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Abstract 
Context: Tirzepatide is a glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonist approved for treatment of 
type 2 diabetes (T2D). SURPASS-1, a phase 3 trial of tirzepatide monotherapy in people with early T2D, enables evaluating effects of tirzepatide on 
pancreatic beta-cell function and insulin sensitivity (IS) without other background antihyperglycemic medications.
Objective: Explore changes in biomarkers of beta-cell function and IS with tirzepatide monotherapy.
Design: Post hoc analyses of fasting biomarkers with analysis of variance and mixed model repeated measures.
Setting: Forty-seven sites in 4 countries.
Patients: Four hundred seventy-eight T2D participants.
Intervention: Tirzepatide (5, 10, 15 mg), placebo.
Main Outcome Measure(s): Analyze biomarkers of beta-cell function and IS at 40 weeks.
Results: At 40 weeks, markers of beta-cell function improved with tirzepatide monotherapy vs placebo with reductions from baseline in fasting 
proinsulin levels (49-55% vs −0.6%) and in intact proinsulin/C-peptide ratios (47-49% vs −0.1%) (P < .001, all doses vs placebo). Increases from 
baseline in homeostatic model assessment for beta-cell function (computed with C-peptide) (77-92% vs −1.4%) and decreases in glucose- 
adjusted glucagon levels (37-44% vs +4.8%) were observed with tirzepatide vs placebo (P < .001, all doses vs placebo). IS improved as 
indicated by reductions from baseline in homeostatic model assessment for insulin resistance (9-23% vs +14.7%) and fasting insulin levels 
(2-12% vs +15%), and increases in total adiponectin (16-23% vs −0.2%) and insulin-like growth factor binding protein 2 (38-70% vs +4.1%) 
with tirzepatide vs placebo at 40 weeks (P ≤ .031, all doses vs placebo, except for fasting insulin levels with tirzepatide 10 mg).
Conclusions: As monotherapy for early T2D, tirzepatide achieved significant improvements in biomarkers of both pancreatic beta-cell function 
and IS.
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Tirzepatide is a novel glucose-dependent insulinotropic poly
peptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor 
agonist that was recently approved for the treatment of 
type 2 diabetes (T2D). In the SURPASS trials, once-weekly 
treatment with tirzepatide (5, 10, and 15 mg) demonstrated 
robust improvements in glycosylated hemoglobin A1c 
(HbA1c; up to −2.59% reduction) and body weight [up to 
−12.9 kg (−13.9%) reduction] across a wide spectrum of 
people with T2D ranging from those treated with tirzepatide 
monotherapy to tirzepatide combined with oral antihyper
glycemic medications with or without basal insulin [1–5]. 
Notably, in studies comparing tirzepatide with selective 
GLP-1 receptor agonists, tirzepatide delivered superior 
glycemic control and weight reduction in people with T2D 
[2, 6, 7].

Although metformin is often used as an initial treatment for 
newly diagnosed T2D, more than 80% of people with early 
T2D treated with tirzepatide as monotherapy reached target 

HbA1c goals of <7.0% in the SURPASS-1 trial [4]. This study 
provides a unique opportunity to assess mechanisms by which 
tirzepatide improves glycemic function in the absence of 
potential confounding effects of other background antihyper
glycemic medications.

