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Perception and control: individual 
difference in the sense of agency 
is associated with learnability 
in sensorimotor adaptation
Wen Wen1,4,5*, Hikaru Ishii2,5, Ryu Ohata2,3, Atsushi Yamashita4, Hajime Asama1,4 & 
Hiroshi Imamizu1,2,3

Adaptive motor learning refers to the ability to adjust to novel disturbances in the environment 
as a way of minimizing sensorimotor errors. It is known that such processes show large individual 
differences and are linked to multiple perceptual and cognitive processes. On the other hand, the 
sense of agency refers to the subjective feeling of control during voluntary motor control. Is the sense 
of agency just a by-product of the control outcome, or is it actually important for motor control and 
learning? To answer this question, this study takes an approach based on individual differences to 
investigate the relationship between the sense of agency and learnability in sensorimotor adaptation. 
Specifically, we use an adaptive motor learning task to measure individual differences in the efficiency 
of motor learning. Regarding the sense of agency, we measure the perceptual sensitivity of detecting 
an increase or a decrease in control when the actual level of control gradually increases or decreases, 
respectively. The results of structure equation modelling reveal a significant influence of perceptual 
sensitivity to increased control on motor learning efficiency. On the other hand, the link between 
perceptual sensitivity to decreased control and motor learning is nonsignificant. The results show that 
the sense of agency in detecting increased control is associated with the actual ability of sensorimotor 
adaptation: people who are more sensitive in detecting their control in the environment can also more 
quickly adjust their behaviors to novel disturbances to acquire better control, compared to people who 
have a less sensitive sense of agency. Finally, the results also reveal that the processes of increasing 
control and decreasing control may be partially independent.

The ability to adjust our behavior according to changes in the environment is critical for humans. For example, 
people can adjust their walking direction and center of gravity to safely cross a stream while sensing the strength 
of the water’s flow. The processes of adaptive motor learning have been intensively studied in psychology and 
neuroscience using experimental tasks, such as prism displacement1, 2. In such adaptation tasks, sensorimotor 
feedback is usually perturbed in a novel way, such as an angular displacement between movements and visual 
feedback. Participants learn to adjust their behaviors to minimize the sensorimotor errors. A previous study 
revealed large individual differences in adaptive motor learning3. In adaptive motor learning, people implicitly 
or explicitly learn the perturbation in the environment and update their internal model of motor control to 
generate new motor commands that can minimize prediction errors4–6.

On the other hand, when people voluntarily control their body or external tools, a subjective feeling of control, 
namely the sense of agency in the literature, accompanies the actual control. The sense of agency is considered 
to be generated from the comparison between predicted sensory feedback and actual sensory feedback7, 8. When 
there is no prediction error (e.g., no mismatch), people feel a strong sense of agency. The sense of agency is 
closely linked to human consciousness of the self9, 10, and it has attracted great attention in various fields such as 
psychology, neuroscience, psychiatry, and philosophy. However, the current theories of sense of agency mainly 
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consider this subjective feeling as a by-product of successful motor control: people feel a strong sense of agency 
when they control successfully and lose the sense of agency when they fail to control.

Some recent studies have shown that the sense of agency may also play an important role in motor control by 
boosting control motivation and facilitating action selection11, 12. Such findings reasonably predict that individual 
differences in the sense of agency affect motor control and learning. To our knowledge, however, no study has 
directly investigated the influence of the sense of agency on motor control from the perspective of individual 
differences. The present study probed the relationship between sensitivity in the sense of control and learnability 
in sensorimotor adaptation. Specifically, the actual level of control was gradually changed in the range of 0–100% 
using a sensorimotor paradigm13. Participants responded as soon as possible when they perceived a change in 
control (i.e., either an increase or a decrease) from the initial state. The reaction point reflects individual percep-
tual sensitivity to a change in control. Furthermore, the participants underwent a reaching task that examined 
their performance in motor adaptation.

