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Abstract: The flexibility in polymer properties has allowed the development of a broad range of
materials with electroactivity, such as intrinsically conductive conjugated polymers, percolated
conductive composites, and ionic conductive hydrogels. These smart electroactive polymers can be
designed to respond rationally under an electric stimulus, triggering outstanding properties suitable
for biomedical applications. This review presents a general overview of the potential applications of
these electroactive smart polymers in the field of tissue engineering and biomaterials. In particular,
details about the ability of these electroactive polymers to: (1) stimulate cells in the context of tissue
engineering by providing electrical current; (2) mimic muscles by converting electric energy into
mechanical energy through an electromechanical response; (3) deliver drugs by changing their internal
configuration under an electrical stimulus; and (4) have antimicrobial behavior due to the conduction
of electricity, are discussed.

Keywords: Electrically conductive polymers; Electroactive biomaterials; Electrical stimulation; Smart
composites; Bioelectric effect; Drug delivery; Artificial muscle

1. Introduction

Polymers have emerged in recent decades as one of the most promising materials in biomedical
applications due to their high biocompatibility and degradation/absorption in physiological media [1].
Another key characteristic of polymers is their flexibility in terms of properties and functionalities,
allowing their development from bioactive hydrogels to biodegradable thermoplastic polymers [2,3].
The polymer flexibility also includes a broad range of processing techniques, such as: extrusion [4],
electro-spinning [5,6], 3D printing [7–9], microfluidity [10], and casting [11], among others [5].
Remarkably, by adding/embedding nanoparticles into a polymer matrix, novel nanocomposites can be
developed further extending the range of properties and functionalities of polymers. For these reasons,
polymers are extensively studied today for tissue engineering [12,13], wound healing [14], artificial
muscles [15], and drug delivery [16], among other bio-applications [17].

Of recent interest in polymer science is the development of smart materials with a rationally
designed stimulus/response behavior. In this context, electroactive smart polymer materials are stressed
because of their ability to transfer electrons/ions under a specific electric field, having multiple
applications in several engineering areas, such as soft robots and sensors [18,19]. The advantages of
an electric field as external stimulus, compared to others, is related to the availability of equipment
that allows precise control in terms of the current magnitude, the duration of electric pulses, intervals
between pulses, etc. However, compared to other functional/smart polymer systems, electroactive
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smart polymers have been less studied for biomedical applications, despite their multiple applications
in tissue engineering [20–22]. For instance, these electroactive biomaterials can be applied to obtain
adhesion and proliferation of human cells, accelerating the process of regeneration in muscles, organs
and bones [23–26]. They can also be used for smart drug delivery or as artificial muscle systems, both
triggered by electric stimuli. Even less studied is the development of biocidal materials based on their
electric conductivity despite that today any biomaterial used in tissue engineering must not only be
biocompatible in the response of the host (patient) but also active in avoiding the adhesion of bacteria
or the formation of biofilms on its surface. Based on the bactericidal effect of electrical stimulation (ES),
novel electroactive materials can be produced with the ability to prevent the formation of biofilms
and future bacterial infections in the host. Therefore, a polymer able to deliver ES can merge the
requirements needed for any biomaterial designed for tissue engineering purposes: to promote cellular
adhesion and proliferation while avoiding biofilm formation through a bactericidal effect (see Figure 1).
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Figure 1. Relationship between electroactive biomaterials and human and bacterial cells in the context
of tissue engineering.

In this review, we provide a general overview of the potential of electroactive polymer biomaterials
considered as a new generation of smart systems able to respond specifically to an electric field in the
context of biomedical applications. These smart systems range from polymers delivering an electric
signal to polymers changing some properties under an electric stimulus [27]. The review focuses on
the capacity of these electroactive polymers to stimulate: (1) cells in the context of tissue engineering;
(2) an electromechanical response for artificial muscles; (3) drug delivery; and (4) antimicrobial
mechanisms. From a material point of view, the electroactive polymers include intrinsically conductive
polymers, percolated conductive polymer nanocomposites, and ionic conductive hydrogels. A general
overview of this review is summarized in Figure 2. For further details about one or more of the
above-mentioned electroactive properties or polymers, there are several excellent reviews (for instance,
see references [17,21,27–33]) in which specific information can be obtained for a deeper understanding
of an application.
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Figure 2. A general overview of electroactive polymers. The mechanism for the specific response to
an electric stimulus can be through ionic or electric conduction. These mechanisms can trigger either
a direct electric current to the material and the medium producing cell stimulation, or antimicrobial
behavior or a change in some polymer properties, producing an electromechanical behavior and specific
drug delivery.

2. Electroactive Conductive Polymers

Electroactive polymers can be classified according to the mechanism of conduction in ionic
conductive polymers and electric conductive polymers. The latter are further classified as intrinsic and
extrinsic, based on their mechanism of electron conduction. While ionic conductive polymers present
conductivities due to the presence of both ionic groups in their main chain and electrolytes in the
medium, electric conductive polymers are conductive due to the high electron mobility arising from
either the constitutive bonds between atoms or the presence of conductive particles, as summarized
in Figure 3. Regarding electric conductive polymers, different mechanisms of electron conduction
produce changes in the achieved conductivity, as summarized in Figure 4.

These conductive materials retain the good properties and flexibility of polymers, so they can be
further functionalized for specific applications by optimizing properties such as roughness, porosity,
hydrophobicity, conductivity, and degradability [17]. One route for increasing the functionality is to
add monomers covalently bonded to functional molecules, although the conductivity is reduced [34].
For biomedical applications, the biocompatibility and biodegradability of electroactive polymers
should be further considered. For instance, the application of intrinsically conductive polymers in
tissue engineering is limited by the doping concentrations used to obtain electrical conduction, as high
concentrations can produce inflammatory responses in tissues [28]. To increase the biocompatibility
of conductive polymers, they can be doped with biomolecules or ions, taking advantages of their
chemical, electric, and physical structures [17,30].
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matrix (right side). See text for details.
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Figure 4. Conductivity range of intrinsically conductive polymers and electroactive conductive
composites. Based on reference [29].