Impaired insulin production from pancreatic beta cells and 
impaired insulin action both contribute to hyperglycemia in 
T2D [8]. To date, effects of tirzepatide monotherapy in people 
with T2D on pancreatic beta-cell function or insulin sensitiv
ity have not been investigated. In preclinical studies, tirzepa
tide improved insulin sensitivity in GLP-1 receptor null 
mice, thus demonstrating the important role of GIP receptor 
agonism in insulin sensitization [9] in addition to contribu
tions of both GLP-1 and GIP receptor agonism to glucose- 
dependent insulin secretion [10]. In this analysis, we explored 
changes in biomarkers of beta-cell function and insulin sensi
tivity after tirzepatide monotherapy in participants from the 
SURPASS-1 trial.
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Methods
Trial Design and Participants
The study design, full inclusion and exclusion criteria, and pri
mary results of the SURPASS-1 clinical trial have been previ
ously reported [4, 11]. Briefly, participants in this 40-week, 
multicenter, randomized, double-blind, placebo-controlled, 
parallel group trial were randomly assigned (1:1:1:1) to 
receive once a week tirzepatide (5, 10, or 15 mg) or volume- 
matched placebo in a single-dose pen. Assignment to treat
ment group was determined by a computer-generated random 
sequence using the Eli Lilly and Company interactive 
web-response system. Key eligibility criteria included adults 
with T2D (HbA1c of ≥7.0% to ≤9.5% at screening), naïve 
to injectable therapy for T2D, no diabetes medication within 
90 days of the screening visit, body mass index (BMI) of 
≥23 kg/m2, and stable weight (±5%) during the previous 3 
months with agreement to not initiate a diet or exercise pro
gram during the study with the intent of reducing body weight 
other than the lifestyle and dietary measures for diabetes treat
ment. The SURPASS-1 trial was conducted in accordance with 
the International Conference on Harmonisation Guidelines 
for Good Clinical Practice and the Declaration of Helsinki. 
All participants provided signed informed consent and proto
cols were approved by local ethical review boards. This study 
is registered with ClinicalTrials.gov (NCT03954834).

Fasting blood samples were collected for in-protocol and 
exploratory biomarker measures at baseline and at weeks 8, 
16, 24, and 40 and during the safety follow-up. In-protocol 
biomarker analyses included fasting blood glucose, insulin, 
C-peptide, glucagon, and total adiponectin. Exploratory 
post hoc biomarker analyses included fasting intact proinsulin 
and insulin-like growth factor binding protein 2 (IGFBP-2). 
Homeostatic model assessment for beta-cell function 
(HOMA2-B), computed with fasting C-peptide levels, and 
homeostatic model assessment for insulin resistance 
(HOMA2-IR), computed with fasting insulin levels, indices 
were generated using the HOMA2 Calculator [12]. Fasting 
proinsulin levels enabled fasting proinsulin/C-peptide ratio 
calculations. All in-protocol biomarkers were measured at 
the central laboratory (Pacific Biomarkers Inc., Seattle, WA, 
USA). Post hoc exploratory biomarkers IGFBP-2 and intact 
proinsulin were measured using enzyme linked immunosorb
ent assays (Covance Laboratories Inc., Greenfield, IN, USA).

Statistical Analyses
All analyses were performed on the modified intent-to-treat 
population, comprised of all randomly assigned participants 
with at least 1 dose of study drug exposure. Participants 
who discontinued study drug due to inadvertent enrollment 
were excluded. Data collected after study drug discontinu
ation or rescue drug initiation were excluded from analysis. 
Overall, 478 participants were randomized and took at least 
1 dose of the study drug, and 475 participants were included 
in this analysis (tirzepatide 5 mg, n = 121; 10 mg, n = 121; 
15 mg, n = 120; placebo, n = 115). Analysis for baseline meas
ures was performed using ANOVA, and analyses for change 
from baseline as well as percent change from baseline were 
conducted using mixed model repeated measures for postba
seline measures. For percent change from baseline analyses 
(except for fasting serum glucose), parameters of interest 
were analyzed on log scale and then converted back to original 
scale. There were no adjustments for multiplicity. Statistical 

test results were considered statistically significant at the two- 
sided alpha level of .05. Statistical analyses were performed 
using SAS version 9.4, unless otherwise specified.

Results
Baseline Demographics and Clinical Characteristics
Demographics and clinical characteristics were similar be
tween groups (Table 1). The overall mean duration of diabetes 
was 4.7 years with a mean baseline HbA1c of 7.94% and BMI 
of 31.9 kg/m2. Fifty-four percent of participants had no prior 
use of oral antihyperglycemic medication, which was similarly 
distributed across groups.