Importantly, this study also examined individual differences in the sense of agency when control changes 
in different directions. Recent studies have shown that perceptual sensitivity is greatly affected by the direction 
of control change13–15, indicating that our cognitive system processes sensorimotor signals in different ways 
when control increases and decreases. In order to detect the existence of control, people need to explore the 
environment and find the potential link between sensory feedback and their own actions. Such detection of 
contingency is known to be developed at a very early stage of development16, 17. Adaptive motor learning also 
requires the ability to detect such contingency and to adjust behavior as a way of minimizing sensorimotor error. 
On the other hand, in the case of monitoring a decline in control, prediction errors have been considered sali-
ent signals15, 18. Such detection of sensorimotor error may also trigger adaptation in motor control. In addition, 
error detection mechanism may be critical for humans to survive in volatile environments, and thus it may be 
privileged in our cognitive system. However, it is unclear whether the detection of either gain or loss of control 
is significantly associated with adaptive motor learning. The present study also aims to investigate this question 
with the approach of considering individual differences, examining if people who are sensitive to the sense of 
agency also more quickly learn how to control under a sensorimotor disturbance.

In summary, this study examined individual differences in detecting increases or decreases in control, along 
with the individual differences in a motor adaptation task. The indices of individual perceptual sensitivity of 
control and adaptive motor learning were pooled to a structure equation model to find the relationship between 
these indices.

Methods
Participants.  Sixty healthy adults (mean age: 21.7 years, SD: 0.9 years, females: 19) were recruited using a 
university-wide social media advertisement. All participants had normal or corrected-to-normal visual acuity 
and were right-handed. We could not conduct a prior power calculation because no previous study could pro-
vide an estimated effect size of the correlation between the sense of agency and motor learning. A previous study 
on the relationship between sensorimotor adaptation and explicit memory reported a correlation of R2 = 0.3019. 
Such an effect size requires a sample size of 33 to provide power of 0.95 (α = 0.05, two-tailed test). We decided 
to use a larger sample than this estimation to ensure sufficient power. All methods were carried out in accord-
ance with relevant guidelines and regulations. The experiments were conducted with the approval of the ethics 
committee of the Faculty of Engineering at the University of Tokyo. Written informed consent was obtained 
from all participants before their participation. Participants received a reimbursement for their participation. 
An exclusion criterion was set before the data collection to exclude participants who excessively responded to 
no-change trials (see below for details). This criterion excluded six participants, resulting in a sample size of 54 
for the analyses.

Task.  The experiment was conducted using two tasks: a control detection task followed by a reaching task. 
Both tasks were programed using Matlab (R2016b, MathWorks, US) and Psychtoolbox20, 21. The visual stimuli 
were presented on a 22-in LED display (473.76 × 296.10 mm, resolution: 1680 × 1050 pixels, refresh rate: 60 Hz). 
Participants used their right hand to operate the mouse and their left hand to press response keys on a keyboard.

Figure 1A shows the timeline of a trial of the control detection task. Increase trials and decrease trials were 
blocked. The blocked design was used to ensure that participants were able to focus on one direction of change 
in control in each block. In each trial, participants were told to detect whether their control over a 40-pixel dot 
(11.28 mm on the screen) increased/decreased or did not change. The instruction of control change direction 
depended on the block. During each trial, the onset, offset, and speed of the dot always corresponded to the 
mouse movement. However, the moving direction of the dot was set by an integration of participants’ real-time 
mouse movements and prerecorded mouse movements13. The direction of the mouse movement and the direc-
tion of a prerecorded motion were integrated at a certain ratio (e.g., 80/20 in the condition of 80% control) to 
generate the direction of the visual dot at each refresh frame. The integration ratio thus determines the level 
of control (0–100%). According to this algorithm, the level of control linearly decreases angular error (i.e., the 
averaged angular difference between one’s mouse movement and the movement of the visual stimulus)13. In an 
increase trial, participants initially had 0% control over the dot. After a random initial duration between 3 and 
6 s, the level of control increased by 10% every 1 s. In a decrease trial, participants initially had 100% control, and 
their control decreased by 10% every 1 s after a random initial duration between 3 and 6 s. In a no-change trial, 
participants’ control remained at the initial level (i.e., either 0% or 100%, depending on the type of block) for a 
random duration between 13 and 16 s. Participants were instructed to pay attention to the motion of the dot and 
to immediately press the space key on the keyboard when they felt that their control over the dot had changed 
(i.e., increased or decreased) compared to the beginning of the trial. The dot was replaced by digits indicating 
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feedback points (see below) on the screen after the space key was pressed (Fig. 1B). Participants were told to not 
press any key if they felt that their control over the dot did not change. If no key was pressed, the increase trial 
ended 1 s after the control reached 100%. Figure 1B shows the number of feedback points participants received 
after they pressed the response key. Participants received feedback of + 20, + 15, or + 10 points when they pressed 
the space key after the control changed and before the extent of change reached 40%, 70%, or 100%, respectively. 
Participants received no points if they did not respond during a trial. They received − 15 points (i.e., negative 
feedback) if they pressed the space key before control actually changed or in a no-change trial. The display of the 
feedback points was designed to encourage participants to respond as soon as they could after feeling a change 
in control, as well as to discourage them from pressing the response key when there was actually no change in 
control. There were two blocks: an increase block and a decrease block. Each block contained 20 control-changing 
(i.e., increase or decrease) trials and 20 no-change trials. The trial order was randomized, and the block order 
was counter-balanced between participants. Finally, in addition to rewarding points, we also set a criterion to 
exclude participants who excessively responded to no-change trials. Participants who responded in half or more 
of the no-change trials in either block were excluded from analyses.

