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Simple Summary: Pancreatic cancer has a very low survival rate for several reasons. One of those is
primarily due to the difficulty in diagnosing it at an early stage. For this reason, it is important to
refine our understanding of this disease to guide the development of new diagnostic and therapeutic
modalities to combat this fatal illness. Here we attempt to provide a review of current progress in
utilizing single-cell RNA sequencing (scRNA-seq) techniques in the molecular profiling of pancreatic
ductal adenocarcinoma.

Abstract: Pancreatic ductal adenocarcinoma is a malignancy with a high mortality rate. It exhibits
significant heterogeneity in metabolic pathways which are associated with its progression. In this
review, we discuss the role of single cell RNA sequencing in unraveling the metabolic and clinical
features of these highly malignant tumors.

Keywords: pancreatic ductal adenocarcinoma; single cell RNA sequencing; fibroblasts; transcrip-
tomes

1. Introduction

Pancreatic cancer is a highly lethal malignancy of the gastrointestinal tract. Despite
its rarity, it has one of the highest mortality rates among GI cancers, with a five-year
survival of 11.5% overall [1,2]. It is the seventh leading cause of cancer mortality in the
world [3,4] owing to its highly aggressive nature [5], and the annual incidence is expected
to increase in the coming years [6]. Tumors may arise in either the endocrine or the
exocrine pancreas, depending on the cell of origin. Patients with cancers of the endocrine
pancreas have a better prognosis, and survive about two years longer than those with
exocrine tumors [7]. Pancreatic ductal adenocarcinoma (PDAC) is the predominant type
of exocrine tumor and will be the focus of this review. These comprise more than 90%
of all pancreatic cancers [8] and have a five-year survival rate of about 11%, which is
among the lowest of all cancers [1,2]. This dismal survival rate is attributed primarily to
difficulty in diagnosis at a localized stage and the lack of effective treatment modalities.
Pancreatic cancer is usually asymptomatic in its early stages, and by the time patients
develop symptoms it has usually progressed to an advanced stage [9]. Moreover, early
screening in the general population is not feasible given its relatively low incidence and the
lack of reliable diagnostic biomarkers at present [10]. Only 10–20% of patients are eligible
for surgical resection at presentation [11,12], with those undergoing surgery being prone to
relapse [13]. Patients receiving chemotherapy often show limited responses and usually end
up succumbing to disease progression [13]. Gemcitabine-based and FOLFIRINOX regimens
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are the mainstays of pharmacotherapy depending on tumor stage and resectability [14].
Given its high mortality rate and resistance to treatment, pancreatic cancer is anticipated
to be the second leading cause of cancer deaths globally by 2030 [15]. For this reason,
it is imperative to refine our understanding of this disease to guide the development of
new diagnostic and therapeutic modalities to combat this fatal illness. Here we attempt to
provide a review of current progress in utilizing single-cell RNA sequencing (scRNA-seq)
techniques in the molecular profiling of pancreatic ductal adenocarcinoma.

2. Discussion

There is a well-established genetic component to pancreatic cancer and PDAC [16–18].
Past genomic studies have consistently shown mutations in four major genes (KRAS, TP53,
CDKN2A, SMAD4), with a constellation of other molecular aberrations that are of uncertain
significance. These findings suggest that PDAC most often originates from a disruption of
common signaling pathways downstream of the above mutations. While a growing body of
evidence supports this, it alone does not explain the range of clinical characteristics, in terms
of aggressiveness and treatment resistance, seen with these tumors [13]. Given the continu-
ous division and proliferation of tumor cells, numerous biological and genetic differences
arise within these tumor cells, creating a complex intra-tumoral heterogeneity (ITH).

Additionally, tumor tissue differentiates into distinct cell types depending on microen-
vironmental factors, adding to the diversity within these tumors [19]. Heterogeneity has
been shown to be a major driving force of drug resistance in cancer [20]. Genetic mutations
alone do not suffice in explaining tumor pathogenesis—rather, we must also factor in the
tumor microenvironment (TME) and epigenetic mechanisms of tumoral evolution [21].
Next-generation whole-exome sequencing has played a critical role in recent years, uncov-
ering novel driver mutations and signaling pathways involved in different forms of the dis-
ease [17,22] and identifying similar gene signatures in primary and metastatic lesions [23].
These studies were essential in the early steps of individually tailored chemotherapy for
PDAC [13], a subject we will explore later in this review. Despite this, genomic studies can
only go so far. A known obstacle to genome sequencing is low tumor cellularity [24]. PDAC
lesions typically exhibit a strong desmoplastic reaction [25] and are notorious for their low
cellularity, with a typical PDAC lesion being composed of only 5–20% neoplastic cells [26];
this lowers the quality of the data obtained. Moreover, exome-sequencing of a cohort of
PDAC survivors found no difference in somatic mutations that could explain the improved
tumor course in these rare patients compared to the majority, suggesting that looking at
genetic mutations alone may not be enough to study this disease [27]. More importantly,
genetic techniques cannot give enough details on the nature of the tumor cell clusters and
the microenvironment to be a helpful tool in understanding tumor heterogeneity [27,28].

