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Abstract

In the event of a new infectious disease outbreak, mathematical and simulation models are

commonly used to inform policy by evaluating which control strategies will minimize the

impact of the epidemic. In the early stages of such outbreaks, substantial parameter uncer-

tainty may limit the ability of models to provide accurate predictions, and policymakers do

not have the luxury of waiting for data to alleviate this state of uncertainty. For policymakers,

however, it is the selection of the optimal control intervention in the face of uncertainty,

rather than accuracy of model predictions, that is the measure of success that counts. We

simulate the process of real-time decision-making by fitting an epidemic model to observed,

spatially-explicit, infection data at weekly intervals throughout two historical outbreaks of

foot-and-mouth disease, UK in 2001 and Miyazaki, Japan in 2010, and compare forward

simulations of the impact of switching to an alternative control intervention at the time point

in question. These are compared to policy recommendations generated in hindsight using

data from the entire outbreak, thereby comparing the best we could have done at the time

with the best we could have done in retrospect.

Our results show that the control policy that would have been chosen using all the data is

also identified from an early stage in an outbreak using only the available data, despite high

variability in projections of epidemic size. Critically, we find that it is an improved understand-

ing of the locations of infected farms, rather than improved estimates of transmission param-

eters, that drives improved prediction of the relative performance of control interventions.

However, the ability to estimate undetected infectious premises is a function of uncertainty

in the transmission parameters. Here, we demonstrate the need for both real-time model
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fitting and generating projections to evaluate alternative control interventions throughout an

outbreak. Our results highlight the use of using models at outbreak onset to inform policy

and the importance of state-dependent interventions that adapt in response to additional

information throughout an outbreak.

Author summary

Mathematical and simulation models may be used to inform policy in the early stages of

an infectious disease outbreak by evaluating which control strategies will minimize the

impact of the epidemic. In these early stages, significant uncertainty can limit the ability of

models to provide accurate predictions, and policymakers do not have the luxury of wait-

ing for data to alleviate this state of uncertainty. For policymakers, however, what is most

important is the selection of the optimal control intervention, rather than accuracy of

model predictions. We fit an epidemic model to observed, spatially-explicit, infection data

at weekly intervals throughout two historical outbreaks of foot-and-mouth disease, UK in

2001 and Miyazaki, Japan in 2010, and compare forward simulations of the impact of

alternative control interventions. These are compared to policy recommendations gener-

ated in hindsight using data from the entire outbreak. Our results show that the optimal

control policy is identified accurately from an early stage in an outbreak, despite high lev-

els of uncertainty in projections of epidemic size, and that the relative performance of

control strategies is strongly mediated by our understanding of the locations of infected

farms, rather than improved estimates of transmission parameters.

Introduction

The responsibilities of policymakers during infectious disease outbreaks include the difficult

task of choosing between multiple control interventions based on an uncertain future. Mathe-

matical and simulation models have proved a useful tool to aid decision-making during disease

outbreaks by both generating forecasts of outbreak severity and comparing different control

strategies [1–6]. Using mathematical and simulation models, however, requires estimation of

model parameters, and in the early stages of an outbreak, when decisions are most critical and

data are most scarce, significant parametric uncertainty may limit the ability of models to pro-

vide informed advice.

Recent research has outlined frameworks that combine Bayesian parameter estimation and

a mathematical model for generating real-time forecasts of outbreak severity throughout the

course of an epidemic, aiming to assimilate available surveillance data into model estimates as

rapidly as possible [7–10]. The efficacy of these frameworks has typically been evaluated using

the accuracy of forecasts. For decision-makers, however, the accuracy of model forecasts per

se, are not the best measure of success, it is the selection of the optimal control interventions in

the face of uncertainty that counts, and ultimately what they are judged on. However, projec-

tions of the impact of alternative control interventions are not always performed alongside

projections of the burden of infection. For several infectious diseases it is not possible, or rele-

vant, to include projections of control interventions, for instance when interventions are

directly related to estimates of the burden of disease or when control interventions are related

to the timing of the peak of an epidemic (such as in influenza). Including projections of inter-

ventions does allow disease control problems to be phrased as optimization problems and
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therefore allows the determination of whether optimal control choice is dependent upon the

underlying state of the outbreak. In contrast to real-time forecasting approaches, we demon-

strate real-time decision-making, which requires integration of all information until now plus

the potential future impact of candidate control interventions.

In this work, we simulated the process of real-time decision-making by fitting a dynamic

epidemic model to the observed (confirmed), herd-level, infection data at weekly intervals

throughout two historical outbreaks of foot-and-mouth disease (FMD), a viral disease of eco-

nomically important livestock, and compared forward simulations of the impact of alternative

culling and vaccination interventions under a management objective of minimizing total culls

so as to gain disease-freedom. We repeated these forward simulations at each time point using

parameter estimates from a model fitted to the complete outbreaks, thereby comparing the

best we could have done at the time with the best we could have done in retrospect. Forward

simulations predicted the final total culls (number of animals culled) from having taken a sin-

gle control intervention from a particular date into the future. Control interventions included

culling of infected premises only (IP), culling of infected premises and dangerous contacts

(IPDC), culling of infected premises, dangerous contacts and contiguous premises (IPDCCP),

ring culling in areas surrounding infected premises at 3 and 10 km radii (RC3 and RC10

respectively), and vaccination in areas surrounding infected premises at 3 and 10km radii (V3

and V10 respectively) (see Materials and Methods for further details of the control interven-

tions). This set of intervention strategies includes those that governments have implemented,

or considered, in the past and that are consistent with other studies on foot-and-mouth

disease.