2.1. Intrinsically Conductive Polymers

Intrinsically conductive polymers present a conductivity mechanism arising from the polymer
molecule itself having a conjugated chain that contains localized carbon–carbon single bonds (σ) and
less localized carbon–carbon double bonds (π) (see Figure 5). The p-orbitals overlap in the π bonds
and give greater electron mobility between atoms, allowing the electrons to move along the polymer
chain [27,35]. The conductivity of intrinsic polymers is further based on the incorporation of dopant
ions balancing the charge introduced through oxidation (p-doping) or reduction (n-doping) [27].
The dopant introduces a charge carrier by removing/adding electrons from/to the polymer chain and
relocalizing them as polarons or bipolarons. The dopants are able to move in or out of the polymer
(depending on the polarity) when an electrical potential is applied, disrupting the stable backbone
and allowing charge to be passed through the polymer [27]. Intrinsically conductive polymers have
attractive properties for use in drug delivery, sensors, electrochemistry, etc. [36–38].
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Poly[3,4-(ethylenedioxy)thiophene] (PEDOT) [39], polypyrrole (PPy) [40], and polyaniline
(PANi) [41] are some of the most widely used intrinsically conductive polymers in tissue engineering
scaffolds and biomaterials [17]. However, for biomedical applications, their use is limited mainly
because of their poor processability and mechanical properties [36]. The doping of these polymers
with long chains can overcome these limitations although it can affect the conductivity of the
resulting materials [34,42]. Another solution is to blend the intrinsic conductive polymer with
another polymer possessing easier processability in order to obtain a composite with improved
mechanical and biocompatibility properties [30]. Such is the case of a 3D coating made of PPy doped
with dodecylbenzenesulfonic acid (DBSA) used for electrodes promoting neuronal induction [43].
As discussed above, conductive polymers can be further functionalized with bio-dopants to improve
their biocompatibility in medical applications [39]. This method adapts the polymer chains for several
applications, improving, for instance, the selectivity/sensitivity of biosensors or the cell-surface
interaction [38,40]. Commonly used bio-dopants include glycosaminoglycans such as chondroitin
sulfate, hyaluronic acid, and dextran sulfate [30].

2.2. Percolated Polymer Composites

By embedding electric conductive particles into a polymer matrix a percolation transition can occur
associated with the formation of a continuum network of fillers throughout the polymer. Below the
percolation threshold, the conductivity change is negligible, and the conductivity of the composite is
equal to that of the polymer. However, the percolation produces a drastic increase of several orders of
magnitude in the electric conductivity of the resulting composites. In this case, the polymer matrix is an
insulator and the filler is responsible for the electric conduction. In the classical theory of percolation,
the conductivity of the composite depends on the filler conductivity, its volume fraction, a critical
filler volume fraction at which percolation takes place, and the critical index of conductivity that
relates with the dimensionality of the filler [44]. This theory predicts a power-law correlation between
these parameters by assuming physical contact between particles. However, electrically conductive
polymer composites are more complex systems, as the electric conductivity cannot be fully predicted
by this theory [28,45,46]. In polymer composites, the conductive particles are separated by energy
barriers (polymer molecules) and the tunnel effect becomes relevant, modifying the percolation model
by introducing a tunnel parameter that varies according to the dimensionality of the particle [44].
In this modified percolation model, the composite conductivity depends on the filler conductivity and
its volume fraction, but also on the tunnel parameter. Under this model, the effect of the filler on the
percolation threshold is rather explained considering the average interparticle distance related to the
probability of contact between conductive particles [47], which depends on both the aspect ratio and the
particle sizes [48,49]. The introduction of these parameters can explain the different electric behavior
found in these polymer composites from a sharp increase in the conductivity reaching a plateau
to a broad percolation curve with a growing conductivity [44]. Indeed, although the percolation
theory is able to predict some experimental results, currently a different and complementary approach
based on the excluded volume theory for percolation transition can explain most of the experimental
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findings [50]. This theory is based on the evidence that the percolation threshold is not linked to the
true volume of the object itself, but rather to its excluded volume [50].

Electrically conductive polymeric composites are currently being developed in order to have
light materials that combine the inherent processability of the organic matrix with the electric
conductivity of the fillers [50]. Since the first polymer with silver filler was developed for electrically
conductive adhesives in 1956, conductive polymer composites have been studied extensively by using
gold, palladium, silver, nickel, copper, graphite, and carbon fiber [51]. Among the different fillers,
those based on nanoparticles, such as carbon nanotubes (CNT), have emerged as some of the most
interesting due to their outstanding properties [52]. In percolated composites, the particle aspect
ratio can be considered as one of the most relevant variable, explaining, for instance, that CNT-based
composites presented percolation thresholds lower than composites containing metallic particles,
carbon black, or carbon fibers, or even some graphite derivatives [53,54]. Actually, the percolation
threshold in polymer composites is inversely proportional to their aspect ratio [55]. This is explained
by changes in the average inter-particle distance in the composite, with more somewhat spherical
structures presenting longer distances. Although nanoparticles render lower percolation transitions
than microfillers, their high surface energy produces composites with agglomerated rather than isolated
structures, affecting negativelly the electric percolation threshold. It is well known that improving
the dispersion state of nanoparticles produces a reduction in the percolation threshold [53,55,56].
For high-aspect-ratio fillers, their alignment is another variable affecting the electric conductivity
of polymer/CNT composites [57]. Monte Carlo simulations have confirmed that the conductivity
decreases with applied strain, because inter-particle distance increases due to CNT alignment [57].
In general, the percolation transition depends on all these variables in a complex way, and, for instance,
an optimal agglomeration and aligment level can be found [57].

The advantage of electric conductive polymer composites is the flexibility of the kind of filler that
can be used and other properties emerging from the electric conductivity through the filler. For instance,
the current passing through the polymer composite can induce a Joule heating, raising the internal
temperature of the polymer composite to above the transition temperature [58–61].