Transcriptomic techniques use RNA to identify which genes are actively expressed
within a cell population. First, RNA must be isolated from a sample population of cells and
then broken down into smaller fragments. Reverse transcriptases are then added to form
DNA from the isolate and amplified through a polymerase chain reaction. The generated
strands are then spread out on a matrix, and fluorescent probes are added sequentially
to identify the base sequence in each obtained DNA strand. Once this library has been
created, the data must then be analyzed to quantify the transcriptional activity of each
gene, allowing us to explore tumor heterogeneity and microevolution [29,30]. One of
the earliest applications of this technique in PDAC was in 2011 by Collison et al.: they
used bulk-sequencing to identify three PDAC subtypes, each showing the expression of
unique sets of genes [31]. They described a classical subtype expressing mainly epithe-
lial and adhesion-associated genes, a quasi-mesenchymal type with a high expression
of mesenchyme-associated genes, and an exocrine-like subtype that expressed digestive
enzyme genes [31]. The first-ever classification of PDAC into subtypes with significant
implications for the prognosis and treatment of the disease was made possible through the
aforementioned study [13]. This classification has been updated and improved many times
over the years. It established for the first time that different microenvironmental signatures
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are associated with different clinical outcomes based on the tumor cell subtype [13]. That
said, bulk-based approaches produce composite data that reflects the average gene expres-
sion across a cell [32,33], which lacks the granularity to resolve the complexity of the PDAC
microenvironment and inevitably ends up missing out on a large fraction of data [13,34].
Techniques that can operate at a higher resolution, ideally at the level of an individual cell,
would be more suited for that purpose.

The advent of scRNA-seq techniques provided a much-needed solution to the above
problems. With scRNA-seq, researchers could study the tumor heterogeneity and mi-
croenvironment at an unprecedented resolution [21], potentially revolutionizing our un-
derstanding of PDAC. Peng et al. demonstrated this by outlining a more comprehensive
taxonomy of pancreatic cancer. Through scRNA-seq, the researchers found two ductal
cell clusters and at least seven subclusters with unique gene upregulations in each [35].
They also identified five sub-clusters of T-lymphocytes and macrophages, each comprising
unique immune ecosystems. While Peng’s seminal study showed immense promise for
applying scRNA-seq to pancreatic cancer, it is limited by its failure to include other stromal
and immune cells in its analysis of the tumor microenvironment [13]. It is imperative to
consider the various non-cancer cell populations when exploring these tumor microenvi-
ronments [36]. In particular, immune cells need to be scrutinized, as patient survival has
been associated with immune infiltration, with significant correlations to immune cell types
and inflammation signatures present [37,38].

Nonetheless, this study proved the translational use of scRNA-seq in PDAC. ITH and
TME are major barriers to cancer therapy and contribute strongly to drug resistance [13].
Tiriac et al. showed that transcriptomic signatures could predict the effectiveness of differ-
ent chemotherapy options in a given patient [39]. With time, scRNA-seq could very likely
usher in a new age of precision medicine in pancreatic cancer research and therapeutics.

Our review aims to explore the implications of scRNA sequencing technologies on
the future of PDAC. First, we will explore how scRNA techniques have refined our under-
standing of the PDAC subtypes by looking at the cell clusters inherent to each. We will
review how transcriptomic techniques can be potentially used to identify tumor sensitivity
to different chemotherapy regimens and guide future treatment guidelines. Finally, we will
take a better look at the PDAC microenvironment and its relation to tumor properties.

2.1. Genomic Approaches to Pancreatic Cancer Profiling

Recent forays into pancreatic cancer genomic profiling highlight a need to focus on
overall tumor genomics rather than discrete mutations that may only be present in a minor
subset of all tumors [16]. The earliest genomic studies on this subject were limited in the
technologies and the methodologies available, and thus their scope was restricted to identi-
fying key mutations common to PDAC. Four primary genes were recurrently implicated
in the disease—KRAS, TP53, CDKN2A, SMAD4—and future genomic studies served to
add to the growing list of mutations common to it [13]. Jones et al. were able to establish
12 regulatory pathways (apoptosis, DNA damage control, cell cycle checkpoint regulation,
hedgehog signaling, cell adhesion, integrin signaling, c-Jun signaling, KRAS signaling,
invasion, GTPase-dependent signaling, TGF-B signaling, and Wnt/notch signaling) af-
fected by the genetic mutations in PDAC that brought a “rudimentary understanding to
a very complex disease” [13,16]. The researchers also found that while all 12 pathways
were commonly dysregulated in all tumor samples, the specific gene mutations that led to
that disruption varied largely between tumors [13]. This means that we are still uncertain
about the origin of these tumors, and genomic studies have been hard-pressed to provide
sufficient answers. Over the years, genomic studies were only able to confirm previously
discovered genetic mutations, with the main recent addition to the genomic literature
being the implication of axon guidance genes (semaphorins, slits)—traditionally regulating
normal neuronal migration and positioning—in tumor growth, survival, invasion, and
angiogenesis [40]. So far, all genomic studies painted the picture of a genetically homoge-
nous disease, which however behaves in a very heterogeneous fashion clinically. Genomics
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has been unable to help distinguish between different tumors and explain their unique
clinical course. Waddel et al. identified chromosomal structural variation as an important
mechanism of DNA damage in PDAC, and thus attempted to use it as grounds to classify
different PDAC subtypes [17]. The researchers were able to develop four groups depending
on chromosomal stability. Subtype 1 was the stable subtype with little variations. Subtype 2
consisted of significant focal events on few chromosomes, three mutations scattered across
the tumor chromosome, and four consisted of unstable chromosome structures exhibiting
many structural variation events. While this classification was the first of its kind, it had a
minimal bearing on clinical practice.