In contrast to previous work in real-time forecasting [7–10], we used an individual-based

model and included uncertainty regarding the location of infected and undetected farms

[11,12]. As surveillance data become available, we improve our understanding, in a cumulative

manner, of both how the outbreak is unfolding, via estimates of transmission parameters, and

of where likely new infections may be located, via estimates of the spatial distribution of

infected but undetected farms. Forward simulations are therefore conditional upon both the

actual state of the outbreak (i.e. the pattern of confirmed infected cases and the pattern of

inferred, undetected infections) and having enacted the actual outbreak controls until the time

point in question.

The outbreaks of FMD in the UK in 2001 and Miyazaki, Japan in 2010 contrast in a number

of ways and thus provide a valuable comparison for investigating how policy recommenda-

tions are affected by additional information throughout an outbreak. Firstly, the UK outbreak

had over 2000 infected premises over an area that included England, Wales, and Scotland

(roughly 230000km2) [13] whereas the outbreak in Miyazaki affected only 290 premises con-

tained within the Miyazaki prefecture (less than 8000km2) [14,15]. Secondly, at the time of

confirmation of FMD, there were multiple foci of infection dispersed throughout the UK but

only one focus of infection in the Miyazaki outbreak (although additional foci occurred later).

Finally, control interventions deployed during each outbreak were different; UK control inter-

ventions only included culling strategies whereas control of the outbreak in Miyazaki began

with culling and shifted to vaccination after 5 weeks, necessitated by constraints on the dis-

posal of accumulating carcasses [16].

Results

In the early stages of both the UK and Miyazaki outbreaks, estimates of the instantaneous risk

of onward transmission are highly uncertain (Figs 1, S3 and S4). Our analysis highlights that

uncertainty reduces through time in several regards. Firstly, estimates of transmission
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parameters change through time (Figs 1, S3 and S4). Secondly, our understanding of how

transmission parameters relate to one another change through time (S5 and S6 Figs). Finally,

our confidence in the locations of premises we believe to be infected also changes through

time (Figs 1, S7 and S8). Given that the relationships between parameters change through

time, marginal distributions of parameters (S3 Fig) do not tell the whole story, and we there-

fore summarize how the shape of the multidimensional posterior distribution evolves through

time via a measure of instantaneous risk of onwards transmission. Note that the instantaneous

risk of transmission indicates the overall relative risk of transmission, which does not have a

direct epidemiological interpretation but provides a direct comparison across weeks.

Projections of the final total number of animals culled that were made in the first three

weeks of each outbreak were highly uncertain, grossly overestimating the size of the outbreak

in the UK and, on average, tending to underestimate the size of the outbreak in Miyazaki (Figs

2 and 3). In the UK, the mean outbreak size for vaccination strategies was estimated to be ten

times larger when using one week’s worth of data compared to when using all of the data (Fig

2; accrued vs complete, week 1). In Miyazaki, bimodal distributions of outbreak size were gen-

erated by forward simulations started in the initial weeks as the spatial extent of the outbreak

was highly uncertain (Fig 3). This was particularly marked under strategies of non-ring control

culling (IP and IPDC). However, in both outbreaks, despite projections being highly variable,

the relative performance of control interventions was resolved early on (Figs 2B and 3B). The

projected rankings of control interventions between those based on available data and those

based on all outbreak data were identical at five weeks into the UK epidemic (S9 and S10 Figs),

and differences in the rankings of control interventions after week 5 were minor. Using only

available data, the top three ranked control strategies (vaccination at 3km, 10km, and IPDCCP

culling, respectively) do not change from weeks 5–8, at which point vaccinating at 10km

becomes optimal over vaccinating at 3km in week 9. Vaccination interventions (either at 3km

or 10km) are always ranked as optimal throughout the whole UK outbreak regardless of the

week at which projections were made and regardless of the amount of data available. If

Fig 1. Instantaneous risk of onward transmission of foot-and-mouth disease in UK 2001 in first 5 weeks and the

final week. Calculated as the infectious pressure from an average-sized infectious farm to an average-sized susceptible

farm integrated across both the joint parameter distribution at the time point in question, and from 0 to 20km. Note

that the instantaneous risk of transmission indicates the overall relative risk of transmission, which does not have a

direct epidemiological interpretation but provides a direct comparison across weeks.

https://doi.org/10.1371/journal.pcbi.1006202.g001
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vaccination was deemed politically unpalatable then culling of infected premises, dangerous

contacts, and contiguous premises (IPDCCP) was consistently ranked as the next best inter-

vention to minimize total culls from weeks 4–10 of the outbreak in the UK (regardless of

whether available or all data were used to estimate transmission parameters). Although the

rankings of control interventions did change in the Miyazaki outbreak, the relative distribu-

tion of expected outbreak sizes across different control interventions remained consistent,

with 3km and 10km vaccination strategies consistently ranked as optimal (Figs 3 and S11) and

consistently performing better than the other strategies when compared in repeated bootstrap

simulations (Figs 3C and S11C). Ring culling at 3km was ranked as optimal for weeks 1–5 if

vaccination interventions were not considered, regardless of the amount of data used to esti-

mate transmission parameters. IP culling was optimal in the final stages of both outbreaks

when there were few or no more infected premises (S1, S2 and S10 Figs). The consistency in

the relative rankings of control interventions lends support for trusting model comparisons of

interventions at outbreak onset.