Following the control detection task, participants then performed four trials of a reaching task to examine 
their motor-learning ability (Fig. 1C). In each trial, participants moved a mouse to control a dot with the goal of 
touching a cross on the screen. The size of the dot was the same as that of the dot in the control detection task. The 
size of the cross was 40 pixels (i.e., 11.28 mm), the same as the dot. The dot was initially presented at the center 
of the screen. At each moment, one cross appeared at one of four possible positions: 394 pixels (i.e., 32.3 mm, 
3/8 of the height of the screen) left of, right of, above, or below the center of the screen. After the dot touched 
the cross, the cross disappeared and then reappeared at a new position randomly chosen from the other three 
positions. Each trial lasted 200 s. Participants were told to touch the cross with the dot as many times as they 
could in each trial. There was a visuomotor rotation of either + 90° (i.e., the motion of the dot was rotated 90° 
clockwise from the motion of the mouse) or − 90° (i.e., the motion of the dot was rotated 90° counter-clockwise 
from the motion of the mouse) in each trial. This task was designed to measure how fast one could adapt to the 
visuomotor rotation in each trial. The number of successful touches in each time-window of 20 s was calculated 
for each trial as the index of motor control performance. We could monitor the change in performance in each 
trial when participants gradually adapt to the visuomotor rotation. In addition, the four possible positions of 
the cross also required participants to move the mouse in different directions every time a new cross appeared. 
This also ensured a certain level of task difficulty to prevent the ceiling effect.

The two types of visuomotor rotation were shifted in an ABAB order and counter-balanced between partici-
pants. The ABAB order was designed to ensure that participants had to repeat the adaptation to the visuomotor 
rotation when a new trial started. It is known that sensorimotor adaptations to the opposite visuomotor rotations 
interfere with each other, and that the initial adaptation to the bias (e.g., + 90°) is removed by the subsequent 
adaptation to the other bias (e.g., − 90°)22–24. Therefore, in the above ABAB paradigm, we predict that the adap-
tation in the first trial (A) is removed by the adaptation in the second trial (B). Thus, the initial performance 
in the third trial (A) reverts to a level comparable to that in the first trial, and participants must re-adapt to the 
bias in the third trial. In just this manner, the adaptation in the second trial (B) will be removed by the third 
trial (A). The initial performance in the fourth trial will revert to a level comparable to that in the second trial, 
which in turn requires re-adaptation by participants. Therefore, we expect participants to show an adaptation 
or re-adaptation process in each trial of the ABAB paradigm.

Procedure.  Experiments were conducted with participants performing individually in a quiet room. Par-
ticipants were first introduced to the control detection task, and then they performed four trials for each block 
(i.e., increase and decrease blocks) as practice. After this practice, participants performed an increase block and 
a decrease block, each containing 40 trials. After the control detection task, they were then introduced to the 
reaching task. There was no practice for the reaching task. Participants performed four trials, each lasting 200 s. 
The experiment took approximately 60 min for each participant.