2.3. Conductive Polyelectrolite Hydrogels

Hydrogels are three-dimensional polymeric networks possessing hydrophilic characteristics and
high water absorbtion capacities. Due to their high water content, porosity and soft consistency, they
can mimmick natural living tissue better than any other class of synthetic biomaterials [62]. Hydrogels
can be reversible when the network is formed by molecular entanglements and/or secondary forces
such as ionic, H-bonding or hydrophobic forces. If the network is based on covalent bonds joining
the macromolecular chains or cross-linking polymers, the hydrogels are permanent. Due to their
porous networks and high water content allowing transport of water and small solutes, hydrogels
present ionic conductivity, especially in the case of polyelectrolytes, as recently studied by comparing
different hydrogels [63]. This ionic conductivity depends on several variables such as polymer polarity,
water content, salt/ions, and hydrogel structure. Higher water content increases the ionic conductivity
of the hydrogel and leads to a high ion transfer rate [63]. The conductivity of the hydrogel is further
controlled by two parameters: the mobility and concentration of ions. In low-concentration electrolyte
solutions, the concentration of total ions plays a dominant role in conductivity. In high-salt solutions,
the fraction of counterions to the total ions is significantly reduced, so the mobility of the ions becomes
the dominant parameter. Ionic hydrogels show higher conductivity than nonionic hydrogels, because
cationic and anionic hydrogels have higher concentrations of counterions functioning as charge carriers,
leading to high conductivity [63]. Besides the cations and anions of the electrolyte itself, the mobile
counterions of the ionic polymers also function as charge carriers, and electrolytes and polymer
counterions together contribute to higher ionic conductivity [63].
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3. Polymers for Tissue Engineering through Electrostimulation of Cells

3.1. Electrostimulation

Living cells use electric fields for several activities associated with: the generation of electromotive
force, the control of a specific potential difference, the capacity to control and switch current on and off,
and the stored charge. Indeed, an electric voltage exists across the plasma membrane, with the inside
of the cell remaining more negative than the outside. Bioelectricity present in the human body plays
an integral role in maintaining normal biological functions, such as signaling of the nervous system,
muscle contraction and wound healing. During major cellular events like cell division, development,
and migration, there is the generation of electric fields [33]. Therefore, a large variety of cell types
respond to electrical stimulation, including fibroblasts, osteoblasts, myoblasts, chick embryo dorsal
root ganglia, and neural crest cells [33].

The inherent bioelectricity present in different cellular events explains the use of electrical
stimulation (ES) for tissue repair through either direct current (DC) or alternating current (AC) [22,25].
By applying electric fields, the cell behavior can be modified, including orientation, proliferation,
and rate and direction of cell migration, as tested in corneal, epithelial, and vascular cells, among
others [17,20,21,31,63,64]. For instance, ES produces electrotaxis or galvanotaxis, the phenomenon
by which there is a directional migration of cells in response to the electric field [65–67]. There is
further evidence showing the great influence of an ES on growth and development of nerve cells,
wound healing, and angiogenesis, among other cellular properties, the former being one of the most
relevant in this field [68]. In addition, by means of controlled ES, a greater cellular differentiation is
achieved; for instance, stem cell differentiation to neurons [33,68,69]. One of the main effect of ES is
the opening of ion channels, triggering the production of ions that can be deposited on tissues [70].
This change results in the alteration of ionic fluxes like calcium ions, contributing to cellular locomotion
or electrophoretic/electroosmotic effects that cause a redistribution of membrane components [65,67].
The effect of an electrical field is not only valid for cells but also for tissues [71].

3.2. Polymers for Electrostimulation of Cells

The construction of scaffolds based on electrically conductive polymers for nerve tissue engineering
to enhance the nerve regeneration process have been one of the most studied applications of electroactive
polymers [33]. For instance, PC12 cells were seeded on electrochemically synthesized PPy films,
producing a ∼91% increase in median neurite length when a positive potential of 100 mV was
passed through the PPy for 2 h [72]. Applying electric stimuli to nerve cells through conductive
nanofibrous scaffolds of PANi/gelatin enhanced cell proliferation and neurite outgrowth compared
with non-stimulated scaffolds can also be achieved [73]. Poly(D,L-lactide-co-ε-caprolactone) membrane
coated with PPy and the composite scaffolds increased the proliferation and differentiation of PC12
into neuronal phenotypes as well as sciatic nerve regeneration in rats, showing that they can be used
for ES enhancing the neurite outgrowth [74]. These studies demonstrate that cell growth and function
can be drastically enhanced at the interface of PPy undergoing ES.

ES has also been used in fibroblast cells. For instance, conductive biodegradable PPy-Polylactide
(PLA) membranes and poly(D,L-lactide)/PPy nanocomposites are able to upregulate the mitochondrial
activity of human skin fibroblasts [75]. Under a constant electrical field strength of 100 mV/mm,
a greater cell viability was observed than that shown by the non-stimulated cells cultured on the
same substrate of identical surface morphology and chemistry. Moreover, electrical field seems to
play a more substantial role than does electrical current in modulating the activity of cells cultured
on conductive polymeric scaffold. DC applied to nanofibrous scaffolds of PANi and poly(L-lactide-
co-ε-caprolactone) enhanced the growth of NIH-3T3 fibroblasts [76]. Electric stimulus in conductive
polymers may offer a novel engineering technique to regulate cell adhesion and orientation of bone
marrow-derived mesenchymal stem cells (MSCs) and fibroblasts [77].
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Regarding the mechanisms behind the effects of an electric potential and/or an electric field on
cell activity through an intrinsic conductive polymer, it is speculated that reduction of the polymer
(for instance PPy) and electric conduction itself can both affect cells in several ways [34]. For example,
the process of neutralization of PPy, under a reducing potential, causes the expulsion of negative
ions or the uptake of positive ions from the medium. An uptake of positive ions such as Na+ from
the medium is speculated to affect several processes, including protein adsorption and the cell cycle.
For instance, human Adipose-Derived Mesenchymal Stem Cells (AD-MSCs) attached to PPy/chitosan
composite scaffolds and stimulated under DC for 7 days presented a calcium deposition 346% higher
than non-stimulated scaffolds [78]. The adsorption of serum proteins, specifically fibronectin, on the
electrically conducting polymer can further explain the improved cell behavior under ES as reported
in PC12 cells [34,79].