For the UK outbreak on week 2 (5 March 2001), when only using available data, projections

of the magnitude of the four best performing control interventions occupied comparable over-

lapping ranges: V3, V10, IPDC and IPDCCP (accrued information; Fig 2). Such a set of projec-

tions may provide a strong case in support of only enacting IPDC, the minimum under EU

and Japanese law, as this avoids the latent underlying costs and consequences of culling contig-

uous premises or emergency vaccination, for only a small increase in the expected number of

total animals culled. However, had all the data for the outbreak been available at this date

(complete information; Fig 2), then the expected performance of IPDC was revealed to be very

Fig 2. Projections and relative rankings of various control strategies of total animals culled, and estimates of infected but

undetected farms, for the first five weeks and the final week of the 2001 foot-and-mouth disease outbreak in UK. A)

Distribution of total animal culls from forward simulations, here shown as kernel density estimates (violin plots), are seeded either

using parameter estimates from the end of the outbreak (Comp.; ‘complete’), or at the specific time point (Accr.; ‘accrued’). B)

Rankings of control interventions are according to mean projections. Proportion (C) of times each control was optimal when

bootstrap samples are made from distributions in (A). For all time points see S9 and S10 Figs.

https://doi.org/10.1371/journal.pcbi.1006202.g002
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poor compared to these other three control interventions, with the results supporting either

vaccination (V3 or V10) or culling in some proximity around infected farms (RC3 or

IPDCCP) to quickly halt the outbreak. Here, despite variability in the absolute value of projec-

tions, our initial rankings and estimates of the relative performance of controls were again

found to be robust.

In the outbreak in Miyazaki the three best control interventions were correctly identified by

week 2 using only the available data despite highly uncertain projections of total animals culled

(Figs 3 and S11). Relative performance of control interventions was largely unchanged after

this point, with the exception of the emergence of IP culling as optimal in the final weeks

due to there only having been 1 infected case on 4th July, before which there had not been

a case since 18 June 2010 [14]. Consistency in the performance of vaccination strategies is

highlighted by noting that greater than 50% of the time vaccination actions are optimal when

bootstrap samples are compared across the distributions of simulated total culls for weeks 2–5

(Figs 3C and S11C). Bimodal distributions in outbreak size did reappear later in the outbreak

between weeks 6–7 (1–8 June) coincident with the occurrence of additional foci of infection

(S11 Fig), although these additional outbreaks were effectively controlled and policy recom-

mendations were unchanged. This is in contrast to the UK 2001 outbreak where, at the time of

the first case being reported, there were already infected farms in multiple foci spread across

the country with no significant new emerging foci as the epidemic progressed that would give

rise to the bimodal predictions that we observe for Miyazaki. Overall, outbreak size and opti-

mal control choice for the Miyazaki outbreak were generally more straightforward to predict

than for the UK outbreak, and policy recommendations for minimizing outbreak size are in

line with what was actually implemented in 2010 (vaccination at a 10km radius, V10).

Fig 3. Projections and relative rankings of various control strategies of total animals culled, and estimates of infected but

undetected farms, for the first five weeks and final week of the 2010 foot-and-mouth disease outbreak in Miyazaki, Japan. A)

Distribution of total animal culls from forward simulations, here shown as kernel density estimates (violin plots), are seeded either

using parameter estimates from the end of the outbreak (Comp.; ‘complete’), or at the specific time point (Accr.; ‘accrued’). B)

Rankings of control interventions are according to mean projections. Proportion (C) of times each control was optimal when

bootstrap samples are made from distributions in (A). For all time points see S11 Fig.

https://doi.org/10.1371/journal.pcbi.1006202.g003
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Changes in policy recommendations and large uncertainty in model projections may be

caused by uncertainty associated with the parameters governing the dynamics of the outbreak

and/or uncertainty associated with the locations of infected farms. By looking at projections

made using parameters generated with complete outbreak data, isolating the effect of changing

the arrangement of infected farms (since transmission parameters are fixed in these simula-

tions), we see that policy recommendations are still changing. Between 5 and 12 March 2001

in the UK outbreak (weeks 2–3), there was a marked resolution in the performance of control

interventions when parameters were estimated using only available data (accrued informa-

tion). The relative performance of control interventions at this time point comes to resemble

analogous projections made using all outbreak data (Figs 2, S9 and S10) despite the absolute

value of such projections still being highly uncertain. Here, this switch may have been caused

by a constrained estimate of where the outbreak is–an improved estimate of the location of

undetected infected premises (S7 Fig). Our best estimate of the location of undetected infec-

tions on 5 March 2001 (week 2) includes undetected infections in the north of Scotland. Addi-

tionally, the number of counties with a non-zero expected number of undetected infections is

overestimated compared to analogous estimates if all the data were available (S7 Fig). Our best

estimate of undetected infections on 12 March 2001 (week 3) had foci of infection in Cumbria,

Midlands, Devon, North Wales, and Essex; these foci were in the same areas as estimates using

all outbreak data. Furthermore, those counties that have a non-zero expected number of unde-

tected infections are contiguous to counties that are estimated as a foci of infection (S7 Fig). At

this point, by excluding an allowance for additional culling in Scotland, ring culling at 3km

became second only to vaccination actions. Ultimately, the change in our understanding of the

locations of infected farms (and having the resource capability to respond), drove this

improved prediction of the relative performance of control interventions.