2.2. Transcriptomic Approaches to Pancreatic Cancer Profiling

Genetic mutations alone cannot inform us of what is happening at the molecular level;
instead, gene expression would provide a more accurate and detailed account of how
PDAC tumors develop and progress [27]. RNA-sequencing technologies have therefore
become critical in appreciating PDAC pathogenesis and the complex tumor heterogeneity
and microenvironment underlying it. The first accurate attempt to classify PDAC came
from Collison et al. [31]. Using bulk sequencing on a sample of 27 previously micro-
dissected tumors, the authors were able to identify three unique gene signatures that
were differentially expressed in the samples, suggesting at least three different variations
of PDAC. The first form of PDAC identified was the classical subtype expressing high
amounts of adhesion-associated and epithelial genes. Classic PDACs were more dependent
than other subtypes on KRAS mutations, and GATA binding protein 6 (GATA6) was
predominantly expressed by classical PDACs and found to have a subtype of a specific
function. The following form described was the quasi-mesenchymal (QM-PDA) subtype
which, owing to its name, highly expressed mesenchyme genes and expressed little to
no GATA6.

The final subtype is the exocrine-like expressing digestive enzyme genes, which have
since been considered an artifact of contamination by normal pancreatic tissue surrounding
the studied samples [41]. This classification of PDAC came with direct implications on prog-
nosis and treatment outcomes, meaning that, for the first time, identifying tumor subtype
had a genuine relevance to clinical practice. In this case, tumors of the classical subtype
typically had a better survival profile. They responded better to erlotinib, while QM-PDA
tumors showed worse survival and a better response to gemcitabine [11]. This hallmark
study introduced an entirely new paradigm in the conceptualization of pancreatic cancer
and opened the floodgates for RNA-based research. The first update to Collison et al.’s
classification system came from Moffit et al. in 2015 [41]. Previously, the study looked at
gene expression only across tumor cells. To reduce confounding from the gene expression
of neighboring tissue, Moffit et al. included the analysis of normal tissue and stroma in
their study, incidentally uncovering unique gene expression from the cancer stroma in
the process [41]. A significant update on the previous model for was observed for several
reasons. First, they showed that the exocrine-like PDAC subtype was very likely normal
tissue that was included accidentally, which was also later demonstrated by Puleo et al. [42].
Second, they found that the QM-PDA subtype’s expression of mesenchymal genes likely
arose from the inclusion of stromal factors—by identifying stromal gene expression, Moffit
et al. were able to redefine the second PDAC subtype as basal-like [42]. This left us with an
even more precise idea of pathogenesis: PDAC tumors were of either classical or basal-like
origin, with two different possible stromal activation patterns. The activated stroma was
associated with macrophage-related and fibroblast activation protein genes and correlated
with worse median survival times given their involvement in disease progression. This
new model saw a cumulative effect of tumor and stromal subtypes on prognosis, which
added another layer to our understanding of PDAC and shed some light on the important
interplay within tumors that needs to be taken into [42].

One year later, Bailey et al. published another transcriptomic study describing yet
another classification scheme with four tumor subtypes [43]. They added to Collison’s work
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by identifying novel transcription networks implicated in Collison’s taxonomy, renaming
them to better reflect the molecular pathology, and introducing a new type: immunogenic
PDAC. QM-PDA became squamous PDAC and was also found to express TP63 instead of
being GATA6 highly. The classic subtype was the pancreatic progenitor subtype, defined
by the expression of apomucins PDX1 and FOXA2/A3 genes, all involved in pancreatic
endoderm cell-fate determination and pancreas development. Finally, the immunogenic
subtype shared much in common with the pancreatic progenitor class, with the addition
of significant immune infiltrate and expression of genes associated with nine different
immune cell types and phenotypes. Moffit’s basal-like subgroup had no apparent niche in
this classification scheme and seemed to be a mix of different Bailey/Collison subtypes.
This discrepancy in describing PDAC may arise from a difference in the quality of the data
used and the various research methodology.