Figure 1.   Two experimental tasks. (A) Shows an example of the screen in the control detection task, and (B) 
shows the feedback points in that task. (C) shows an example of the screen in the reaching task.
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Statistical analyses.  For the control detection task, we used the level of control measured by the responses 
in the increase and decrease trials as the indices of perceptual sensitivity to control. The more sensitive one is to 
a change in control, the sooner they can respond. In addition, we did not use the d-prime of the signal detection 
theory25 as the index of perceptual sensitivity, since the sensory input was impacted by the timing of responses 
(i.e., the earlier one pressed the response key the less sensory input they received). We first examined the correla-
tion and distribution of the individual response points in control increase and decrease trials.

For the reaching task, we conducted log-linear regressions [Eq. (1)] for each trial of each participant to evalu-
ate the adaptive motor learning progress:

where y represents the number of touches in each time window and x represents the number of time windows 
(i.e., 1–10). The slope a reflects the efficiency of sensorimotor adaptation. In other words, a reflects how quickly 
one adapts to the given visuomotor rotation. The intercept b reflects the initial motor performance in each trail. 
We conducted 2 × 2 (visuomotor rotation: first vs second × time of repeat: first vs second) repeated-measures 
ANOVAs on the slope and intercept to examine the effects of repeat and order of visuomotor rotation on adap-
tive motor learning.

Finally, and most importantly, we conducted structure equation modelling (SEM) to investigate the relation-
ship between the sense of agency and adaptive motor learning. Perceptual sensitivity to control increase was 
calculated using the formula of (1 − α); here, α refers to the individual mean control level at which each par-
ticipant reported perceiving an increase in control. Similarly, perceptual sensitivity to control decrease was the 
individual mean control level at which participants reported perceiving a decrease in control. For both indices, 
a larger value was associated with more sensitive perception of control change. Motor learning efficiency was the 
mean slope of log-linear regression of four trials for each participant. Improvement in initial performance from 
repeat was the mean difference in the intercept of the log-linear regression between the first and second repeat 
of the same visuomotor rotation (i.e., trial #1 vs #3 and trial #2 vs #4). Participants were probably able to notice 
the existence of the repeated visuomotor rotation in trials #3 and #4, and they explicitly recalled the previous 
trials from memory. Therefore, the improvement in initial performance reflects the memory effect. On the other 
hand, the slope reflects how fast people can adapt to a visuomotor rotation. These two variables are assumed to 
reflect different aspects of motor adaptation. The model was designed to investigate the hypothesis that perceptual 
sensitivity to control (i.e., perceiving control increase and control decrease) influences the individual’s ability of 
adaptive motor learning. However, SEM cannot exclude the possibility of the reverse causal relationship.

Results
Control detection sensitivity.  The average hit rate and false alarm rate were 97.4% (SD = 3.7%) and 18.7% 
(SD = 10.5%) in the increase block and 98.5% (SD = 2.7%) and 8.8% (SD = 7.5%) in the decrease block. Figure 2A 
shows the plot of individual response control levels in the control increase and decrease trials. On average, 
participants reported feeling a change in control after control increased from 0 to 64.6% (SD = 13.8%) and after 
their control decreased from 100 to 74.6% (SD = 6.5%). The response control levels were significantly correlated 
between the increase and decrease conditions (r = − 0.33, p < 0.05), showing that people who are sensitive in 

(1)y = a ∗ log(x)+ b

Figure 2.   The individual response point in each block (A) and the histograms of increase and decrease 
response points (B). The correlation between the perceptual sensitivity to control increase and that to control 
decrease was significant (r = − 0.33, n = 54, p < 0.05). The dashed line in (A) shows the linear regression line. The 
solid curves in (B) show the fit curves of normal distribution.
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detecting control increase are also sensitive in detecting control decrease. Furthermore, Fig. 2B shows histo-
grams of the response points in the increase and decrease trials. It is worth noting that the individual difference 
is much larger in the perceptual sensitivity of control increase than control decrease.