Electroactive polymer composites can also be used for tissue regenerating scaffolds, biosensors,
and bioapplications, leaving in evidence several potential applications in tissue engineering [29].
For instance, a polymeric composite scaffold of polyacrylonitrile/carbon nanofibers was developed,
yielding promising results under ES for applications in nerve tissue regeneration. Electrostimulated cells
attached on this conductive scaffold improve neuronal differentiation, and maturation of neural stem
cell under 5 V (AC) for 4 h during 7 days [80]. The intracellular and extracellular fluids, which possessed
different potentials under ES, produced an extra depolarization, generating these improvements and
cell extension [78,79]. Poly(lactic-co-glycolic acid) (PLGA)/CNT electroactive scaffolds were also
tested under an electric current (AC) using similar cells with better results than the non-stimulated
cell/samples [81]. In particular, an increase in proliferation, differentiation, and growth of long neurites
attached to the scaffolds were found under ES in these composite scaffolds [81].

The use of graphene in biomaterials is well known due to its excellent mechanical and electric
properties, as well as its biocompatibility with human cells [49,82]. Graphene particles are used
as a mechanical support strengthening hydrogels and as electric fillers for percolated conductivity
polymers [83]. For instance, electrically conductive graphene hydrogels based on Reduced Graphene
Oxide (rGO) and polyacrylamide (PAAm) can be considered as a composite useful for the development
of skeletal muscle in soft tissue engineering scaffolds and bioelectrodes. Moreover, ES of myoblasts by
the soft electroactive composite can upregulate myogenic gene expressions [83]. Polymer/graphene
composite scaffolds can further be designed for cardiac tissue engineering [84]. For instance,
Polycaprolactone (PCL) and Graphene composite scaffolds were obtained by an electrospinning
technique, producing changes in cardiomyocyte functions and significantly increasing the flux and
concentration of Ca2+ after ES [84].

Despite the several advantages of electroactive polymers for tissue engineering, some relevant
challenges should be addressed in order to continuously improve their behavior in this field. For intrinsic
conductive polymers, one the most relevant drawback is the lack of a proper biodegradation among
other issues such as poor polymer–cell interactions, the absence of cell interaction sites, hydrophobicity,
processability, and mechanical properties [85]. The most common strategy to overcome these issues is
to mix the electroactive polymer with another polymer possessing the desired property, such as: PLA,
PCL, PLGA, polyurethane (PU), chitosan, gelatin, and collagen, among others, for biodegradation
improvements. However, even minimizing the amounts of electroactive polymers in these blends, they
are expected to stay in the body. Another route to overcome this limitation is by synthesizing erodible
conducting polymers able to have a gradual dissolution [86] or by preparing degradable conductive
polymers containing conducting oligomers [85]. For electroactive polymer composites, the potential
toxicity of the carbon nanostructures is one the main drawbacks [87]. Moreover, carbon nanomaterials
are not biodegradable in general, adding another limitation, although they can be excreted in vivo
and cleared from the body once it is no longer needed. The increment in the polymer resistivity after
applying an electrical current can further add limitations together with the likely cytotoxicity effect of
long-term electrical exposure of cells [27].
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4. Electroactive Polymers for Drug Delivery

After the discovery more than 50 years ago that hydrophobic and low-molecular-weight drug
molecules are able to diffuse through silicone materials at a controlled rate, polymers have been
extensively studied for drug delivery systems [88]. The flexibility of polymeric materials can be
used to modulate the properties of the materials such as biodegradability and biocompatibility,
because of their diversity in chemistry, topology, and dimension. Indeed, polymers show usually
improved pharmacokinetics compared to pure small molecule drugs. Polymers are not drugs
themselves, and therefore they are designed to provide a passive function as drug carriers, reducing
immunogenicity, toxicity, or degradation, while improving circulation time [88]. Relevant in drug
delivery is the study of stimuli-responsive polymers mimicking biological systems in the capacity
to change under external stimulation [89,90]. These smart polymer biomaterials should present
their response within biological conditions. Typical stimuli are temperature [89], pH [91], light [92],
electric field [93], and electrolytes [94], among others [95–98]. The responses triggering the drug
release can be: dissolution/precipitation, degradation, change in hydration state, swelling/collapsing,
hydrophilic/hydrophobic surface, change in shape, conformational change and micellization. The most
important stimuli are pH, temperature, ionic strength, light, and redox potential. However, electric
fields can also be a stimuli for drug delivery and today electro-responsive polymers can be considered
smart drug carriers [21].