Years later, Moffit’s binary classification was reproduced by The Cancer Genome Atlas
consortium (led by Raphael BJ) [18] and later by Puleo et al. [43]. Inspired by Moffit’s
analysis of the tumor-stromal component, the latter decided to take a closer look at the
tumor micro-environment. They identified four stromal signatures in PDAC: a vascular
stroma composed of fibroblast and endothelial cells, an activated stroma of extracellular
matrix-associated gene expression, an inflammatory stroma with high levels of IL-6 and
macrophage activation, and, finally, an immune stroma with the increased expression of
immune response genes. They conclude that neoplastic cells could either be basal-like or
classical, which comprises the heterogeneity of the tumor. In contrast, the tumor entity
could be pure classic, immune classic, pure basal-like, or a hybrid with both classical and
basal-like cells (showing either a desmoplastic or a stroma-activated reaction). Though it
would come to be improved in the future, this classification serves a pivotal role in drawing
attention to the extensive role the tumor microenvironment has in PDAC pathogenesis and
incorporating that microenvironment into the classification. Moreover, it demonstrated
the limits of what bulk sequencing can tell us about tumor heterogeneity. Recent work by
Raphael et al. shows that molecular classification of pancreatic cancer is highly influenced
by stromal cell infiltration, suggesting that in the absence of adequate cell purification,
results from bulk sequencing studies are often tainted by adjacent non-tumor cell signals,
an issue easily avoidable with single cell technologies [18].

2.3. scRNA-seq Provides New Insight into Pancreatic Cancer

Bernard et al. carried out one of the first scRNA-seq investigations into pancreatic
cancer to identify the microenvironmental and neoplastic cell transcriptional changes as-
sociated with tumor progression [44]. Their primary findings were that rare cells with
malignant potential were present in pre-cancerous lesions likely responsible for neoplastic
progression. Moreover, they found a dynamic shift in the tumor microenvironment over
time, with the pre-cancerous lesions exhibiting high concentrations of CD4+ and CD8+ lym-
phocytes and special cancer-associated fibroblasts (CAFs) called myofibroblasts (myCAFs).
Figure 1 depicts the role of the tumor microenvironment in cancer stem cells enrichment
in PDAC.

Adenocarcinomas on the other hand showed deficient levels of the lymphocytes
mentioned above and high levels of immune fibroblasts (iCAFs) that facilitated a pro-
tumoral milieu for invasion and metastasis [44]. This work highlighted the power of
scRNA-seq techniques and strongly endorsed its use in studying this complex disease
as its higher resolution picked up data that would have certainly been lost with bulk
sequencing [13]. Peng J et al. further demonstrated the power of single-cell techniques by
studying the transcriptomic profiles of around 42,000 neoplastic and controlling pancreatic
cells [34]. To start with, they identified two unique ductal cell clusters, types 1 and 2. Type 2
ductal cells had a high expression of previously reported poor prognosis markers. At the
same time, cancer-related genes were not detected in control samples, suggesting that these
type 2 cells are the primary source of the malignancy. Type 1 cells, on the other hand,
expressed genes related to normal pancreatic function and some disease-related features,
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suggesting at least some level of ordinary functioning. Type 1 cells were divided into two
subcategories, while type 2 cells were grouped into seven subclusters after further analysis,
each distinguished by a specific gene signature. Importantly, while subcluster 3 was found
in virtually all patients, subclusters 1, 2, 4, 5, and 6 were only exclusive to some patients,
demonstrating tumor heterogeneity. Importantly, the first three subclusters of ductal type 2
cells strongly represented the precursor lesion to PDAC, pancreatic intraepithelial neoplasia
(PanIN), indicating a stage-specific progression pattern [34]. In addition to this, Peng J
et al. identified 24 subsets of immune cells (5, 6, 5, and 8 subgroups of T-cells, B-cells,
macrophages, and fibroblasts, respectively). This creates a far more intricate and detailed
concept of PDAC micro-composition and helps refine the existing two-clade classification
system. More importantly, it once again reflected the potential of single-cell analysis by
allowing us to evaluate the entire spectrum of dynamic molecular programs for cell lines,
which is more representative of reality as opposed to defining artificially discrete categories
of cells. Although an extraordinary undertaking, Peng J et al. (2019) received some criticism
for not looking more closely at other stromal/immune elements, and CAFs were not
discussed despite their significant contribution to shaping the PDAC microenvironment, as
discussed earlier [13,44].
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2.4. Tumor Heterogeneity Analysis Using scRNA-seq

Xu et al. have shown the utility of scRNA-seq in characterizing tumor heterogeneity
in liver metastases from PDAC [45]. Their analysis identified multiple lineages of cancer
cells within metastatic lesions, including five different types of ductal cells, and temporal
trajectory mapping for cell lineage evolution was performed to elucidate the origins of cells
within the metastatic lesions under investigation, highlighting the role that scRNA-seq
has in predicting the composition of metastatic lesions or primary PDAC when tissue
is only available from one source, as well as investigating the driver mutations behind
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neoplastic progression and dissemination. Lee et al. [46] demonstrated agreement of scRNA-
seq guided tumoral heterogeneity analysis with that from surgically resected specimens,
providing further evidence for utilizing scRNA-seq in guiding therapeutic targeting and
response prediction in metastatic PDAC.