Tirzepatide Improved Glycemic Control and Body 
Weight
Changes in HbA1c, fasting serum glucose, and body weight 
have been published [4]. Briefly, significant reductions in 
HbA1c, fasting serum glucose, and body weight were 
achieved with all doses of tirzepatide compared with placebo 
[11]. Glucose and weight reductions were observed as early as 
4 to 8 weeks with dose escalation of tirzepatide to 5 mg [11].

Tirzepatide Improved Markers of Beta-cell Function
To assess effects of tirzepatide treatment on fasting bio
markers of pancreatic beta-cell function, we measured levels 
of intact proinsulin, a marker of pre-proinsulin processing in
dicative of beta-cell stress, and calculated proinsulin/ 
C-peptide ratios. Intact proinsulin levels significantly de
creased over time at all time points from baseline with tirzepa
tide 5, 10, and 15 mg (P < .001, all doses) (Fig. 1A). At 40 
weeks, percent change from baseline of fasting proinsulin lev
els ranged from −55% to −49% with tirzepatide (P < .001, all 
doses) compared to −0.6% with placebo (P > .05) (Fig. 1A
and Table 2). Estimated treatment differences in percent 
change from baseline in fasting proinsulin levels were signifi
cant between tirzepatide and placebo by 12 weeks when 
dose escalation of tirzepatide in higher dose cohorts had 
reached 7.5 mg and were sustained at 40 weeks (P < .001, 
all tirzepatide doses vs placebo) (Table 2).

Intact proinsulin/C-peptide ratios significantly decreased 
at all time points from baseline with all tirzepatide doses, indi
cative of improved insulin processing within pancreatic beta 
cells. Decreases in percent change from baseline of intact 
proinsulin/C-peptide ratios ranged from 49% to 47% with 
tirzepatide (P < .001, all doses) compared to 0.1% with pla
cebo (P > .05) at 40 weeks (Fig. 1B and Table 2). Estimated 
treatment differences in percent change from baseline in intact 
proinsulin/C-peptide ratios were significant between all tirze
patide doses and placebo by 24 weeks and maintained at 40 
weeks (P < .001) (Table 2).

HOMA2-B index (computed with C-peptide), a marker of 
fasting beta-cell function, also significantly increased over 
time at all time points from baseline for all tirzepatide doses 
(P < .001, all doses). At 40 weeks, HOMA2-B (computed 
with C-peptide) significantly increased with all tirzepatide 
doses, ranging from 80% to 92% (P < .001, all doses) and de
creased with placebo by −1.4% (P > .05) (Fig. 1C). Estimated 
treatment differences in percent change from baseline in 
HOMA2-B (computed with C-peptide) were significant be
tween all tirzepatide doses and placebo by 8 weeks after 
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dose escalation to 5 mg in all tirzepatide arms and maintained 
at 40 weeks (P < .001) (Table 2).

Glucose-adjusted glucagon levels significantly decreased 
over time at all time points from baseline for tirzepatide 5, 
10, and 15 mg (P < .001, all doses) and increased with placebo 
at week 8 (P = .039) (Fig. 1D). At 40 weeks, decreases in per
cent change from baseline of glucose-adjusted glucagon levels 
ranged from 37% to 44% with tirzepatide (P < .001, all 
doses) compared to an increase of 4.8% with placebo 
(P = .461) (Fig. 1D). Estimated treatment differences in per
cent change from baseline in glucose-adjusted glucagon levels 
were significant between tirzepatide and placebo as early as 8 
weeks after dose escalation to 5 mg in all tirzepatide arms, 
with further reductions at 40 weeks (P < .001, all tirzepatide 
doses vs placebo) (Table 2).