In drug delivery, hydrogels are highlighted because their highly porous structure permits loading
of drugs into the gel matrix, subsequently allowing drug release at a rate dependent on the diffusion
coefficient of the active molecule through the gel [89,93]. In stimulus/response electroactive hydrogels
the final effect of ES on drug release depends to a large extent on how the gel responds to the
stimulus, how the drug is released from the gel, and the interactions between the gel network and
the drug [99]. The main mechanisms of drug release in these electroactive hydrogels are: (1) forced
convection of the drug out of the gel along with syneresed/expelled water due to the electric field [98];
(2) diffusion [100]; (3) electrophoresis of charged drugs [101]; and (4) drug release upon erosion of
electro-erodible gels [102]. For charged drugs, the migration of the charged entities towards the electrode
bearing an opposite charge should be further considered [103]. The first mechanism is, however, the
most important mechanism of drug release in these systems, since under the influence of an electric
field, hydrogels generally deswell, causing the movement of solutes out of the gel. In particular,
when an electric field is applied, water is syneresed/expelled from the gel, causing the ejection of the
drug [98]. When the electric field is removed, the gel absorbs fluid and swells. Thus, upon sequential
switching “on” and “off” of the electric field, the gel deswells and swells, following the electric
field program [104–106]. Three main mechanisms of the electro-induced gel deswelling process exist:
(1) the establishment of a stress gradient in the gel; (2) changes in local pH around the electrodes;
and (3) electro-osmosis of water coupled with electrophoresis [102]. When diffusion is the major drug
release mechanism, electro-induced gel shrinking may inhibit drug release from the gel as the “pores”
in the polymer network of the gel become smaller and the pathway for drug movement out of the gel
becomes more tortuous. In this case, the application of an electric field stops/reduces drug release from
gels. This is especially significant for large drug molecules whose movement out of the gels can be
more effectively hindered by a “shrunken” polymeric network [102]. Electro-induced anisotropic gel
swelling can also occur when the gel is placed in a fixed position away from the electrodes. In this case,
gel expansion occurs when the mobile cations in the aqueous medium migrate towards the cathode,
penetrating into the gel network inducing ionization of the carboxyl groups on the gel network that
causes the gel on the anode side to swell as the ionized groups become hydrated [107]. These kinds of
gels, which swell in response to an electric field (and thus allow drug diffusion out of the gel) may be
more appropriate vehicles for electro-controlled release of such large molecules. Finally, pH changes
can lead to disruption of the ionic bonds responsible for the gel complex, and for instance the gel surface
facing the cathode can dissolve and erode under some conditions. This process triggers drug release.
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Intrinsic conductive polymers can also be used for electroactive drug delivery devices, as they can
undergo controllable and reversible redox reactions. These reactions alter their redox state, causing
simultaneous changes in polymer charge, conductivity, and volume that result in the uptake or
expulsion of charged molecules from the bulk of the polymer [107]. By exploiting these changes,
the rate of drug release from these conductive polymers can be modified. Anionic drugs can be loaded
into the polymers during the oxidative polymerization process or via ion exchange through redox
cycling after polymerization. By an electrochemical reduction, anionic molecules can be released [108].
For instance, glutamate anions can be released more than 14 times better from PPy during the application
of a reducing voltage, compared to the system without ES. In this case, PPy was prepared with mobile
anions that would be released on electric reduction accompanied by polymer contraction (anion-driven
actuation), therefore releasing the anionic drug [108]. So the drug release is triggered by reduction
and the reincorporation of drug by oxidation. For cationic drug release, when the neutral intrinsic
conductive polymer is oxidized, the resulting net positive charge in the polymer repels the drug out of
the film. PPy prepared with immobilized anions will incorporate cations on reduction accompanied
by swelling (cation driven actuation), and cations can then be released on oxidation. Of interest
is mixing intrinsic conductive polymers with hydrogels for the development of electro-conductive
hydrogels. In particular, a poly(ethyleneimine) (PEI) and 1-vinylimidazol(VI) polymer blend containing
polyacrylic acid (PAA) and poly(vinyl alcohol) (PVA) semi-interpenetrating networks (semi-IPNs)
was recently produced for therapeutic electro-responsive drugs [109]. Another electrically active
hydrogel was prepared by mixing chitosan-graft-polyaniline copolymer with oxidized dextran (OD) as
a cross-linking agent. The copolymer acted as a drug carrier with electrically driven release at a release
rate that dramatically increased when an increase in voltage was applied [93]. The electrically driven
release of drug molecules from conductive hydrogels has been directly associated with (1) electric
field-driven migration of the charged molecules [93] and (2) change in the overall net charge within
the polymer upon reduction or oxidation [110].

More complex structures can also be produced using intrinsic conductive polymers for instance
those based on nanotubes and microcups. In the former case, biodegradable polymer fibers having
the drug were produced by electrospinning, and then the conductive polymer was added on the
surface by electrochemical deposition [111]. A local dilation of the tube by the ES promotes mass
transport, accounting for the drug release in a desired fashion by ES of the nanotubes. Microcups
made of PPy were produced using PLGA polymer as template, with the capacity to control the
drug loading/release characteristics [112]. PPy nanoparticles can also be used for drug delivery
externally stimulated through a weak and external DC electric field having excellent spatial, temporal,
and dosage control [113]. In this case, the conductive polymer was coupled with a temperature-sensitive
hydrogel, and the mechanism involved a synergistic process of electrochemical reduction/oxidation and
electric-field-driven movement of charged molecules. Recently, electrically responsive micro-reservoirs
made of arrays of vertical microtubes were used as support for PPy polymers sealed with PLGA were
produced as microcontainers for anti-inflammatory drugs. This system was able to accelerate the cells’
osteogenic differentiation via electrically controlled release of dexamethasone [114].

The electric conductivity of many electroactive polymeric materials used is not high enough
to achieve an effective modulation of drug release, leading to the use of more conducting materials
(e.g., carbon-based nanomaterials) in polymeric networks as a strategy to enhance the electro-sensitivity
of hydrogels. The addition of conductive particles such as CNT can improve the electrically
stimulated drug delivery behavior of the intrinsic conductive polymers [115,116]. For instance,
a semi-interpenetrating polymer network based on polyethylene oxide and pentaerythritol triacrylate
polymers was prepared by electrospinning, and CNT was used to increase the electric sensitivity.
The amount of released drug increased under the presence of the conductive particles due to the polymer
dissolution under the effects of carbon nanotubes, thereby releasing the drug. A similar tendency was
found using an aligned CNT array membrane electrode as a platform for the production of PPy films,
showing significant improvement in the controlled release of neurotrophin [117]. Electrospinning
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was used to prepare poly(vinyl alcohol)/poly(acrylic acid)/multi-walled carbon nanotubes (MWCNTs)
nanocomposites where the drug release of nanofibers depended on the electric voltage applied due
to the variation of the ionization of functional groups in the polymer matrices [118]. In this context,
spherical hybrid hydrogels composed of gelatin with CNT were produced as drug delivery systems
for the electro-responsive release of diclofenac sodium salt, where the electrical stimulation increased
the drug release associated with a reduction of swelling behavior by built-in osmotic pressure [119].
Electro-responsive hybrid hydrogels can also be produced by this route such as gelatin-coated CNT
mixed with acrylamide and polyethylene glycol dimethacrylate as plasticizing and crosslinking
monomer, respectively [120]. These composites were highly versatile in modulating the drug delivery
of neutral drugs as a function of both nanotube content and voltage magnitude, with drug release
being dependent on the balance between electrostatic attractive and repulsive forces and the degree
of hydrogel swelling. Another electroresponsive poly(methylacrylic acid)/CNT composite was also
reported, presenting controlled drug release upon the On/Off application of an electric field as tested
both in vitro and in vivo [121].