2.5. Predictive Modeling Using scRNA-seq

Gopalan et al. [47] have explored the predilection for origination of PDAC in primed
precursors using scRNA-seq to analyze a specific sub-population of acinar cells, which they
termed “edge cells”. These cells demonstrated markers of regression and de-differentiation
that could, at least partly, explain the origins of PDAC. Their transcriptomes were shown
to lie closer to malignant PDAC cells than normal acinar cells on the transformation
continuum. Their results also showed the presence of these “edge cells” in the setting of
chronic pancreatitis, a condition that has been previously shown to be associated with a
higher risk of developing PDAC, as well as being associated with KRAS mutations, which
are known to be one of the most common mutations seen in PDAC tissue.

scRNA-seq has also been used to predict tumor behavior and differentiation and the
resultant impact on metastasis and prognosis in PDAC. Tang et al. performed an analysis
of scRNA-seq data to delineate tumor composition with respect to immune cell profiles
and were able to identify higher numbers of Tregs and macrophages as well as lower
numbers of dendritic cells in metastatic PDAC as compared with localized forms of the
disease [48]. Through scRNA-seq analysis of the prevalent immune cells and associated
tumor cells, their work focused on HMGB3 as a hub gene in the metastatic transition of
PDAC. This work highlights the utility of scRNA-seq in identifying the mechanisms and
driver genes underlying the transition from localized to disseminated disease in PDAC.
Chen et al. utilized a similar analysis on data from the Genome Sequence Archive (GSA)
to identify tumoral sub-populations and variations in their characteristics, such as copy-
number variations and the degree of epithelial-to-mesenchymal transition [49]. Their study
was, however, limited by sample size, and thus they were unable to use scRNA-seq data to
generate their prognostic and diagnostic models, though they successfully used scRNA seq
data for identifying the differential expression of genes.

Ren et al. demonstrated the use of scRNA-seq in identifying the genetic evolution
of cancer stem cells to invasive ductal cells in PDAC and the impact of this change on
tumor progression [50], with their model highlighting five genes that were associated with
significant prognostic impacts.

Fang et al. [51] highlighted the metabolic pathway differentiation in single tumor cells
that demonstrated higher glycolytic activity and greater malignant potential. Knockout
models from the potentiated sub-populations of tumor cells showed decreased proliferation
rates, highlighting both the importance of metabolomics in guiding cancer therapeutics in
PDAC as well as the importance of scRNA-seq in elucidating these metabolic profiles.

2.6. Stromal Biology and the Role of Cancer-Associated Fibroblasts

PDAC is characterized by abundant desmoplasia that takes up to 90% of the total
tumor volume and contains a mixture of cells, including CAFs [25]. CAFs may stimulate
cancer progression by secreting extracellular matrix (ECM) and are thought to be derived
from resident mesenchymal cells: pancreatic stellate cells. However, while they were
traditionally thought to play a tumor-supportive role in PDAC pathogenesis exclusively,
this view has recently been challenged [52]. Ohlund et al. were the first to investigate these
fibroblasts using scRNA technology and identify two distinct clusters of CAFs, the same
ones reproduced by Bernard et al. a year later [52]. myCAFs, nonneoplastic contractile
cells expressing αSMA, were involved in stroma remodeling and formed a peri-glandular
ring surrounding cancer cell clusters. iCAFs, on the other hand, were located distant from
the neoplastic cells and were the result of paracrine activation of pancreatic stellate cells,
primarily by IL-6. Biffi et al. expanded on this by showing that pancreatic cancer cells
could secrete a large amount of TGF-B and IL-1 [53]. While TGF-B facilitated a juxtacrine
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reaction that strongly activated myCAF signaling and suppressing the induction of iCAF
populations, IL-1 activated JAK/STAT signaling distant to the tumor, promoting the growth
of an iCAF phenotype. This endorses the idea of a very dynamic tumor microenvironment,
as stromal elements seem to be interconvertible rather than terminally differentiated. In
2019, Elyada et al. uncovered a new class of CAF called antigen-presenting fibroblasts
(apCAFs) that uniquely expressed Major Histocompatibility Complex (MHC) II genes.
While their role was uncertain, and Dominguez et al. later argued against the presence
of apCAFs, they nonetheless suggested that there was still a lot more to be learned about
PDAC neoplastic and stromal cell lines while also showcasing some of the difficulties
inherent in single-cell methods [54].

Other stromal components have also been studied using scRNA-seq. Wang et al.
highlighted the differences in tumor-associated polymorphonuclear cells using an scRNA-
seq analysis [55]. Their work delineated four distinct tumor-associated neutrophil lineages
with different metabolic and immune behaviors and identified a key regulator driving
this differentiation. The glycolytic upregulation mediated by this regulator imparted a
pro-tumor effect and portended a poorer prognosis in these tumors, providing support to
the utilization of single cell analysis to support therapeutic selection and prognostication.

