close to the road
distance mean, but it also presents the largest standard

deviation and the largest range. This may suggest that the
Calgary road network contains several parts that follow
the Manhattan pattern (hence a similar mean value), but
the presence of different patterns in the same network
increases its error (large standard deviation).

In comparing Euclidean and Manhattan distances, Man-
hattan distance produces a close approximation of the
mean, and only slightly overestimates the standard devia-
tion, whereas Euclidean largely underestimates both val-
ues. For the range, both metrics produce approximately
the same error, though with opposite sign. This suggests
that, overall, Manhattan is a better model than Euclidean
for the Calgary road network.

The value of p = 1.54 best approximates road distance in
the Minkowski formula. Indeed minimum and maximum
values are close approximations, whereas mean and
standard deviation underestimate road distance. This
result can be considered satisfactory, as it indicates that
the error is minimized for individual measurements, but
overall the method displays the aforementioned smooth-
ing effect, whereby mean measurements tend to be
slightly smaller than actual ones, with overall lower varia-
tions around the mean. It shall be observed that this dis-
tance metric is approximately half-way between Euclidean
and Manhattan; however, all the descriptive statistics
present values that are closer to the Euclidean than the
Manhattan results.

The value of p = 1.31 best approximates travel time in the
Minkowski formula. Interestingly, the descriptive statis-
tics suggest that this metric is the best approximation of
road distance; indeed a close approximation. As noted,

Determination of optimal p values for Minkowski distanceFigure 2
Determination of optimal p values for Minkowski distance.
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travel time presents features that differ from distance, i.e.,
larger mean and lower range: this combination is hard to
achieve by the class of metrics considered, because p val-
ues closer to 1 (Manhattan) produce larger means,
whereas p values closer to 2 (Euclidean) produce lower
ranges. In light of these considerations, a relatively low p
value, such as p = 1.31 most closely approximates this pat-
tern, rendering a model that is less extreme than Manhat-
tan, as shown by a lower standard deviation. Overall the
metric p = 1.31 provides a model of travel that is interme-
diate between measured road distance and travel time
measured under optimal conditions. This is supported by
almost all the descriptive statistics; the greatest shortcom-
ing of this metric is its poor approximation of the mean.
This value produces the best of all the metrics examined.

Finally, it shall be noted that the travel time pattern would
be very different if measurements were to consider less
favorable conditions. The most common impediments to
fast travel in Calgary include traffic congestion, e.g., rush
hour, and severe winter weather conditions. Traffic con-
gestion tends to affect major roads more heavily, where
feasible speed can easily be reduced by 20-25% of the
speed limit, whereas its effect is generally lesser on minor
roads. Severe winter weather conditions are likely to have
a comparable effect on major roads, but they will also
have comparable or worse effects on minor roads. How-
ever, a speed reduction from 80 to 60 km/h on long road
segments significantly impacts travel time, lowering the
maximum and range values, and increasing the mean
value. Conversely, an equivalent or greater speed reduc-
tion from 50 to 40 or 35 km/h on shorter road segments
is likely to have only a minor impact on the overall travel
time. Seeking to approximate such travel pattern via a
Minkowski p value is therefore unlikely to produce better
results.

Differences between distance measurements and distance 
metrics
Table 2 presents a selection of summary statistics of the
differences between each empirical measurement and the
distance metrics considered. These are only global results,
overshadowing the performance of each distance model

throughout the city. These results suggest that, globally,
the differences produced by each model are modest.

For road distance, the smallest differences are achieved by
the Manhattan and Minkowski (p = 1.31) metrics, with
Manhattan producing the overall best result. The same
metrics produce the best results for travel time, with
Minkowski (p = 1.31) producing the lowest standard devi-
ation. Median and mean differences are lower than 2 kil-
ometers and just over 2 minutes, respectively. However,
standard deviations tend to be quite high, relative to the
mean. Figure 3 and Figure 4 illustrate graphically these
differences, providing greater spatial detail. Differences
between road distance and each distance metric are pre-
sented in Figure 3, and those between travel time and each
metric in Figure 4. The figures display spatially the magni-
tude of the error associated with each distance metric in
each part of the city.