The above-mentioned drawbacks of electroactive polymers in tissue engineering are still valid
for drug delivery, in particular lack of a proper biodegradation, high hydrophobicity, and poor
mechanical behavior [103]. In the particular case of non-biodegradable drug delivery implanted
devices, after an initial procedure to administer the device, a second procedure will be required for
removal [103]. In addition to these issues, these electroactive polymers will require attachment to
an electrode and some electronic circuitry for operating, limiting their use. Another limitation is related
to the low levels of drug than can be incorporated and released [103].

5. Artificial Muscle Based on Polymer Composites

Artificial muscles can be defined as electromechanical actuators, meaning that they can directly
convert electric energy into mechanical energy. They are relevant for a broad range of applications,
especially in biomedical engineering, as they can be used in applications such as: microsurgical
devices, artificial limbs, or even, in the future, implants like artificial ocular muscles, or hearts [122].
Specific examples are blood vessel (microanastomosis) connectors, tubes that hold open the ear drum
(myringotomy tubes), and microvalves for prevention of urinary incontinence [123]. Artificial muscles
based on conductive polymer actuators have many advantages for biomedical applications as they
(1) can be electrically controlled; (2) have a large strain which is favorable for linear, volumetric,
or bending actuators; (3) possess great strength; (4) require low voltage for actuation (1 V or less);
(5) can be positioned continuously between minimum and maximum values; (6) work at room/body
temperature; (7) can be readily microfabricated and have light weight; and (8) can operate in body
fluids [123]. Although different materials are used as artificial muscles, most of them are polymers
based on electroactive PPy, ionic metal–polymer composites (IMPCs), hydrogels, or liquid crystal
elastomers (LCEs). Today, polymer actuators can even exceed the performance of natural muscle
in many respects, making them particularly attractive for use anywhere a muscle-like response is
desirable [124]. Each polymer system presents a specific mechanism for the electromechanical actuation
and for instance, electronically intrinsic conducting polymers such as PANi and PPy provide one
type of high-strain actuator based on dimensional changes produced by electrochemically inserting
solvated dopant ions into a conducting-polymer electrode [124]. Dielectric elastomers present actuation
through “Maxwell stress” due to the attraction between charges on opposite capacitor electrodes
and the repulsion between like charges [125]. The volume change of an electrolyte and electrostatic
repulsion can be further used as a mechanism such as in ionic polymer/metal composite actuator.
Depending on the conductive mechanisms, these polymers can be divided into two major groups:
(1) electroactive polymers (EAPs) such as intrinsic conductive polymers, dielectric elastomer actuators
(DEAs), ferroelectric polymers, and liquid crystal elastomers; and (2) ionic EAPs characterized by the
presence and movement of ions triggering the actuation [124].
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In ionic conducting polymers, an ion is mobile within the matrix and when a positive voltage
is applied to a conducting polymer electrode, electrons leave the polymer electrode and anions are
attracted to and inserted into the polymer to balance the electric charge, resulting in an expansion.
To complete the circuit, a second electrode is used which acts in the opposite direction, expelling
ions when it is negatively biased. This inclusion and exclusion of ions can create expansion and
contraction on opposite sides of a structure such as a catheter, producing bending [126]. For instance,
during oxidation of PPy films, electrons are extracted from the polymer chains, double bonds are
rearranged, and positive charges (polarons or bipolarons) are stored along the chains. To maintain the
electroneutrality, conformational movements of the chains stimulated by the electrochemical process
generate free volume, which is occupied by the counterions and water molecules, producing the film
swells. Otherwise, during reduction of the polymer, electrons are injected into the chains and positive
charges are compensated. The original structure of the double bonds is restored and counterions and
water molecules are expelled towards the solution by the electrochemically stimulated conformational
relaxation, promoting a shrinking [127]. Artificial muscles from these conducting polymers are fully
reliable Faradaic motors and the movement rate is under linear control of the flowing current and the
consumed charge [128]. Design of PPy electroactuators can use a monolithic, bilayered, or trilayered
structure, and while monolithic and bilayered implementations are primarily used in applications
involving a supporting liquid electrolyte (either aqueous or organic), trilayered ones are employed
with an ionic gel electrolyte sandwiched between two PPy films for operation in air. Bending bilayers
are one of the most efficient structures transducing reaction that drive from small volume variations
in the conductive polymer film to large bending movements [129]. In this case, the second layer is
required to translate the volume variation from the polymer film into mechanical stress gradient
across the bilayer, producing the macroscopic bending movement. Thus, the second layer is a passive
layer that must be bent, although it consumes a fraction of the applied electric energy for bending it.
As a result, the muscular energetic efficiency and the angular displacement, for the same consumed
charge, decreases [130]. Two layers of the same conducting polymer constituting an asymmetric bilayer
muscle can overcome this limitation as one PPy is expected to swell during oxidation by entrance
of anions pushing the bending movement while the second layer must shrink during oxidation
(simultaneously) by expulsion of cations pulling the bending movement. The improvement arising
from the asymmetric bilayer can be seven and four times that of the two layer artificial muscles [128].
A cooperative electro-chemo-mechanical actuation of each of the individual layers occurs in each
asymmetric bilayer.