Such a dramatic change in the relative performance of control interventions was not seen

in the Miyazaki outbreak, despite starting with high variability in projections of the efficacy of

control interventions. The Miyazaki outbreak started and largely stayed in one location, the

Tsuno township. Though bimodal distributions in outbreak size did arise in simulations (S11

Fig) as additional foci of infection occurred later at the Ebino township, Miyakonojo, and

Miyazaki city (all over 40km away from the original point of infection [17]), the projections

were largely seeded by an outbreak with a state characterized as a single point of infection,

with compact and radial spread of infection (Figs 3, S8 and S11). Accounting for the possibility

of a larger outbreak size in Miyazaki did not stretch the simulated culling or vaccination

resources, leaving policy recommendations for how we should respond unchanged. As with

results from the UK outbreak, uncertainty associated with the locations of undetected infected

premises, in the form of additional foci of infection, seemed to have a large effect on forward

projections in the Miyazaki outbreak.

Discussion

Our results have shown that policy recommendations using real-time parameter estimates and

forward simulations can be correct from an early stage in an outbreak despite highly uncertain

projections of epidemic severity, in line with previous research on one-time decisions for the

control of Ebola [18]. Projections from mathematical and simulation models are useful for

informing policy-making insofar as they help to identify what is the best course of action and

we have included two summaries of how simulation results may be communicated, dependent

upon whether policymakers have an objective of 1) optimizing an expectation in outbreak

severity (Figs 2B and 3B) or 2) optimizing the number of times that an intervention was pre-

dicted to be optimal (Figs 2C and 3C). In many situations, estimating the burden of infection
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and selection of the optimal control intervention are directly related. However, our results are

a reminder that this may not always be the case; in many cases it is how projections influence

change in the recommended control intervention, rather than the value of projections them-

selves, that matter and so, where appropriate, it is important to include projections of interven-

tion efficacy when making real-time projections of disease burden.

Our results showed that changes in the estimated relative performance of control interven-

tions was strongly influenced by the spatial distribution of both observed and undetected

infectious premises and culled premises (the state of the outbreak). Although our analysis only

looked at one change in control intervention (from what was being applied historically) this

dependence highlights that, should one allow multiple changes of control through time, then

the optimal policy is likely to be dynamic. In our results, even if accurate parameter estimates

had been available from the first confirmed case (such as those derived from the whole out-

break), it would still have been necessary to perform state-dependent control to find the best

choice of control intervention as the outbreaks evolve. In practice, estimating the state of the

outbreak (i.e. prediction of locations of undetected infections) depends on estimates of trans-

mission parameters and, therefore, continual re-evaluation of control interventions alone

makes little sense without also re-evaluating, and re-fitting, model parameters. Thus, control

recommendations should adapt to the changing state of an outbreak.

Our results included a marked stabilization in recommended control interventions in simu-

lations for the outbreak in the UK. It remains an avenue for future research to investigate what

are the drivers of such stabilization in recommendations in control intervention, and whether

it is logistically feasible to measure (and therefore act upon) such drivers, beyond an in silico

experiment. Such analyses would require a more general approach to seeding outbreaks, and

generating landscapes, to more thoroughly explore the state-space of potential future out-

breaks. Here, we only investigated two outbreaks, simulations for each of which were seeded

from historical starting points.

Often, the need for rapid response during an outbreak is discussed in terms of the initial

response [13], but not as often in terms of adapting as circumstances change throughout an

outbreak. In both outbreaks we investigated, there was significant variability in epidemiologi-

cal predictions during the early stages of disease outbreaks highlighting that real-time updating

of parameters is vital in order to obtain accurate predictions of epidemic size and extent. How-

ever, additional foci of infection may be seen as independent outbreaks and, therefore, the

rapid response that is called for at the start of an outbreak needs to be reapplied when such foci

are discovered. For the outbreaks that we investigated, identifying the locations of undetected

infected premises was of greater importance to determining the best course of action than

identifying the underlying disease dynamics; this calls for increased vigilance in surveillance

during an outbreak and highlights the importance of methodology for predicting undetected

infections (e.g. [11,12]), assimilating surveillance data into parameter estimates for individual-

based models, and of confirming negative cases, especially when such premises are in locations

that would be considered as additional foci of infection. Simply because an outbreak has pro-

gressed beyond its initial stages does not mean that the need to act swiftly according to changes

in the outbreak are in any way diminished.

At a coarse level, for one-time decisions, the idea of state-dependent control has already

been adopted or discussed by several agencies, such as the Department for Environment,

Food, and Rural Affairs, UK (DEFRA) and the United States Department of Agriculture

(USDA) in flowcharts for determining when to perform emergency vaccination [19,20], the

dependence of different phases in smallpox eradication upon smallpox prevalence [21], man-

agement of wildlife diseases [22], and the use of adaptive surveillance of herds in the eradica-

tion of rinderpest [23]. Decision-making frameworks, such as adaptive management, have also
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highlighted the utility of modeling and optimization as tools for generating state-dependent

policies [24]. We note that optimization methods such as dynamic programming or reinforce-

ment learning would be required to generate state-dependent policies and that such methodol-

ogies, although a more complex optimization than what we have presented, would allow the

possibility of changing control intervention repeatedly through time, or generating optimal

interventions that are a combination of those defined here, such as county-specific interven-

tions (e.g. [25]). Our analysis shows there is potential to make large gains in the effectiveness

of the response to an outbreak by adopting state-dependent control that is on a much more

nuanced scale than one-time binary decisions, and that mathematical and simulation models

can play a significant role in policy preparedness by investigating such strategies before an out-

break occurs.