With respect to road distance (Figure 3), Euclidean dis-
tance produces only negative errors, but in some periph-
eral areas of the city these errors are large in absolute
value. Manhattan distance produces mostly positive
errors, and overall it produces better results, as the areas
characterized by the highest absolute errors are reduced to
a triangle west of the hospital and the far southeast corner
of the city. The Minkowski metric with p = 1.54 improves
over the Manhattan metric results, by resolving the area of
large residuals in the southeast corner; conversely, the area
of high residuals west of the hospital is moderately larger.
The best results are produced by the Minkowski metric
with p = 1.31, as for the entire eastern part of the city errors
are contained in the interval 0-2.5 km, and greater errors
remain only in some peripheral northwest areas.

The area west of the hospital consistently emerges as an
outlier, despite its close distance to the hospital. Careful
observation of the topography of the area reveals that the
hospital is located on the east side of a hill, with a river
running to the west of the hill. Therefore, no immediate
access is possible from the west side of the river to the hos-
pital, and patients are left with no option but to travel a
considerable distance either northbound or southbound

Table 1: Summary descriptive statistics of distance measurements and metrics

Distance Metric Min. Max. Range Mean Std.Dev.

Road Distance 0.43 30.68 30.25 11.82 5.27
Travel Time (*) 1.51 26.76 25.26 12.11 4.92

Euclidean Distance 0.40 25.45 25.05 9.37 4.63
Manhattan Distance 0.49 35.69 35.20 11.78 5.91

Minkowski Dist. (p = 1.54) 0.41 28.12 27.71 9.93 4.91
Minkowski Dist. (p = 1.31) 0.43 30.37 29.94 10.45 5.18

(*) Expressed in Km./minutes, where 1 Km. = 1 minute
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to access the nearest bridge. The presence of the hill fur-
ther amplifies this distortion.

With respect to travel time (Figure 4) the improvement
obtained by the two Minkowski metrics is more evident
throughout the city. Areas of large residuals remain in the
far southeast and southwest corners, and, in general each
metric performs worse in the west than in the east part of
the city. The latter observation is counterintuitive, since
the hospital is located in the northwest; however, that part
of the city, closer to the foothills, is characterized by a
more complex topography. Moreover, in a city like Cal-
gary, urban design and age of communities play an impor-
tant role, as, over the decades, rectangular patterns have
alternated with such patterns as crescent and cul-de-sac,
and other typologies of urban connectivity. Likewise, it
shall be observed that the most peripheral areas are very
recent developments, and likely the planned road connec-
tions had not been completed during the study period.

Spatial analytical modeling application
Within the scope of a larger project, the association
between cardiovascular disease and socio-economic vari-
ables was recently analyzed [32]. Specifically, the relation-
ship between cardiac catheterization and socio-economic
variables was analyzed by means of a multivariate spa-
tially autoregressive model. While distance does not
explicitly enter in these models, it is one of the key param-
eters defining the spatial weight matrix (19), which repre-
sents the neighborhood definition, hence the model's
ability to cope with spatial dependencies, and ultimately
the reliability of the model estimates. Figure 5 provides an
example of how different distance metrics affect the
neighborhood configuration defined by a spatial weight
matrix. Locations in the figure represent census tract cen-
troids, as these relatively larger spatial units are used in
these regression models. The lines connecting these loca-
tions indicate whether or not 2 close locations are consid-
ered neighbors and included in the estimation of spatial
dependence. Other parameters contribute to the neigh-
borhood definition: generally the most influential param-

eter is the number of nearest neighbors, complemented by
a distance decay function and a weight [33]. Figure 5a
shows the connectivity defined by the Euclidean metric,
while Figure 5b corresponds to the Minkowski metric
optimizing travel time (p = 1.31). A close comparison of
the two plots (aided by the superimposed circles) reveals
how the modification of the distance metric substantially
alters the neighborhood configuration.

Each neighborhood configuration, such as the ones pre-
sented in Figure 5, forms the basis for the definition of a
spatial weight matrix, which is one of the crucial elements
that define a spatial regression model, differentiating it
from a standard (non-spatial) model. Through the spatial
weight matrix, the neighborhood configuration ulti-
mately affects the variance of the model estimates, hence
their reliability. As an example, Table 3 shows the varia-
tion in the parameter estimates and the regression diag-
nostics determined by the two alternative neighborhood
configurations depicted in Figure 5. The regression model
analyzes the socio-economic variables significantly associ-
ated with cardiac catheterization: the main predictors are
family status, income, and educational attainments; the
spatial distribution of these variables is used to identify
areas of social and economic concern. This model thus
provides an effective analytical tool to support policy deci-
sions, providing guidance for the initiation of targeted,
localized preventative health measures [32].