A different kind of material broadly used for actuators in artificial muscles is the family
of ion-exchange polymer–metal composites (IPMCs) showing large deformation in the presence
of a low applied voltage. IPMCs consist of a solvent swollen ion-exchange polymer membrane
laminated between two thin flexible metal (typically percolated Pt nanoparticles or Au) or carbon-based
electrodes [131]. The mechanism in IPMCs is based on the characteristic of polyelectrolytes to possess
ionizable groups on their molecular backbone that can be dissociated to obtain a net charge in a variety
of solvent media. Therefore, the capacity of these polymers to interact with externally applied fields
as well as their own internal field triggers the electromechanical deformation of such polyelectrolyte.
For instance, polyelectrolytes filled with liquid containing ions can also deform under an external
electric field due to the electrophoretic migration of such ions inside the structure [132]. An IPMC
bends toward the anode if it is cationic under the influence of an imposed electric potential, and can
oscillate in response to an alternating input voltage. Furthermore, the appearance of water at the
surface of the expansion side and the disappearance of water on the contraction side occur near the
electrodes, meaning that charged particles drag water molecules parasitically with them when they
are electrophoretically transported within the IPMC. Therefore, the imposition of an electric field
produces an electrophoretic dynamic migration of the mobile cations that are conjugated with the
polymeric anions that can result in a local deformation of the material [132]. These composites are
produced in two steps: (1) a compositing process to metallize the inner surface of the polymer by
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a chemical-reduction where the metallic particles are concentrated predominantly near the interface
boundaries; and (2) a surface electroding process in which multiple reducing agents are introduced,
and where the original roughened surface disappears [133]. The particles improve the conductivity
between the polymer and the electrodes.

Another approach for artificial muscle is based on dielectric elastomer actuators that are essentially
compliant variable capacitors consisting of a thin elastomeric film coated on both sides with compliant
electrodes [131]. When an electric field is applied across the electrodes, the electrostatic attraction
between the opposite charges on opposing electrode and the repulsion of the like charges on each
electrode generate stress on the film causing it to contract in thickness and expand in area. This concept
extends toward the construction of flexible dielectric elastomers by the production of a soft dielectric
sandwiched between two soft conductors that are subject to a voltage producing electric charges
of the opposite polarities accumulate on the faces of the dielectric, causing the dielectric to reduce
thickness and expand area [134]. This approach can be further extended to soft robots, where an
encapsulated hydrogel serves as an ionically conductive electrode and surrounding tap water can
be used as the other electrode [135]. When a voltage is applied the positive and negative charges
accumulate on both sides of the dielectric elastomer, inducing Maxwell stress that deforms the
membranes. The net effect is a reduction of the body’s curvature, corresponding to the actuated
state. The resulting strain in these systems is proportional to the quadratic of the applied voltage
and the material electrical strength [136]. Indeed, by increasing the electrical breakdown strength,
lager range of input operating voltages and reduced probability of material degradation can be
obtained. Notably, the electrical breakdown and the dielectric losses can be changed by controlling
processing parameters of the polymer synthesis and fabrication procedure as recently shown for
Poly(vinylidenefluoride–trifluoroethylene–chlorotrifluoroethylene) terpolymer [136].

A much less studied material for electro-actuators are percolated electric conductive polymer
composites, where the mechanism is based on heating the polymer by the joule effect due to the current
passing through the conductive paths. This heating produces an observable expansion of the composites
and the buckling of the device when the boundaries are restricted [137]. Although these composites
can present low volume changes at high voltages, it depends on the materials used and a chitosan/CNT
composite can present larger electromechanical actuations [138]. Recently, environmentally friendly
electrothermal bimetallic actuators based on waterborne polyurethane and a silicone rubber matrix
filler with CNT presented an improved behavior. Under 7 V AC, the actuator achieved a bending
displacement up to 28 mm, which is greater than most of other electrothermal actuators reported [137].

Despite the potentiality of artificial muscles based on electroactive polymers and hydrogels,
they present a major drawback related with the small electrochemical stability window of aqueous
electrolytes (≈1.23 V) [139]. Beyond this window, electrolysis of water can lead to catastrophe due to
hydrogen and oxygen evolution reactions at the electrodes. Indeed, although these systems can be
stable in air, they exhibit slow response time. Moreover, it can be a drift in the bending amplitude which
may require correction by a feedback-loop control system. In hydrogels, the main drawback relates
with the relatively slow response time as well as chemical stability and performance degradation over
time [139].

6. Antimicrobial and Antifouling Polymers Based on Electrical Stimulation

6.1. Microbial Infections and Biofouling

Microorganisms are present at all time in different environments, so it is necessary for the
design of any kind of biomaterials to consider their antimicrobial properties [140]. Biofouling is
the formation of a microbial consortium which contributes to the development of biofilms capable
of adhering to the surface of materials, facilitating the adhesion of other microorganisms on wet
surfaces. The development of biofilms on different surfaces is a problem that affects several materials
in applications such as food, drinking water quality, and medicines, among others [141]. The bacterial
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colonies on the surface of a biomaterial, which are highly resistant to antibiotic treatments, are
difficult to be eliminated by conventional methods [142], leading to a chronic inflammatory response.
Once formed, biofilms cause serious and even fatal clinical complications. In biomedical applications,
bacterial infections can cause tissue destruction, premature device failure, and the spread of infection to
other areas [143,144]. For instance, bone implants are always associated with risks of bacterial infection
that leads to implant failure or, in critical cases, amputation or death of the patient [144,145]. In contact
with the eye lens this process causes serious eye infections [146]. Other examples of fouling formation
are in catheter-associated urinary tract infections [147,148], and dental implants cause periodontal
diseases and gingivitis [144]. Therefore, it is of great importance to eradicate biofilm formation avoiding
the reversible anchoring of bacterial colonies [149]. The formation of bacterial films on a surface can be
classified as follows: State 1—reversible anchoring of bacterial colonies; State 2—bacterial colonies
irreversibly anchored to the surface, losing the flagella that give spatial mobility; State 3—beginning
of the first maturation stage; State 4—completion of the maturation phase; and State 5—movement
of bacterial colonies and dispersal into microcolonies [140]. These states are summarized in Figure 6.
The different strategies for the control of biofilms are still under discussion, although some of them are:
inhibit microbial adhesion on the surface, interfere with the surface by molecules that modulate the
development of the biofilm, and the dissociation of the biofilm matrix [140].
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State 1: reversible anchoring of bacterial colonies; State 2: bacterial colonies are irreversibly anchored
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colonies begin to move again, dispersing in microcolonies.