Materials and methods

We used data augmentation Markov chain Monte Carlo (MCMC) to fit a 3-species (cattle,

sheep, pigs) SEINR (Susceptible-Exposed-Infected-Notified-Removed) model to the observed

infection and intervention data at the farm-level at weekly time points throughout the epidem-

ics [11,12]. The analysis started one week after the first confirmed case (one week after 19 Feb-

ruary 2001 and 20 April 2010 for the outbreaks in UK and Miyazaki respectively). Data for the

UK included location and farm demography for approximately 188000 premises. Data for

Miyazaki included location and farm demography for approximately 9000 premises. In the

case of the UK outbreak, we changed the timescale to 28-day time points after 11 June 2001

until 3 September 2001. A final model fit represents all information that could have been gar-

nered from the outbreak (on 24 December 2001 for the UK outbreak and 6 July 2010 for the

outbreak in Miyazaki). Each model fit included an estimate of a joint posterior distribution of

16 parameters (only 12 parameters had changing estimates in Miyazaki since no sheep were

affected in this outbreak) and an estimate of the infection time of infected, but as yet unde-

tected, premises (so-called ‘occult’ infections). To reproduce a comparable level of initial

uncertainty, the same uninformative prior distributions were used for each parameter at the

start of the two outbreaks, while a uniform prior was used for the initial infection times of the

undetected but infected farms.

At each time point, parameter estimates were used within a previously-validated farm-level

simulation model [1,26], to make forward projections under various control interventions.

Each set of parameter values in the posterior distribution also had an associated set of infection

times of undetected infections. These were combined with the confirmed infections from the

real outbreak data and used to seed the infectious status of each farm in simulations. Predic-

tions were therefore conditional on the actual state of the outbreak at that point in time as well

as our estimate of parameters and which farms were infected. Forward projections were made

twice for each time point: once with parameter estimates (and the associated distribution of

infection times of undetected infections) based only upon the data available at that time point,

denoted ‘accrued information’; and once with analogous estimates made using all the data

from the entire outbreak, denoted ‘complete information’.

Six (Miyazaki) or seven (UK) control interventions were compared in the forward simula-

tions (Table 1). The performance of culling infected premises only (IP) was included as the

least severe strategy possible, and the culling of infected premises and dangerous contacts only

(IPDC) was included as the minimum required under European Union [27] and Japanese [28]

law. In the UK simulations, the control of culling contiguous premises of infected farms

(IPDCCP) was also included beyond controls used in the simulations for Miyazaki; this is

most similar to that which was implemented during the 2001 outbreak [1]. Simulations for
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both outbreaks included ring culling around infected premises at 3km (RC3) and 10km

(RC10) radii. Two emergency vaccination strategies, only targeting cattle, were also included

at 3km and 10km around infected premises (V3 and V10 respectively), and were assumed to

be vaccinate-to-live policies; where vaccinated cattle enter the food chain and are not included

in counts of total animals culled. Note that a vaccinate-to-live policy was not applied in the

outbreak in Miyazaki but it may be a future possibility in the UK [19]. These vaccination radii

were used because 1) they aided in comparison with ring culling interventions; 2) they

spanned a range that includes the optimal ring radius for reactive vaccination in the UK [4],

and; 3) they included the radius (10km) at which vaccination was actually implemented in

Miyazaki [14]. All parameter estimate data and simulation output are available via the Dryad

Digital Repository: https://doi.org/10.5061/dryad.gr656gk [29].

Model

Both outbreaks used a similar model structure. The infectious pressure, λj(t), on a susceptible

farm j at time t is

ljðtÞ ¼ �ðtÞ þ
X

i2IðtÞ

bijhðIj � IiÞ þ
X

i2N ðtÞ

b
�

ijhðIj � IiÞ;

where IðtÞ and N ðtÞ are the sets of infected and notified farms at time t respectively (t = 0, 1,

2, . . . T). Models of similar structure have been previously used for modeling FMD (e.g.

[1,4,11]). A summary of notation used to describe the model is given in Table 2. Notification

time is assumed to mean the time of laboratory confirmation of FMD, and removal time is

assumed to mean the date when the farm is both culled and disposed of. We count t in days;

day 0 is the first confirmed infected case in the data and T is the day of the final parameter esti-

mate (24 December 2001 for the UK outbreak and 6 July 2010 for the outbreak in Miyazaki).

By including both SðtÞ and RðtÞ, as the sets of susceptible and removed farms at time t respec-

tively, we then have four sets essentially giving the state of the epidemic on the population at a

given point in time, St ¼ hSðtÞ; IðtÞ;N ðtÞ;RðtÞi. The infection time of the kth farm is

denoted Ik, while Nk and Rk denote notification and removal times of farm k respectively. Note

that in the next section we assume that for It, Nt, and Rt, the t subscript denotes the set of infec-

tion, notification, or removal times of all premises respectively; here the time subscript is

dropped for succinctness. All times are listed in days unless otherwise specified. Infectious

Table 1. Summary of control interventions used in the simulations.