Tirzepatide Improved Markers of Insulin Sensitivity
We measured fasting insulin levels as a reflection of insulin 
production from pancreatic beta cells in the context of 
changes in metabolic demand and insulin sensitivity. 
Fasting insulin levels significantly increased from baseline 
during the early stages of dose escalation at week 8 (after 
4 weeks at 5 mg) and week 16 (after 4 weeks at 10 mg) in 
the tirzepatide 10 mg cohort (P ≤ .032), consistent with in
creases in insulin secretion. However, over the subsequent 
24 weeks of the active treatment period, fasting insulin lev
els decreased toward baseline in the tirzepatide 10 mg 
group, likely reflecting reduced metabolic demand for 
insulin production as glycemic control improved. Fasting 
insulin also increased with a similar temporal pattern dur
ing the initial weeks of dose escalation to 5 mg in the tirze
patide 15 mg cohort but over time significantly decreased 
(P = .034) vs increased levels with placebo at week 40 

(P = .034) (Fig. 2A). At 40 weeks, reductions in percent 
change from baseline of fasting insulin ranged from 2% to 
12% with tirzepatide (P > .05 tirzepatide 5 and 10 mg; P  
= .034, tirzepatide 15 mg) compared to increases of 15% 
with placebo (P = .034) (Fig. 2A). Estimated treatment dif
ferences in percent change from baseline in fasting insulin 
levels were significant between tirzepatide 5 and 15 mg vs 
placebo at 40 weeks (P ≤ .031) (Table 2).

We assessed longitudinal changes in HOMA2-IR index, a 
fasting measure of insulin resistance. HOMA2-IR (computed 
with insulin) significantly increased from baseline in the tirze
patide 10 mg cohort early in dose escalation through week 16 
(P = .025), with a temporal pattern similar to fasting insulin 
levels, followed by subsequent decreases over time. 
HOMA2-IR (computed with insulin) was significantly de
creased by weeks 24 and 40 in the tirzepatide 15 mg cohort 
(P ≤ .004), indicative of improved insulin sensitivity 
(Fig. 2B). At 40 weeks, percent change from baseline of 
HOMA2-IR (computed with insulin) reductions with tirzepa
tide ranged from 9% to 23% (P < .001, tirzepatide 15 mg 
only) compared to a 14.7% increase with placebo (P = .028) 
(Fig. 2B and Table 2). Estimated treatment differences in per
cent change from baseline in HOMA2-IR (computed with in
sulin) were significant between tirzepatide and placebo at 40 
weeks (P ≤ .006, all tirzepatide doses vs placebo) (Table 2).

To further assess fasting biomarkers associated with im
provements in insulin sensitivity, we measured adiponectin 
and IGFBP-2 levels. Total adiponectin levels significantly in
creased over time at all time points from baseline with tirzepa
tide 5, 10, and 15 mg (P ≤ .003, all doses) (Fig. 2C), indicative 
of improved insulin sensitivity. At 40 weeks, percent increase 
from baseline of total adiponectin levels ranged from 16% to 
23% with tirzepatide (P ≤ .001, all doses) compared to a de
crease of .2% with placebo (P > .05) (Fig. 2C and Table 2). 

Table 1. Baseline demographics and patient characteristics

Parameter Tirzepatide 
5 mg  
n = 121

Tirzepatide 
10 mg  
n = 121

Tirzepatide  
15 mg  
n = 121

Placebo 
n = 115

Age, years 54.1 ± 11.9 55.8 ± 10.4 52.9 ± 12.3 53.6 ± 12.8

Female, n (%) 65 (53.7) 49 (40.5) 58 (47.9) 59 (51.3)

Duration of diabetes, years 4.6 ± 5.08 4.9 ± 5.61 4.8 ± 4.99 4.5 ± 5.87

HbA1c, % 8.0 ± 0.84 7.9 ± 0.78 7.9 ± 1.02 8.1 ± 0.80

Fasting serum glucose, mg/dL 153.7 ± 37.28 152.6 ± 41.72 153.3 ± 40.40 154.8 ± 40.26

Weight, kg 87.0 ± 21.15 86.2 ± 19.50 85.4 ± 18.51 84.8 ± 20.01

BMI, kg/m2 32.2 ± 6.98 32.2 ± 7.65 31.5 ± 5.48 31.7 ± 6.07

Prior use of OAM, n (%) 55 (45.5) 53 (43.8) 56 (46.3) 55 (47.8)

Fasting insulin, pmol/L 96.2 ± 6.09 90.7 ± 5.82 95.2 ± 6.19 84.8 ± 5.64

HOMA2-B (computed with c-peptide) 52.9 ± 2.67 51.8 ± 2.63 49.0 ± 2.54 49.4 ± 2.60