6.2. Electrical Stimulation as an Antimicrobial Method

ES has been applied to promote the inactivation of different biofilms and bacterial strains, such as
S. aureus, Pseudomonas, and E. coli on different metals and amorphous carbon substrates, among
other types of electroactive materials [150,151]. Because all naturally occurring surfaces, including
those of bacterial cells, are generally negatively charged, the electrostatic force between bacteria
and a biomaterial surface is repulsive. These repulsive forces can be enhanced by application of an
electric current, thereby increasing the negative charge and consequently the repulsive force [152].
Therefore, this electrostatic repulsion between the resulting electrically charged material surface and
biofoulants such as soluble microbial product molecules and extracellular polymeric substances which
are negatively charged, and microbial cells can facilitate their removal [153]. An electric current
can further enhance the activities of antimicrobial agents such as aminoglycosides, quinolones, and
oxytetracycline against Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus epidermidis,
Escherichia coli, and Streptococcus gordonii biofilms, a phenomenon referred to as the bioelectric
effect [154]. This effect can be related to pH modification, the production and transportation of
antimicrobial agents into the biofilm by an electrophoretic process, the genesis of additional biocidal
ions, or hyperoxygenation [155]. The bioelectric effect has been studied mainly in infections associated
with metal prostheses, although studies have also been conducted to the treatment of infections in
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the auditory canals, through non-invasive transcutaneous or minimally invasive applications such as
subcutaneous [154].

In addition to the mechanism based on electrostatic repulsion, there are others not yet fully
understood [148,149]. For instance, the electric field causes an increase in the permeability of the
cell membrane, causing electropermeabilization or irreversible electroporation and the production
of reactive oxygen species (ROS) [156–164]. This electrolytic damage of the internal cell membranes
generates an irreversible loss of the semipermeable barrier function, the release of intracellular content,
a loss of motility, and synthesis of some enzymes such as lactate dehydrogenase and trypsin [160].
The effects of electroporation produced by low electric fields (1.5–20 V/cm) promotes biocidal action in
the different existing biofilms [160–162]. Free radicals and ROS are generated as hydrogen peroxide
and reactive nitrogen species (RNS) at low electric field and low current [155,164]. Moreover, electric
current, even at a low intensity, can cause an increase of hydrogen ion concentration inside the
cytoplasm and disorganization of membrane functionality, causing the alteration of cells. It has been
demonstrated that the use of AC causes the inhibition of yeast cell metabolism because it induces the
migration of electrons from the cell to the graphite electrode and the accumulation of H+ ions in the
cell, thereby modifying the membrane potential [160].

6.3. Electroactive Polymers as Antimicrobial and Antifouling Materials

Despite the relevance of electric field to avoid biofouling, its use in electroactive antimicrobial
polymers for biomedical applications has been barely reported. For instance, modified PPy membranes
coated with graphene derivatives were produced to enhance their electric conductivity and improve
biofouling suppression because of higher electrostatic repulsions [153]. In general, most of the
research has focused on antifouling membranes for bioreactors. The mechanisms of fouling prevention
and cleaning with conductive membranes are also mainly based on electrostatic interactions or
electrochemical redox reactions on the membrane surface [165]. For instance, during filtration of
charged macromolecules and particles, the charged conducting membrane pushes back the foulants due
to the electrostatic effect, and this reduces membrane fouling. In electrochemical fouling, the membrane
acts either as the electrode where direct or indirect oxidation of foulants takes place on the membrane
surface or at the electrode, where foulants are removed via bubble generation on the surface [165].
In this context, intrinsic conductive polymers are able to show antimicrobial behavior without any
external electric stimulus due to the oxidative stress that these polymers can generate on the bacterial
cells, suppressing the formation of the bacterial cell wall [165]. Nanocomposites of PANi with zinc
oxide (ZnO) nanorods, and epoxy resins with PANi, showed excellent antifouling properties [165,166]
By developing an electrically conductive membranes through a graphene (Gr) and PANi coating doped
with phytic acid (PA) on polyester filter cloth, a membrane with good conductivity was obtained,
presenting excellent antifouling properties. The membrane with a higher conductivity had better
antifouling property [166].

One of the first reports about polymer composites for electric antimicrobial effect in biomedical
applications used carbon particles where two modified catheters were placed vertically in a nutrient
agar plate and connected to an electric device with one catheter acting as a cathode and the other as an
anode [167]. The bactericidal activity possessed by negatively charged electroconducting polymers
was explained by the establishment of electrostatic repulsions between the negatively charged bacterial
cell wall and the polymer [168]. Recently, Arriagada et al., 2018 [169] achieved 100% antimicrobial
activity by applying 9V by means of an electroactive composite based on Poly(lactic acid) (PLA) with
Thermally Reduced Graphene Oxide particles (TrGO). The results are attributed to the electrostatic
effect and the transfer of electrons in conductive materials under an electric current, which causes the
death bacteria attached to the electroactive materials [169]. Future research should focus on polymeric
compounds capable of eradicating in the early states of microorganisms attaching to surfaces through
new smart electroactive biomaterials [170]. In Zhang et al., 2014 [170] Polypyrrol (PPy)/chitosan films
with a synergic effect of DC current and gentamycin treatment against biofilm bacterial were fabricated,
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and they were able to produce biofilm disruption by compromising the integrity of the cell wall by
an autolysis-induced cell disruption, i.e., through the action of enzymes produced under the applied
DC [170].

In hydrogels the effect of an electric current on the bacterial growth has also barely been reported.
For instance, a DC electric field was used as a practical nonthermal procedure to reduce or modify the
microbial distribution in alginate and agarose gel beads. The viability of bacteria entrapped in the
beads decreases as the field intensity and duration of electric field increase [171].

7. Conclusions

The flexibility of polymers makes possible the development not only of highly compatible and
degradable biomaterials, but also a broad set of conductive materials such as: intrinsically electric
conductive polymers, percolated electric conductive composites, and ionic conductive hydrogels.
This unique flexibility of polymers can be used for the design of electroactive materials for specific
biomedical applications such as ES of cells; drug delivery; artificial muscles; and antimicrobial materials.
While the use of ES in conductive polymers has been well documented for drug delivery and artificial
muscles, more research should take place regarding the potential use of these smart polymeric materials
for cell proliferation and antimicrobial scaffolds. For instance, additive manufacturing can extend the
range of possibilities for designing electroactive scaffolds that would certainly impact the applications
of electroactive polymers.
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