A succinct summary of the parameters associated with
each independent variable is presented in Table 3, along
with a small selection of regression diagnostics. While the
coefficients (beta) linking each independent to the
dependent variable remain substantially unchanged, the
Minkowski distance leads to increased values of their
associated t test: the t values increase thanks to a reduction
of the variance associated with the estimates. All the inde-
pendent variables benefit, in varying degrees, from the
modified distance model. Likewise, the regression diag-
nostics indicate that the distance model does not appreci-
ably affect the overall goodness of fit (represented by the

Table 2: Summary of differences between distance measurements and metrics

Difference Min. Max. Range Mean Std.Dev.

Road -- Euclidean 0.01 8.11 8.10 2.45 1.29
Road -- Manhattan 0.00 7.64 7.64 1.15 1.04

Road -- Minkowski (p = 1.54) 0.01 8.02 8.01 1.89 1.15
Road -- Minkowski (p = 1.31) 0.00 7.92 7.92 1.37 1.15

TT(*) -- Euclidean 0.01 15.25 15.24 2.95 1.95
TT(*) -- Manhattan 0.00 23.49 23.49 2.02 1.83

TT(*) -- Minkowski (p = 1.54) 0.00 17.39 17.39 2.51 1.87
TT(*) -- Minkowski (p = 1.31) 0.00 19.21 19.20 2.20 1.81

(*) Expressed in Km./minutes, where 1 Km. = 1 minute
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Differences between road distance and distance metricsFigure 3
Differences between road distance and distance metrics.
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Differences between travel time and distance metricsFigure 4
Differences between travel time and distance metrics.
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pseudo-R2), but it does noticeably impact the autoregres-
sive coefficient and, more importantly, the spatial
dependence in the regression residuals.

These results confirm the importance of an accurate dis-
tance model to enhance the reliability of spatial analysis
for health service research.

Discussion
This study compares four different distance metrics, i.e.,
Euclidean, Manhattan, and Minkowski distance (the latter
for two different coefficients), and contrasts them with
road distance and travel time, respectively, in the context
of applied health services research. The Euclidean metric
is the most common and intuitive measure of distance;
Manhattan is another common distance measure, but very
rarely does either of them provide a close approximation
of an empirical road network, such as an urban network.

Road distance, conversely, provides an accurate measure-
ment, but it is prone to local features, and does not pro-
vide a single model of travel throughout the urban
network. Travel time is, arguably, the most relevant esti-
mate of distance, but its calculation introduces further
specificities, as temporal anomalies are added to the local
features, further reducing its generality. For these reasons,
Minkowski distance is a promising solution: it provides a
general model of travel throughout an empirical network;
it possesses a large range of parameters, which enhance its
flexibility; it can be easily calculated; and it can provide a
less crude approximation of travel along a road network.

Euclidean distance is widely used in distance analyses in
the literature [25] but it tends to underestimate road dis-
tance and travel time. Manhattan distance, on the con-
trary, tends to overestimate road distance and travel time.
The use of either of these two metrics in any spatial anal-

Neighborhood configurations determined by different distance metricsFigure 5
Neighborhood configurations determined by different distance metrics.

a: p = 2 b: p = 1.31
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ysis may result in inaccurate results [10]. Ideally, travel
time provides the most accurate estimate of a patient's
travel from their place of residence to a given health facil-
ity [15]. While accessibility studies may profitably employ
this method, its use in spatial analytical models is inhib-
ited by the particularity of its calculation, which tends to
be heavily affected by local features, both in space and in
time.

A simple, empirical optimization procedure led to the
identification of the coefficients, in the Minkowski for-
mula, that best approximate road distance and travel time,
respectively. Summary statistics and cartographic repre-
sentations consistently indicate the value p = 1.31 as the
best coefficient, i.e., the one that leads to the most accu-
rate approximation of both road distance and travel time.
The model of distance based on this coefficient was exper-
imentally introduced in spatial analytical routines, to
define neighborhood connectivity and determine the spa-
tial weight matrix for multivariate spatial regression anal-
ysis.