2.7. Current Classification of Pancreatic Cancer

Chan-Seng-Yue et al. have combined genomic, bulk-RNA, and snRNA technologies to
propose a comprehensive classification of PDAC cell lineages [56]. This study describes
five categories of PDAC cells: Classical-A/B, Basal-A/B, and a hybrid subtype with signa-
tures from both. It is proposed that classical tumors follow a default molecular pathway in
tumor pathogenesis, as they are the most abundant cell type and display a strong upregula-
tion of transcription factors commonly expressed in normal ductal cells such as GATA6.
On the other hand, Basal-like cells are acquired in a subset of tumors and are likely an
indicator of tumor progression. This is supported by the fact that classical tumors were
more frequently found in early-stage cancers, while basal-like tumors were more likely
present in later stages. Most tumors, at single-cell resolution, consist of both sub-types;
however, the varying proportion of each cell cluster creates a transcriptional continuum
the authors refer to as hybrid tumors. While there has yet to be a definitive taxonomy
for pancreatic cancer, the attempts to create one are numerous and ongoing [57]. Almost
all published articles exploring molecular subtypes describe some iteration of the classi-
fication taxonomy scheme proposed by Collisson, Bailey, and Moffit [58,59]. By growing
consensus, two distinct subtypes of PDAC exist: the basal/squamous subtype, and the
classical/pancreatic progenitor subtype [60,61].

The body of research discussed here does well in showing the complexity of pancreatic
cancer, but even then, it only scratches the surface. For instance, Chan-Seng-Yue et al. [48]
show that sub-type switching can occur as tumors progress in response to therapy. Molecu-
lar classification is thus a far more dynamic continuum rather than a static system. Consid-
ering the shortcomings of genomic and bulk transcriptomic studies that are often plagued
by difficulties in obtaining samples, microenvironmental signals confusing results, and the
comparatively low quality of data obtained, single cell technologies hold a lot of promise
in unraveling the intricacies of pancreatic cancer. They have already revolutionized our
understanding of this deadly disease [62,63]. scRNA has the potential to play an instru-
mental role in translational research in the years to come, and is already in use to explore
therapeutic options in different PDAC cell lines [64].

2.8. Status of PDAC Chemotherapy

The current guidelines for the treatment of pancreatic cancer involve a limited group of
chemotherapy regimens that alternate depending on various factors such as disease stage,
patient tolerance, and regimen effectiveness. These regimens are either gemcitabine-based
(as monotherapy or in combination), or a mix of fluorouracil, leucovorin, irinotecan, and
oxaliplatin (FOLFIRINOX) [14,65,66]. Which treatment is administered depends strongly
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on the current state of the patient’s disease. Patients with resectable PDAC can be started on
neoadjuvant therapy with either gemcitabine + S-1 therapy or gemcitabine monotherapy in
patients with poor tolerance to S-1 [65]. Adjuvant therapy with gemcitabine (as monother-
apy, or with capecitabine or nab-paclitaxel if tolerable) is recommended post-resection
as soon as the patient can tolerate all cycles [44,61]. Chemoradiotherapy in this case has
been shown to confer little to no survival benefit over chemotherapy alone and is mainly
beneficial in unresectable, locally advanced diseases to control pain [65].

For this reason, we will be limiting the scope of our discussion to chemotherapy only.
In cases of locally advanced disease, gemcitabine or FOLFIRINOX are both recommended
first-line treatments [65], with FOLFIRINOX particularly recommended for fit patients
considering its improvement of disease-free and overall survival [65]. As for metastatic
disease, FOLFIRINOX is strongly recommended as the first-line treatment, replaced by
gemcitabine-combination therapies only if patients cannot tolerate or did not benefit from
the former regimen [14,65,66]. Unfortunately, despite these existing medications, treatment
of pancreatic cancer remains very challenging, with five-year survival rates as low as 3%
and 8% in the UK and the US, respectively [67].