Abbreviation Description Constraints Case study

IP Culling of infected premises only No constraints UK and

Miyazaki

IPDC Culling of infected premises and dangerous contacts 100 farms per day UK and

Miyazaki

IPDCCP Culling of infected premises, dangerous contacts, and premises contiguous to

infected premises

100 farms per day UK only

R3 Ring culling at 3km radius around infected premises (IPDC included) 300 farms per day UK and

Miyazaki

R10 Ring culling at 10km radius around infected premises (IPDC included) 300 farms per day UK and

Miyazaki

V3 Vaccination at 3km radius around infected premises (IPDC included) 300 farms per day or 30,000 animals (whichever

is first)

UK and

Miyazaki

V10 Vaccination at 10km radius around infected premises (IPDC included) 300 farms per day or 30,000 animals (whichever

is first)

UK and

Miyazaki

https://doi.org/10.1371/journal.pcbi.1006202.t001
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Table 2. Summary table of mathematical symbols used.

Symbol Description Notes

λj(t) Infectious pressure on susceptible farm j at time t
βij Contribution to total infectious pressure from infectious farms.

b
�

ij Contribution to total infectious pressure from notified farms. b
�

ij ¼ g2bij

SðtÞ; IðtÞ,
N ðtÞ, RðtÞ

Set of susceptible, infected, notified, and removed farms

(respectively) at time t.
St Complete state of the outbreak at time t. St ¼ hSðtÞ; IðtÞ; N ðtÞ;RðtÞi
h(t) Function for modeling disease latency.

hðtÞ ¼
1 t < 4

0 otherwise:

(

Ik, Nk, Rk Infection, notification and removal times of farm k (respectively). Notification time is time of laboratory confirmation of FMD; removal time is

mean date when the farm is both culled and disposed of.

�(t) Baseline infectious pressure at time t.
�ðtÞ ¼

�1 t < movement ban

�1�2 otherwise

(

q(i;ξ) Contribution to infectious pressure from characteristics of the

infectious farm.

ξ = {ξ2,ξ3}

w(j;ζ) Contribution to infectious pressure from characteristics of the

susceptible farm.

ζ = {z2,z3}

ξ = {ξ2,ξ3} Parameters for determining the transmissibility of pigs (2) and

sheep (3) relative to cattle.

ζ = {z2,z3} Parameters for determining the susceptibility of pigs (2) and sheep

(3) relative to cattle.

ψ1,ψ2,ψ3 Exponential terms for calculating infectious pressure from an

infectious farm for cattle(1), pigs(2), and sheep(3) respectively.

ϕ1,ϕ2,ϕ3 Exponential terms for calculating infectious pressure for a

susceptible farm for cattle (1), pigs (2), and sheep (3) respectively.

γ1,γ2 Multiplicative factor for contribution to infectious pressure from

infected (1) and notified (2) farms respectively.

δ Decay of the transmission rate with distance between premises.

ρij Euclidean distance between premises i and j.
ω Exponential parameter associated with the distance kernel. Fixed at 1.3 in all outbreaks.

θt Vector of all transmission parameters. θ = {�1,�2,γ1,γ2,ξ,ζ ,ψ,ϕ,δ,b}

ck, pk, sk Number of cattle, pigs and sheep (respectively) on premises k.

�c; �p; �s Mean numbers of cattle, pigs, and sheep (respectively) across all

farms in the outbreak.

di Infection to notification time. di ~ Gamma (4, b)

b Scale parameter of a gamma distribution governing infection to

notification time.

Set at 0.5.

Xt� Demographic and event history data observed to time t.
Yt Demographic and event data of the ongoing epidemic from time t

onwards.

ptðyt ; It jXt� Þ Joint posterior distribution of model parameters and infection times

at time t, conditional on the demographic and event history data.

I �j The time immediately before the infection time of the jth premises.

P Set of all individuals in the population.

κ The initial infective.

a Control intervention a.

U(Yt|a) Expected total number of animals culled (utility function) in the

ongoing outbreak from time t onwards under intervention a.

a?t Optimal control strategy at time t.

https://doi.org/10.1371/journal.pcbi.1006202.t002
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pressure can be decomposed into contributions from infectious (but not yet notified) farms,

bij ¼ g1q i; ξð Þw j; ζð Þ
d

ðd
2
þ r2

ijÞ
o ; i 2 I tð Þ; j 2 S tð Þ; ð1Þ

and contributions from notified farms b
�

ij ¼ g2bij ði 2 N ðtÞ; j 2 SðtÞÞ. We define

q i; ξð Þ ¼
ci
�c

� �c1

þ x2

pi

�p

� �c2

þ x3

si
�s

� �c3

" #

and

w j; ζð Þ ¼
cj
�c

� ��1

þ z2

pj

�p

� ��2

þ z3

sj
�s

� ��3

" #

to be the ‘infectivity’ of farm i and ‘susceptibility’ of farm j respectively, where ck, pk, and sk are

the numbers of cattle, pigs, and sheep on farm k, with mean numbers of cattle, pigs, and sheep,

denoted by �c; �p; �s. The effect of distance is captured using a Cauchy-type kernel where ρij is

the Euclidean distance between farms i and j, and δ the decay of transmission rate with dis-

tance. Baseline infectious pressure distinguishes between periods before and after the move-

ment ban was implemented,

�ðtÞ ¼
�1 t < movement ban

�1�2 otherwise
;

(

and the latency of the disease was modeled using the function

hðtÞ ¼
1 t < 4

0 otherwise:

(

An estimate at time t of the complete parameter set, of 16 parameters (12 parameters in Miya-

zaki), is denoted θt. Parameter ω was assumed fixed at 1.3 in both outbreaks, as were the initial

priors. The priors for each parameter were elicited via expert opinion and assigned the follow-

ing distributions: π0(δ)*Gamma(4,8),π0(�1),π0(�2)*Gamma(1E−7,1), π0(ψ1),π0(ψ2),π0(ψ3),

π0(ϕ1),π0(ϕ2),π0(ϕ3),π0(ξ2),π0(ξ3),π0(z2),π0(z3) *Gamma(0.5,1),π0(γ1),π0(γ2)*Gamma(1E−
4,1). Gamma(a, b) is the gamma distribution with shape parameter a and rate parameter b.