Adaptive motor learning.  Figure 3 shows the number of touches in each time window (20 s × 10 win-
dows) in each trial. Participants adapted to the visuomotor rotations and gradually improved their performance 
in each trial. Figure 4A and B show the results of slope a and intercept b in each condition, respectively. In 
addition, the overall fitting coefficient (r-square) of each individual is shown in Fig. 4C. As expected, the initial 
performance was poor in the third and fourth trials, despite the participants having adapted to the same biases 
in the first and second trails. This poor initial performance was probably caused by the alternating adaptation 
to the opposite bias (± 90°: see “Methods”). However, the initial performance was slightly better the second time 
than the first time by about double the number of touches (see numbers of touches for the first time window) 
when participants had the same type of bias. This better initial performance indicates that the memory of the 
initial adaptation was partially preserved from the adaptation to the opposite visuomotor rotation. The differ-
ence between the first and second time with the same visuomotor rotation (i.e., trial #1 vs #3, trial #2 vs #4) in b 
reflects the preservation of the adaptation memory from the opposite bias.

We conducted 2 × 2 (visuomotor rotation: first vs second × time of repeat: first vs second) repeated-measures 
ANOVAs on the slope and intercept. Regarding the slope, the main effect of visuomotor rotation, the main 
effect of repeat, and the interaction between the two factors were all nonsignificant (F(1, 53) = 3.55, p = 0.065, 
partial η2 = 0.063, F(1, 53) = 0.86, p = 0.359, partial η2 = 0.016, and F(1, 53) = 1.57, p = 0.216, partial η2 = 0.029, 
respectively). Regarding the intercept, the main effect of repeat was significant (F(1, 53) = 25.25, p < 0.001, partial 

Figure 3.   Motor control performance in the reaching task. Error bars represent standard errors.

Figure 4.   The plots of participants’ slope (A) and intercept (B) of log-linear regression in each condition; (C) 
the plot of r-square of curve fitting for the individuals’ averages of four trials.
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η2 = 0.323), while the main effect of visuomotor rotation and the interaction were nonsignificant (F(1, 53) = 0.323, 
p = 0.572, partial η2 = 0.006, and F(1, 53) = 0.057, p = 0.812, partial η2 = 0.001). In summary, the results show that 
the individual efficiency of adaptive motor learning was constant among trials and that the initial motor perfor-
mance partially benefited from repetition of the same visuomotor rotation. As an important step, we pooled the 
above individual indices of control detection sensitivity and adaptive motor learning into a structure equation 
model to examine the potential relationship between the sense of agency and adaptive motor learning.

Structure equation modelling.  The standardized coefficient of each path of the SEM and the plot of 
individual motor learning efficiency against perceptual sensitivity to control increase are shown in Fig. 5A and 
B, respectively. The fit indices are shown in Table 1. The fit indices show that the model well represented the data. 
The coefficients show that only the perceptual sensitivity to control increase had significant influence on motor 
learning efficiency, while the influence from the perceptual sensitivity to control decrease on motor learning 
efficiency did not significantly differ from zero, although the two types of perceptual sensitivity were weakly 
correlated. In other words, people who are very sensitive when they search for control in a novel environment 
can also adapt to novel sensorimotor distortion quickly (Fig. 5B). On the other hand, people who are sensitive 
in monitoring control loss do not show the same superior ability in adaptive motor learning. In addition, motor 
learning efficiency also significantly influenced the improvement in initial performance when people encoun-
tered the same visuomotor rotation for the second time in the ABAB paradigm. This result seems reasonable 
because the higher learning efficacy permitted a greater number of reaching times in a trial, which might con-
solidate the adaptation memory against interference from the opposite bias.

Discussion
The subjective feeling of control, namely the sense of agency, has attracted much attention in cognitive science 
and cognitive neuroscience due to its close relation to consciousness. Many previous studies have proposed 
theories and a possible neural basis for the sense of agency. However, its relationship with control—Is this sense 
actually important for the action itself?—remains largely unknown. This study took an approach based on indi-
vidual differences to resolve this issue. We measured participants’ perceptual sensitivity in detecting a gain of 
control and in detecting a loss of control, as well as their performance in an adaptive motor learning task. The 
results from SEM show that the sense of control indeed has a significant impact on the execution of control, but 
in different ways when people seek control in their environment and when they monitor the decline of control.