2.9. Mechanisms of Drug Resistance in Pancreatic Cancer

The high mortality of PDAC stems from the very nature of the disease, which leads
to a resistance to conventional chemotherapy regimens [68]. PDAC is characterized by a
strongly desmoplastic stroma which reduces drug penetration into the area [69]. Moreover,
PDAC cells employ strong immune-evasion mechanisms that reduce the effectiveness of
the patients’ immunity and drugs targeting the immune system [70]. However, the most
important mechanism of drug resistance is the extensive tumor heterogeneity present in
PDAC [31,33,34,41,43,57]. While there is a body of literature on the genetic landscape
of PDAC development and progression, it has been challenging to translate that into
effective therapy for afflicted individuals because of the multiple compensatory survival
mechanisms exhibited by PDAC cells. Given the variety of genetic mutations, the diversity
of pathways affected means that even if highly dysregulated pathways are targeted with
treatments, other pathways may be utilized by cancer cells to ensure their survival [70].
That said, our knowledge of tumor genetics can help inform clinical practice. Whole-exome
sequencing of PDAC typically finds genomic lesions that are hypothetically actionable in
50% of cases and may even result in a change in clinical management in up to 30% of [64].
Some examples of this include using Larotrectinib in patients with an identified TRK gene
fusion, gemcitabine/cisplatin regimens in patients with BRCA1/2 or PALB2 mutations,
and pembrolizumab monotherapy in cases with high microsatellite instability [64]. As
discussed earlier, an understanding of tumor genetics alone will not suffice in tackling this
disease, rather, we must take a closer look at the tumor microenvironment and epigenetic
factors. These mechanisms can be summarized in Figure 2.

2.10. Utility of Molecular Profiling in Predicting Treatment Outcomes

In one of the earliest studies taking a more holistic look at pancreatic cancer, Col-
lison et al. aimed to test whether the phenotypic differences in their derived subtypes
corresponded with a differential response to treatment [31]. Their study subjected human
derived PDAC cell lines to either gemcitabine or erlotinib and assessed their sensitivity
to each. They found that the classical subtype dependent on mutant KRAS mutations
was susceptible to erlotinib, while the quasi-mesenchymal subtype was partial to gem-
citabine. This appeared to be a breakthrough in PDAC treatment, with the theoretical
possibility of exploiting such subtype-specificity to develop targeted therapies [31]. Bailey
et al., for instance, encouraged the clinical trial testing of immunomodulators in treating
their newly discovered immunogenic PDAC subtype 2. Peng J et al. found that CDK1
inhibitors significantly suppressed the propagation of a specific line of proliferative ductal
cells [37]. Altogether, these findings support the use of molecular profiling in the clinical
setting. However, it is essential to bear in mind that the real-world application of molecular
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profiling is not as straightforward as the described research may suggest. Pancreatic cancer
is far too complex to be reduced to overarching subtypes, where a unique therapy regimen
exists for each type. Chan-Seng-Yue et al. describe two cases where patients start off with
one class of pancreatic cancer and were discovered to have a completely different subtype
after disease progression or chemotherapy in a phenomenon they described as subtype
switch [57].
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Moreover, each patient’s disease is an amalgamation of different cancer, immune,
and fibroblast cell lines, coming together to form a highly unique molecular profile [71].
This makes a one-size-fits-all approach to treating pancreatic cancer virtually impossible.
Instead, it becomes imperative to create highly personalized treatment schemes for these
patients, targeted therapies homing in on the specific molecular mechanisms driving tumor
progression in each case. To this end, various researchers have called for the implementation
of molecular subtyping using transcriptomic techniques—scRNA-seq in particular—in
clinical trials [72–74]. Others still recommend profiling the tumor tissue of all patients
coming in with PDAC [75] with the recent National Comprehensive Cancer Network
(NCCN) guidelines for PDAC strongly recommending molecular tumor analysis [64].

2.11. Pharmaco-Typing Patient-Derived Organoids to Develop Treatment Modalities

Organoids are a 3D cell culture derived directly from the individual’s cells, the tumor
cells. They allow us to mimic the in vivo characteristics of PDAC, including its development,
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pathogenesis, genomic and transcriptomic factors, and drug response [76]. With the advent
of co-culturing techniques, organoids can even allow us to elucidate microenvironmental
factors that influence carcinogenesis [76–78]. Furthermore, they conveniently overcome
the two biggest problems molecular profiling faces as they can be generated from minimal
amounts of tissue; a single EUS biopsy would be enough [79]—and this can be done in
a short period [76]. Organoids are thus suitable for developing experimental models to
guide personalized treatment and genetic research of PDAC patients [80]. One widespread
use for organoids in clinical research involves a process known as “pharmaco-typing”.
They can be subjected to different medications, with the resulting treatment response data
assimilated into already gathered genomic, transcriptomic, or proteomic databases [39].
This approach can identify the figurative Achilles heel of each tumor by discovering which
drug compounds are effective while also correlating this response with particular molecular
subtypes [70]. Importantly, these assays can be conducted in a short period before even
starting clinical therapy, with screens being finished within three to four weeks of receiving
a biopsy [80].