Infection to notification time was assumed to be distributed according to a Gamma distri-

bution such that Ni! Ii = di*Gamma(4,b) with parameter b = 0.5 governing the scale of the

probability distribution. Notification to removal time is an observed quantity since both events

are recorded.

Parameter estimation

Let the data (demographics and event history) observed up to time t be Xt� , with ptðyt; ItjXt� Þ

denoting the joint posterior distribution of the model parameters and infection times (includ-

ing infection times of undetected infections) immediately at time t.
We assume that infections occurred according to a continuous-time non-homogeneous

Poisson process, where infection rate is assumed to be λj(t) as above. Let I, N, and R be vectors

of infection, notification, and removal times for individuals 1, . . ., nI who were infected by

observation time Tobs. Conditioning on this event time, the joint posterior distribution over
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parameters θ = {�1,�2,γ1,γ2,ξ,ζ ,ψ,ϕ,δ,b} is

pðθjI;N;RÞ /
YnI

j¼1

½ljðI
�

j Þ�exp
Z Tobs

Ik

X

j2P

ljðtÞdt
" #

�
YnI

j¼1

ðNj � IjÞ
a� 1e� bðNj � IjÞ

�
Qjθj

p¼1
fyp
ðypÞ;

where the first line represents the infection process, the second line represents the detection

(infected to notified) process, and the third line represents independent prior distributions for

all components of θ. I �j represents the time immediately before the infection time of the jth
premises.

Parameters in bold, represent the corresponding set of species-specific parameters, e.g. ζ =

{z2,z3}. κ denotes the initial infective, and P denotes the set representing all individuals in the

population. The joint posterior distributions used in the forward simulations and figures of

the instantaneous risk of onward spread represent the MCMC output sub-sampled to 2000

parameter coordinates.

MCMC algorithm

Multisite adaptive Metropolis-Hastings was used to draw from the conditional posterior distri-

butions of {�1,�2,γ1,,γ2,δ}, ψ and ϕ. Furthermore, since the infection times are unobserved, we

updated them component-wise using Metropolis-Hastings, with a reversible-jump update to

explore the posterior over the presence of undetected infections. See [11,12] for further details.

Updating species effects ξ and ζ
The introduction of the 3-species model (in comparison to [11] and [1]) results in a non-line-

arly correlated posterior distribution, particularly between γ1 and both of ξ and ζ . This pres-

ents particular difficulties for Metropolis-based MCMC algorithms, since the optimal proposal

distribution scale changes with location in the posterior parameters space. To approximately

orthogonalize the posterior distribution, and hence improve the convergence properties of our

adaptive Metropolis algorithm, we employed the following non-centered update for ξ and ζ .

To construct an efficient proposal distribution for ξ, we seek to exploit the shape of the pos-

terior distribution with respect to γ1. This can be thought of as a joint update of γ1 and ξ,

respecting the contour of the joint posterior. First, we write the equation for q(i;ξ) (see above)

as

g1qði; ξÞ ¼ g1Ci þ g1x2Pi þ g1x3Si

¼ Afi;1g þ Afi;2g þ Afi;3g

where Ci ¼ ðci=�cÞ
c1 and similarly for Pi and Si. We then let

R ¼ A1 þ A2 þ A3 ¼
XnI

i¼1

ðAfi;1g þ Afi;2g þ Afi;3gÞ
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We then propose

ðA�
2
þ A�

3
Þ
T
� MVN2 ðA2 þ A3Þ

T
;
2:38

2

2

B
� �

and

A�
1
¼ R � A�

2
� A�

3

where, with probability 0.05, B = I2 the 2x2 identity matrix, and with probability 0.95, B = Sk

the empirical covariance matrix of the MCMC samples for (A1,A2)T up to iteration k (see [30]).

We then solve for γ1 and ξ. Similarly, we update γ1 and ζ .

Instantaneous risk of onward spread

Uncertainty in the joint posterior distribution of transmission parameters was summarized

using a measure of the instantaneous risk of onward spread, defined as the instantaneous force

of infection from an average-sized infectious farm to an average-sized susceptible farm at time

t (gt). This risk measure was calculated at each time point as the integral over the joint posterior

distribution of parameters at that point in time and over a distance of 20km (from the infec-

tious to the susceptible farm):

gt ¼

Z

θ

Z 20

0

g1 x2;t þ x3;t

� �
z2;t þ z3;t

� � dt

ðd
2

t þ r2Þ
o drdθ:

The equation for the instantaneous risk of onward spread is taken from the equation for the

infectious pressure (Eq 1) substituting the average number of cattle, pigs, and sheep for ci, pi,

and si respectively.