HOMA2-IR (computed with insulin) 2.0 ± 0.11 1.8 ± 0.10 2.0 ± 0.12 1.8 ± 0.10

Proinsulin/C-peptide ratio 11.1 ± 0.66 13.2 ± 0.80 12.8 ± 0.81 12.5 ± 0.84

Fasting proinsulin, pmol/L 8.2 ± 0.62 9.3 ± 0.72 8.9 ± 0.69 9.0 ± 0.71

Fasting C-peptide, nmol/L 0.8 ± 0.03 0.7 ± 0.03 0.7 ± 0.03 0.7 ± 0.03

Adiponectin, mg/mL 3.7 ± 0.21 3.8 ± 0.22 3.9 ± 0.23 3.8 ± 0.22

IGFBP-2, ng/mL 189.8 ± 10.1 195.3 ± 10.6 194.4 ± 10.5 207.5 ± 11.5

Data are mean ± SD or n (%) at baseline all randomized population (patient demographics) and estimate means (SE) from mITT population using log 
transformation then convert back to original scale (beta-cell function and insulin sensitivity parameters). 
Abbreviations: HbA1c, glycosylated hemoglobin A1c; HOMA2-B, homeostatic model assessment for beta-cell function; HOMA2-IR, homeostatic model 
assessment for insulin resistance; IGFBP-2, insulin-like growth factor binding protein 2; mITT, modified intent-to-treat; OAM, oral antihyperglycemic 
medication.
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Estimated treatment differences in percent change from base
line in total adiponectin levels were significant between tirze
patide and placebo at 40 weeks (P ≤ .028, all tirzepatide doses 
vs placebo) (Table 2).

IGFBP-2 levels significantly increased at all time points 
from baseline with tirzepatide 5, 10, and 15 mg (P < .001, 
all doses) with a pattern consistent with increasing insulin sen
sitivity over time (Fig. 2D). At 40 weeks, percent increase from 
baseline of IGFBP-2 levels ranged from 38% to 70% with tir
zepatide (P < .001, all doses) compared to 4.1% with placebo 
(P > .05) (Fig. 2D). Estimated treatment differences in percent 
change from baseline in IGFBP-2 levels were significant be
tween tirzepatide and placebo at 40 weeks (P < .001, all tirze
patide doses vs placebo) (Table 2).

Discussion
This is the first study to investigate the effects of tirzepatide 
monotherapy in the absence of any other background antihy
perglycemic medications on pancreatic beta-cell function and 
insulin sensitivity in people with early T2D. Tirzepatide mono
therapy at doses of 5, 10, and 15 mg in the SURPASS-1 trial 
demonstrated significant and clinically relevant enhancements 
in markers of pancreatic beta-cell function and insulin 

sensitivity in conjunction with improved glycemic control 
and body weight reduction.

Tirzepatide significantly improved multiple markers of pan
creatic beta-cell function including HOMA2-B (calculated 
with C-peptide), fasting intact proinsulin, and intact proinsu
lin/C-peptide ratio. HOMA2-B indices rapidly increased at 
week 8 and reached the peak up to 103% at week 24 in a dose- 
dependent manner with tirzepatide treatment. HOMA2-B 
improvements have also been observed with tirzepatide treat
ment combined with metformin in independent studies 
[13, 14]. Elevated levels of fasting proinsulin are associated 
with pancreatic beta-cell dysfunction in T2D related to the im
paired proinsulin to insulin conversion in a setting of an in
creased demand for insulin production [15]. Elevated 
proinsulin levels and proinsulin/C-peptide ratios may lead 
to endoplasmic reticulum stress and failure of pancreatic 
beta cells [16]. With tirzepatide monotherapy treatment, we 
observed a rapid and significant reduction of elevated intact 
proinsulin levels and proinsulin/C-peptide ratios by approxi
mately 50%, suggesting an improvement in pancreatic beta- 
cell stress and dysfunction. These findings are consistent 
with a 26-week, randomized, double-blind phase 2b clinical 
trial of tirzepatide with metformin background in most 
participants that showed improved beta-cell function with 
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Figure 1. Percent change from baseline over time in markers of beta-cell function data are estimated percentage means (SE) overtime, mITT (efficacy 
analysis set) ANOVA analysis (week 0) and MMRM analysis (week 40) using log transformation then convert back to original scale. **P < .001 vs placebo 
at 40 weeks.  
Abbreviations: HOMA2-B, homeostatic model assessment for beta-cell function; mITT, modified intent-to-treat; MMRM, mixed-model repeated 
measures.
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Table 2. Measures of biomarkers for beta-cell function and insulin sensitivity at week 40