The enhanced reliability of the spatial analytical model
based on the optimal distance model far outweighs the
cost of the computational procedure that leads to the coef-
ficient selection. The advantage of the procedure dis-
cussed in this paper can be best appreciated by
considering that empirical measurements of distance and
travel time cannot be implemented in spatial analytical
modeling, exactly because of their empirical nature and
the great impact they receive from local features and con-
ditions. For this reason, the optimized Minkowski coeffi-
cient represents a valuable compromise between an
approach that is often simplistic (i.e., Euclidean and Man-
hattan metrics) and the ideal, but impractical sophistica-
tion of empirical measurements (i.e., road distance and
travel time, respectively).

This study has some limitations. Most importantly, it is
limited to one class of distance metrics, i.e., Minkowski,
whereas other metrics could be considered: Mahalanobis
distance is just one example [34]. There are locational
inaccuracies in the patient data [35] as well as in the road
network; additional errors are likely to derive from the
algorithm used for the distance calculations. Travel time
calculations are based on assumptions, referred to as opti-
mal conditions that tend to represent an ideal, but
unlikely situation. The hypothesis of optimal conditions
should be lifted, and more realistic conditions should be
entered in the model, e.g., rush hour, or severe winter
weather, and should be considered not just individually,
but also jointly. An array of optimal Minkowski coeffi-
cients should consequently be calculated for the varying
conditions, leading to the final identification of a stochas-
tic optimum. The entire procedure is also based on the
strong assumption of a single transportation mode: it can
be argued that optimal conditions approximate ambu-
lance travel, but the catheterization registry used in this
analysis was not limited to patients who were transported
directly from their residence to the tertiary catheterization
facility. The APPROACH registry also includes patients
initially admitted to hospitals or emergency facilities
without catheterization facilities who were subsequently
transferred to a tertiary center for this procedure under less
urgent circumstances. Accuracy in travel route selection
and in travel time estimates are most relevant to patients
with more emergent cardiac conditions requiring rapid
transportation from their residence to the catheterization
facility. This limitation can be addressed by a twofold
model, optimizing for ambulance and private vehicle
travel. Still, road network travel is a reasonable assump-
tion for urban environments, but is unlikely to be the sole
mode of transportation to emergency care from rural and
remote locations.

Table 3: Spatial regression analysis for varying neighborhood configurations

Minkowski p value
p = 2 p = 1.31

Model Variables
Families with children β coefficient -1.88 -1.89

t test -7.01 -7.11
Non-university education β coefficient -2.45 -2.37

t test -5.60 -5.47
Family median income β coefficient 1.06 1.10

t test 4.27 4.45
Secondary education β coefficient 1.30 1.31

t test 3.63 3.64
Regression diagnostics
Pseudo-R^2 0.32 0.32
Autoregressive Parameter 0.94 0.98
Residual Spatial Autocorrelation -0.03 -0.02
Page 12 of 14
(page number not for citation purposes)



BMC Health Services Research 2009, 9:200 http://www.biomedcentral.com/1472-6963/9/200
The proposed approach was tested, as an example, on a
spatial autoregressive model; however, virtually all spatial
analytical techniques involve some distance measure-
ment. The impact of alternative distance measurements
was examined in this implementation through an analysis
of the spatial weight matrix, but distance is likely to
impact other analytical techniques in further, different
ways [19,20].

Given its advantages and limitations, Minkowski distance
appears to be most usefully implemented in spatial ana-
lytical modeling; however, other useful applications can
be envisaged, particularly in geographic areas character-
ized by paucity or unreliability of spatial data, or by high
dynamism. Examples include urban or regional road net-
works of countries with poor spatial digital records, or
characterized by high population mobility or varying
transportations routes, for example due to seasonal varia-
tions. In all such cases, a model of travel in the area,
obtained by the method discussed in this paper, can pro-
vide rough, but reasonable distance estimates, potentially
useful for facility planning, or as initial input for more
sophisticated analyses.

Conclusion
The proposed method provides a single model of travel
on an urban road network, via the identification of an
optimal coefficient within a class of distance metrics,
known as Minkowski metrics. The coefficient can be opti-
mized to approximate different distances, e.g., road dis-
tance or travel time, under varying conditions. The
resulting distance model can be usefully input in spatial
analytical models, providing a method for the estimation
of less simplistic spatial analytical models, by means of a
more accurate representation of distance. Such models
yield more reliable estimates, hence more effective tools
for health service planning and management.
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