Forward simulations

Each control intervention, a, is evaluated according to the expected total number of animals

culled, U(Yt|a), where the Bayesian predictive distribution of the ongoing epidemic, Yt, is

given by the integral

fYt
ðYtjXt� ; aÞ ¼

Z

Y

Z

I
fYt
ðYtjXt� ; yt; It; aÞptðyt; ItjXt� ÞdIdy:

This was estimated by simulating forward from fYt
ðYtjXt� ; yt; It; aÞ using draws from

ptðyt; ItjXt� Þ. The above formulation is using parameter estimates from the time point in ques-

tion, so-called ‘accrued information’. Forward simulations were also generated with parame-

ters estimated using all data, fYt
ðYtjXT � ; aÞ, so-called ‘complete information’, which were

generated in an analogous fashion instead using draws from pTðyt; ItjXT � Þ in the above

integral.

The optimal control strategy a?t is chosen as that which minimizes the mean expected total

animals culled

a?t ¼ argminamean½UðYtjaÞ�

Vaccine efficacy was assumed to be 90%, whereby animal numbers on a vaccinated farm

were reduced by 90% after a delay until conferment of immunity of 4 days. Delay from infec-

tion to notification time was simulated as 9 days, with a 4-day latency period. Notification to

removal time was simulated as 1 day for infected premises and 2 days for culling of dangerous

contacts or contiguous premises.
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Software

The MCMC algorithm above was implemented in C++ (GCC version 4.8.3) embedded within

an R package. General-purpose graphics processing unit (GPU) using NVIDIA CUDA 7.5 was

used to implement the calculation of the likelihood and speed up inference. The software is

available under the GPLv3 license at http://fhm-chicas-code.lancs.ac.uk/InFER/InFER/tags/

InFERfmd-v1.0.

Supporting information

S1 Fig. Number of confirmed cases per week (ending Monday) during the 2001 outbreak in

the UK.

(TIF)

S2 Fig. Number of confirmed cases per week (ending Tuesday) during the 2010 outbreak

in Miyazaki.

(TIF)

S3 Fig. Marginal posterior predictive distribution of 16 parameters in the epidemic model

for the first 11 weeks. Distributions in red are estimated for the outbreak in Miyazaki blue for

parameters the UK. Parameters shown on the log scale are γ1, ε1, and ε2.

(TIF)

S4 Fig. Instantaneous risk of onward transmission of foot-and-mouth disease in Miyazaki

2010 in first 5 weeks and the final week.

(TIF)

S5 Fig. Marginal posterior distribution of ψ1 (multiplicative term for contribution to infec-

tious pressure from cattle) versus log γ1 (multiplicative factor contributing the infection

pressure from infected farms) for the first 6 weeks of the 2001 UK outbreak.

(TIF)

S6 Fig. Marginal distribution of ϕ2 (exponential term for susceptibility of pigs) versus ζ2

(multiplicative factor for susceptibility of pigs relative to cattle) for the first six weeks of

the Miyazaki outbreak.

(TIF)

S7 Fig. Expected number of undetected infections per county per week in the 2001 UK out-

break, weeks 1–16, as estimated under accrued information (y-axis) and complete informa-

tion (x-axis). Those estimated using ‘accrued information’ only used data available at the week

in question whereas those estimated under ‘complete information’ were estimated using all

data from the outbreak.

(TIF)

S8 Fig. Expected number of undetected infections per county per week in the 2010 Miya-

zaki outbreak as estimated under accrued (y-axis) and complete information (x-axis).

Those estimated using ‘accrued information’ only used data available at the week in question

whereas those estimated under ‘complete information’ were estimated using all data from the

outbreak.

(TIF)

S9 Fig. Predicted final total culls for weeks 1–12 for several control strategies for the UK

2001 outbreak of foot-and-mouth disease. A) Predictions of final total culls at the first 12

weeks throughout the 2001 outbreak in UK under seven control strategies (week 1 represents
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26 February 2001). Columns denoted ‘Ac’ (‘accrued’ information) represent those simulations

generated using data from the time point in question, columns denoted ‘Co’ (complete infor-

mation) represent simulations seeded using parameters estimated using all the data from the

outbreak. B) Rankings are calculated from the mean of those distributions in (A). C) Propor-

tion of times each control is chosen as the optimal intervention if draws are taken from distri-

butions in (A).

(TIF)

S10 Fig. Predicted final total culls for weeks 13–28 for several control strategies for the UK

2001 outbreak of foot-and-mouth disease. A) Predictions of final total culls at weeks 13–28

throughout the 2001 outbreak in UK under seven control strategies (week 1 represents 26 Feb-

ruary 2001). Columns denoted ‘Ac’ (‘accrued’ information) represent those simulations gener-

ated using data from the time point in question, columns denoted ‘Co’ (complete information)

represent simulations seeded using parameters estimated using all the data from the outbreak.

B) Rankings are calculated from the mean of those distributions in (A). C) Proportion of times

each control is chosen as the optimal intervention if draws are taken from distributions in (A).

(TIF)

S11 Fig. Predicted final total culls for weeks 1–11 for several control strategies for the 2010

outbreak of foot-and-mouth disease in Miyazaki, Japan. A) Predictions of final total culls at

the first 11 weeks throughout the 2001 outbreak in UK under seven control strategies (week 1

represents 27 April 2010). Columns denoted ‘Ac’ (‘accrued’ information) represent those sim-

ulations generated using data from the time point in question, columns denoted ‘Co’ (com-

plete information) represent simulations seeded using parameters estimated using all the data

from the outbreak. B) Rankings are calculated from the mean of those distributions in (A). C)

Proportion of times each control is chosen as the optimal intervention if draws are taken from

distributions in (A).

(TIF)

S1 File. Algorithm for the calculation of the proportion of times each intervention is cho-

sen as optimal.

(DOCX)
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