Regarding the relationship between the sense and the execution of control, many studies have shown that 
good execution with satisfying outcomes usually results in a strong sense of agency26–29 because people take the 
outcome of control into account when they judge their own control30, 31. However, it has not been clear whether 
the sense of agency is important for the execution of control. Nor has it even been clear whether the sense of 
agency can be treated as a type of perceptual or cognitive function, such as visual acuity and working memory 
capacity. Recently, studies have proposed various types of control detection tasks, in which people search for 

Figure 5.   Structural equation model of sense of agency and adaptive motor learning (A), and the plot of 
learning efficiency against perceptual sensitivity of control increase (B).

Table 1.   Fit indices of SEM, which show that our model closely fits the data.

χ2/df GFI AGFI RMSEA

Proposed model 0.301 0.994 0.972 0.000

Standard of good fit < 2.0 > 0.90 > 0.90 < 0.08
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a visual target under the assumption that control is a potentially useful cue15, search for a difference in control 
among several objects14, 32, or judge whether there is a change in control13. These tasks are useful for measuring 
individual differences in the sense of agency. The task in the present study is also in line with the recent assess-
ments of the sense of agency. Building upon those measures of the sense of agency, the results of SEM support 
our hypothesis that the sense of agency is not only a by-product of the control outcome but also has an impact on 
how well people adjust their behavior according to external disturbances to achieve better control performance.

Furthermore, an important finding from the present study is that the sense of finding control is probably quite 
different from the sense of monitoring the decline of control. Specifically, although the individual perceptual 
sensitivities to control increase and control decrease correlated with each other, they made different contribu-
tions to the individual differences in adaptive motor learning. The sensitivity to control increase significantly 
contributes to adaptive motor learning efficiency, while the sensitivity to control decrease does not accomplish 
this. The phenomenon of much larger individual differences in the sense of control increase than in the sense 
of control decrease is also worth noting. This observation indicates that the processes of sensorimotor signals 
during control increase and decrease might be partially independent from each other. The detection of control 
in an ambiguous environment requires explorative behaviors, and the cognitive system might be tuned to search 
for sensorimotor regularity/contingency14, 16, 32, 33. The exploration behavior might show relatively larger indi-
vidual differences. However, it is unclear whether these large individual differences in finding control are from 
perceptual sensitivity, which is developed during the span of a lifetime, or from a shorter-span strategy such 
as attention. It is also unclear whether the sensitivity of finding control can be trained and improved in a short 
time. On the other hand, when people have already acquired a high level of control in the environment, the 
monitoring of control decline is similar to an error detection system, which is probably highly prioritized in our 
cognitive system and shows smaller individual differences. However, this hypothesis of dissociable processes of 
control increase and decrease has not been directly tested, and thus it is worthy of further investigation through 
both behavioral and neural approaches.

Finally, basing our approach on individual differences limited our conclusions. It is difficult to make causal 
inferences based on our results. Further work should consider using experimental manipulation to clarify the 
true relationship between the perception and execution of control. For example, it would be intriguing to exam-
ine whether sensorimotor efficacy improves by training in sensitivity to control increase but not to control 
decrease. Furthermore, explicit and implicit processes may have very different contributions to adaptative motor 
learning34–37. However, the motor learning in our reaching task did not separate these two types of processes. 
Although we did not give explicit instruction regarding the visuomotor rotation, the visual feedback at the very 
beginning of each trial provided cues for the visuomotor rotation. The savings (i.e., improvement at the begin-
ning of the second repeat of the same visuomotor rotation) also indicated explicit learning processes37. Further 
research is required to examine whether the sense of agency is selectively associated with explicit/implicit motor 
learning. Finally, we used log-linear regression to assess participants’ individual differences in motor learning. 
However, individual motor performance does not always fit well to log-linear curves (Fig. 4C)38. More reliable 
assessment of individual difference in motor learning is required to further examine the relationship between 
motor learning and the sense of agency. Nevertheless, the present study shows that the sense of agency is not 
simply a by-product of control outcome. It is indeed an important sense, which is associated with people’s ability 
to actually exploit their control.

Data availability
Original raw data has been deposited to Mendeley Data: Wen, Wen; Ishii, Hikaru; Ohata, Ryu; Yamashita, Atsushi; 
Asama, Hajime; Imamizu, Hiroshi (2021), “Dataset of study on the individual difference of sense of agency and 
learnability in sensorimotor adaptation”, Mendeley Data, V3, https://​doi.​org/​10.​17632/​bbc5y​nn2bm.3.
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