Herve Tiriac and David Tuveson have extensively studied organoids in pancreatic
cancer, and more recently used organoids to assess the effectiveness of the five most
commonly used chemotherapeutic agents on different tumor samples [39,81]. They divided
their patient-derived organoids (PDOs) into three groups for each chemotherapy agent:
least responsive (highest tertile on the dose-response curve, most resistant), most responsive
(lowest tertile, most sensitive), and intermediate (middle tertile). They found that treatment
response could be mapped to specific transcriptomic signatures, which could then be
used to predict treatment response in other patients with similar signatures [39]. These
findings were reproduced by Seppälä et al. with three of the five chemotherapy regimens
used by Tiriac et al. To date, these are the two primary studies to utilize PDOs to explore
treatment options in pancreatic cancer [82]. Furthermore, they provided sufficient evidence
to reasonably predict that PDO may serve as a platform for novel drug discoveries and
personalized, precision medicine in pancreatic cancer [83]. While these authors refrain from
proposing the implementation of PDO pharmaco-typing as it exists in the clinical setting,
they advocate for the validation of its use in PDAC to facilitate such implementation, and
indeed, there are several ongoing clinical trials employing PDAC PDOs that aim to do just
that [83]. Molecular profiling combined with organoid pharmaco-typing may be the key
to conquering the beast that is pancreatic cancer. At the center of such methodologies lies
scRNA-seq. scRNA is a critical tool that allows for translating molecular subtypes and
drug response curves into clinically meaningful information. It is a tool that will become
essential for screening, profiling, and treating patients, and marks the beginning of an
exciting era of single-cell genomics in cancer research [84].

However, an important limitation of organoids is the “black-box” nature of organoid
cellular adaptation to the culture environment. Whether such adaptation leads to changes
in the transcriptome and how the gene expression profile is affected has yet to be elucidated.
Thus, cells within these organoids may not necessarily be representative of the proliferating
cells in the actual tumoral biopsy specimen.

2.12. Limitations of Molecular Profiling Techniques

It is one thing to advocate for molecular techniques to enhance our understanding of
pancreatic cancer; whether that is practical is a separate discussion. Molecular profiling
techniques are criticized for lack of translatability stemming from several key issues. To
begin with, there is great difficulty in obtaining samples for analysis, both because of
the anatomically difficult location of the tumor paired with the desmoplastic histology of
pancreatic cancer, resulting in very low cellularity [85–89]. Another concern with bringing
molecular subtyping to clinical practice is the turnaround time. Pancreatic cancer is a
highly aggressive disease notorious for rapid clinical deterioration in most patients. This
leads to the question of whether molecular analyses can be carried out quickly enough to
be of any value. Finally, creating an efficient system for analysis would require a herculean
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effort on an organizational level to implement specialized multidisciplinary teams and
invest in the bioinformatics tools needed [85]. Together, these factors pose a significant
challenge to the use of molecular techniques and must be addressed before a transition
to precision medicine in the realm of pancreatic cancer is possible. Various researchers
have attempted to demonstrate the feasibility of using molecular profiling in the clinical
setting. Dreyer et al. conducted molecular profiling of 95 PDAC samples obtained from
endoscopic ultrasound (EUS) biopsies and accurately segregated patients into clinically
relevant subtypes, showing that sufficient samples can be obtained [90]. Other studies
showed that molecular analyses can be conducted in clinically relevant timelines (<35 days),
while still identifying predictive transcriptional features that allow for improved treatment
selection [91,92].

Moreover, molecular technologies continue to improve to overcome whatever chal-
lenges arise, with novel approaches showing promise in stratifying patient response to
treatment in many tumor types [72]. As for pancreatic cancer, several groups have de-
veloped informatics designs that purport to identify and stratify patients into clinically
actionable subtypes [74] accurately; these have yet to be assessed in clinical trials. Nonethe-
less, these numerous studies have shown the feasibility of incorporating molecular analysis
into current clinical practice to screen patients and assign them to matched chemotherapy
treatments, at least within the United States [72]. However, more important than this is the
simple fact that it works. Pishvaian et al. conducted a retrospective analysis of 677 PDAC
patients who underwent molecular testing of their illness [57]. Actionable alterations were
identified in 189 cases, and the overall survival and median overall survival of different
patient groups were measured. They found that patients with actionable alterations who
received a targeted therapy had significantly longer median overall survival than patients
who received unmatched treatments (2.58 years vs. 1.51; p = 0.0004), and a longer overall
survival than patients without an actionable target (2.58 years vs 1.32; p < 0.0001). Inter-
estingly, median overall survival did not differ between patients without an actionable
alteration and patients receiving unmatched therapy (p = 0.1). These results suggest that
molecular profiling has a bearing on clinical practice and could potentially guide our choice
in treatment. However, clinical trials are necessary before any new treatment guidelines
can be set, and patient-derived organoids may be the perfect tool to bridge this gap [70].

3. Conclusions

scRNA-seq analyzes transcriptomic information at the individual cell level. It has
been used to discover new cell subtypes, reveal cell heterogeneity, and monitor the dy-
namic process of disease development, among other things [93]. Compared to traditional
RNA-sequencing, scRNA-seq allows insight into the metabolic heterogeneity of malignant
cells and provides insight into the operant metabolic pathways within the tumor microen-
vironment. When applied to clinical samples across tumor types, single-cell sequencing
technologies can facilitate an exponential increase in knowledge of the molecular pathways
involved in PDAC genesis, local progression, as well as distant metastasis, and provide
novel biological targets at the cellular level for improving our approach to the treatment
of PDAC.
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