ITT-efficacy analysis seta, week 40 Tirzepatide 5 m 
n = 121

Tirzepatide 10 mg 
n = 121

Tirzepatide 15 mg 
n = 120

Placebo 
n = 113

Fasting serum glucose, mg/dL

Baseline 153.7 (3.65) 152.6 (3.70) 154.6 (3.73) 155.2 (3.80)

Change from baseline −43.6 (3.40) −45.9 (3.45) −49.3 (3.62) 12.9 (4.00)

Difference vs placebo −56.5 (−66.8, -46.1)** −58.8 (−69.2, −48.4)** −62.1 (−72.7, −51.5)** —

Fasting insulin

Baseline, pmol/L 96.2 (6.09) 90.7 (5.82) 95.2 (6.19) 84.8 (5.64)

Percent change from baseline −4.5 (5.28) −1.6 (5.50) −11.8 (5.21) 15.1 (7.60)

Difference vs placebo −17.0 (−29.9, −1.7)* −14.5 (−27.8, 1.4) −23.3 (−35.6, −8.8)* —

Fasting glucagon (adjusted for fasting glucose)

Baseline, pmol/L 83.1 (4.45) 80.0 (4.29) 77.1 (4.15) 85.5 (4.73)

Percent change from baseline −39.9 (3.28) −36.7 (3.43) −44.0 (3.20) 4.8 (6.62)

Difference vs placebo −42.7 (−51.3, −32.4)** −39.6 (−48.7, −28.9)** −46.6 (−54.8, −36.9)** —

HOMA2-B (computed with C-peptide)

Baseline 52.9 (2.68) 51.8 (2.63) 49.0 (2.54) 49.4 (2.60)

Percent change from baseline 79.6 (7.57) 83.8 (7.79) 91.8 (8.56) −1.4 (5.00)

Difference vs placebo 82.2 (60.0, 107.4)** 86.5 (63.7, 112.4)** 94.6 (70.3, 122.3)** —

HOMA2-IR (computed with insulin)

Baseline 1.98 (0.11) 1.78 (0.10) 1.98 (0.12) 1.76 (0.10)

Percent change from baseline −8.7 (4.82) −8.5 (4.76) −23.4 (4.36) 14.7 (7.11)

Difference vs placebo −20.4 (−32.2, −6.5)* −20.2 (−31.9, −6.4)* −33.2 (−43.4, −21.1)** —

Fasting proinsulin

Baseline, pmol/L 8.22 (0.62) 9.31 (0.72) 8.93 (0.69) 8.97 (0.71)

Percent change from baseline −49.1 (2.93) −48.7 (3.04) −54.7 (2.75) −0.6 (6.62)

Difference vs placebo −48.9 (−57.0, −39.2)** −48.4 (−56.7, −38.5)** −54.5 (−61.9, −45.6)** —

Fasting C-peptide

Baseline, nmol/L 0.75 (0.034) 0.70 (0.032) 0.68 (0.031) 0.67 (0.032)

Percent change from baseline −2.8 (3.69) −3.1 (3.71) −9.4 (3.65) −0.7 (4.46)

Difference vs placebo −2.2 (−12.9, 9.8) −2.5 (−13.2, 9.5) −8.8 (−19.0, 2.7) —

Proinsulin/C-peptide ratio

Baseline 11.1 (0.66) 13.2 (0.80) 12.8 (0.81) 12.5 (0.84)

Percent change from baseline −48.2 (2.67) −46.5 (2.81) −48.9 (2.81) −0.1 (6.13)

Difference vs placebo −48.1 (−55.7, −39.3)** −46.4 (−54.3, −37.2)** −48.8 (−56.5, −39.8)** —

Adiponectin

Baseline, ug/mL 3.68 (0.21) 3.79 (0.22) 3.93 (0.23) 3.80 (0.22)

Percent change from baseline 21.9 (5.25) 15.7 (5.09) 22.9 (5.64) −0.2 (5.06)

Difference vs placebo 22.2 (7.2, 39.2)* 15.9 (1.6, 32.3)* 23.2 (7.7, 40.9)* —

IGFBP-2

Baseline, ng/mL 189.8 (10.1) 195.3 (10.6) 194.4 (10.5) 207.5 (11.5)

Percent change from baseline 38.3 (6.74) 60.5 (7.98) 70.0 (8.82) 4.1 (6.00)

Difference vs placebo 32.8 (14.5, 54.1)** 54.1 (32.7, 79.1)** 63.3 (40.2, 90.2)** —

Data are LSM (SE) at baseline and change from baseline (fasting serum glucose) or estimate (SE) at baseline and percent change from baseline (all other 
biomarkers), and LSM (95% CI) (fasting serum glucose) or estimate (95% CI) (all other biomarkers) treatment difference vs placebo at week 40. Data were 
analyzed with MMRM analysis using the mITT efficacy analysis set (except for fasting serum glucose, analysis was performed on log-transformed data then 
converted back to the original scale). All markers were measured at the fasting state. Percent changes from baseline (and change from baseline for fasting serum 
glucose) at week 40 were significant for all biomarkers with tirzepatide, except fasting insulin, HOMA2-IR, and fasting C-peptide with the 5 and 10 mg dose. 
*P < .05 and **P < .001 vs placebo. 
Abbreviations: BMI, body mass index; CI, confidence interval; GIP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide-1; HbA1c, 
glycosylated hemoglobin; HOMA2-B, homeostasis model assessment of β-cell function; HOMA2-IR, homeostasis model assessment of insulin resistance; 
IGFBP-2, insulin-like growth factor binding protein 2; LSM, least squares mean; mITT, modified intent-to-treat (all randomized participants who took at least 1 
dose of study drug); MMRM, mixed model repeated measures; RA, receptor agonist; T2D, type 2 diabetes. 
amITT on treatment without rescue therapy and excluding participants who discontinued study drug due to inadvertent enrollment.
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reductions in fasting proinsulin, intact proinsulin/C-peptide 
ratios, and dose-dependent increases in HOMA2-B indices 
compared with dulaglutide 1.5 mg [14].

Treatment with tirzepatide at all doses demonstrated sig
nificant and rapid improvement in hyperglucagonemia and 
related alpha-cell dysfunction, as indicated by reductions in 
fasting glucagon levels adjusted for fasting glucose ranging 
from 37% to 44%. This finding is consistent with studies 
that demonstrated greater reductions in glucagon levels 
with tirzepatide treatment compared with selective GLP-1 
receptor agonists in adults with T2D and background met
formin therapy [6, 14]. Hyperglucagonemia is a hallmark 
in T2D, promoting hepatic glucose output and exacerbating 
hyperglycemia [17, 18]. Similarly, in people with obesity, 
fasting and postprandial glucagon levels are higher com
pared to those with normal body weight [19]. The relatively 
rapid reductions observed at week 8 in fasting glucagon and 
glucose levels with tirzepatide treatment preceded a gradual 
and substantial weight loss observed throughout the 
40-week treatment period in this study. This pattern indi
cates that early improvements in glycemic control, as re
flected by the observed reductions in fasting glucagon and 
glucose, primarily occurred before substantial body weight 
reductions.

In a recently published mechanism of action study, once- 
weekly tirzepatide at the 15 mg dose added to background 
metformin demonstrated significant improvements in gly
cemic control through concurrent improvements in beta-cell 
function and insulin sensitivity and by reductions in gluca
gon secretion. Improvements in both beta-cell function and 
insulin sensitivity contributed to a 6-fold increase from base
line in clamp disposition index with tirzepatide, as measured 
in hyperglycemic and euglycemic hyperinsulinemic clamp 
studies [6].

Tirzepatide reduced markers of insulin resistance including 
fasting insulin levels by up to 12% and HOMA2-IR (calcu
lated by insulin) by up to 23% in the absence of concomitant 
antihyperglycemic therapy. These observations are consistent 
with effects of tirzepatide in other T2D populations on con
comitant antihyperglycemic medications including metformin 
[6, 13, 14]. In a phase 2b trial, only 21% of the variation in 
improvement HOMA2-IR was directly attributable to weight 
loss with tirzepatide 15 mg and 13% with tirzepatide 10 mg in 
multiple linear regression analysis, suggesting that the ob
served insulin-sensitizing effects of tirzepatide were only par
tially attributable to weight loss [14]. Similarly, in SURPASS-2 
on background metformin therapy, tirzepatide treatment re
sulted in greater reductions in HOMA2-IR and improvements 

A B

C D

Figure 2. Percent change from baseline over time in markers of insulin sensitivity data are estimated percentage means (SE) overtime, mITT (efficacy 
analysis set) ANOVA analysis (week 0), and MMRM analysis (week 40) using log transformation then convert back to original scale. *P < .05 and 
**P < .001 vs placebo at 40 weeks.  
Abbreviations: HOMA2-B, homeostatic model assessment for beta-cell function; IGFBP-2, insulin- like growth factor binding protein 2; mITT, modified 
intent-to-treat; MMRM, mixed-model repeated measures.
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in HOMA2-B than active comparator semaglutide 1 mg in 
conjunction with substantial improvements in HbA1c and 
body weight [2, 13].

Moreover, tirzepatide treatment resulted in increases in 
levels of insulin sensitivity biomarkers, adiponectin, and 
IGFBP-2. Adiponectin is exclusively produced in adipocytes, 
and adiponectin levels are lower in T2D and obesity compared 
to the healthy state [20, 21]. Reduced levels of adiponectin 
have also been associated with metabolic syndrome, dyslipide
mia, and cardiovascular disease [22]. In human adipocytes, 
GIP receptors are present and functionally active [23–25]. 
The GIP and GLP-1 receptor agonist tirzepatide increased adi
ponectin levels as monotherapy in these subjects with early 
T2D consistent with phase 2 clinical studies in people with 
T2D on metformin [6, 14]. Increases in adiponectin have 
been demonstrated to improve insulin sensitivity through 
insulin-sensitizing effects in mice [20]. IGFBP-2 is a member 
of the insulin and IGF signaling pathway, and IGFBP-2 levels 
in humans are inversely associated with BMI, fat mass, insulin 
levels, and fatty liver index [26–30]. Tirzepatide treatment 
substantially increased IGFBP-2 levels in a dose and time- 
dependent pattern. Together, these findings demonstrated sig
nificant improvements in insulin sensitivity with tirzepatide 
monotherapy.

A strength of this study includes the opportunity to charac
terize actions of tirzepatide when administered as monother
apy. In this study, participants were not taking any 
antihyperglycemic medication other than tirzepatide, enab
ling a better assessment of the role of tirzepatide treatment 
to improve insulin sensitivity and beta-cell function without 
the confounding influence of other background antihypergly
cemic medications. Notably, in these patients with early T2D, 
tirzepatide monotherapy reduced both pancreatic beta-cell 
stress and insulin resistance. Limitations of this study include 
the exploratory nature of the post hoc biomarker analysis and 
that assessments were made under fasting conditions. 
Additional studies are warranted to further define mecha
nisms by which tirzepatide results in improved glucose control 
and insulin sensitivity.

In conclusion, substantial improvements in both pancreatic 
beta-cell function and insulin sensitivity were observed with 
tirzepatide monotherapy, which may contribute to the en
hanced glycemic control achieved with tirzepatide treatment 
in individuals with early T2D.
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