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Abstract In this paper, we present a multiple neural con-

trol and stabilization strategy for nonlinear and unsta-

ble systems. This control strategy method is efficient

especially when the system presents different behaviors or

different equilibrium points and when we hope to drive the

whole process to a desired state ensuring stabilization. The

considered control strategy has been applied on a nonlinear

unstable system possessing two equilibrium points. It has

been shown that the use of the multiple neural control and

stabilization strategy increases further the stability domain

of the system further than when we use a single neural

control strategy.

Keywords Behaviors � State variables � Multiple neural

controllers � Stabilization

1 Introduction

Multiple models characterizing different plant operation

modes are used to predict the system behaviors. They are

the one that best describes the plant and used to initialize

new adaptation and/or generate new control input. From a

practical point of view, the need to use multiple models in

control is often necessary specially when sudden changes

in the plant occur, in order to give better performance such

as more accurate tracking and larger operation domain. In

addition to the abilities of neural networks to imitate

nonlinear plant characteristics, both multiple models and

neural networks tools have attracted researchers to inves-

tigate in the domain of control of complex and nonlinear

system especially the field of multiple neural control

strategies.

In the 1960s and 1970s, most of works on the multiple

model control were based on optimal control. Specifically,

problem solving was based on the use of Kalman filters and

linear control minimizing a quadratic loss function [1].

In the context of identification, there is no new means

used in the multiple model approach, but in the control

context, the switching problem was raised and the first

proposals were published by Martensson [2]. Following,

two types of switching will begin to appear in the literature.

The first is known as direct switching, where the choice of

the next controller is predetermined and depends on the

outputs of the system. The second is known as indirect

switching, where local models are used at each moment in

which controller will be used [3]. The latter kind of switch

is also called supervised control.

There has been a major research activity to extend the

multiple model approach in the control field. Narendra

et al. [4] presented a general methodology to design a

multiple model adaptive control of uncertain systems. This

methodology makes systems to operate effectively in an

environment with a high degree of uncertainty. As appli-

cations, they considered a system described by various

behaviors; each behavior is represented by a model

including the dynamic relating to the considered

environment.

In their book, Murray-Smith and Johansen [5] have

made a collection of a number of articles on multiple

model approaches. This book considers the various aspects

and applications of multiple model approach for modeling,

identification and control of nonlinear systems, and it

summarizes the theory and application of multiple model
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adaptive control. In this book, the authors also open up

horizons of research on the topic of adaptive multiple

model control, such as the determination of the local

models number of the complex system to be controlled, the

choice of the types of controllers and the validity of the

models (weighting functions).

Since 2000, research on multiple model approach has

geared toward stability analysis and robust control of sys-

tems described by multiple models [6].

This paper is organized such that Sect. 2 presents a

general description of a multiple neural control. Section 3

presents the structure of the multiple neural control and

stabilization strategy. In Sect. 4, we show a single neural

control stabilization method, and in Sect. 5, simulation

results are carried out using the multiple neural control and

stabilization on an unstable nonlinear system. Finally, a

conclusion and prospects are given in Sect. 6.

2 Multiple neural control

The application of multiple neural control strategy is based

on neural models, which incorporates a set of pair

model/controller. Combination and switching between

models are the only characteristics of the multiple neural

control [4, 5, 7, 8].

The general outline of this control strategy is shown in

Fig. 1.

The weighting function fi(x) (i [ {1,…, n}) represents

the validity of the model number i (and/or the corre-

sponding controller). In the case when we select a single

controller at a given instant (e.g., the ième controller), the

value of the function fi(x) is equal to 1 and 0 for all others

fj(x) (j [ {1,…, n} and j=i). The value of the function

fi(x) is belonging to the range [0, 1] in the case when we

combine all models and controllers.

The banks of neural models and neural controllers are

made after learning steps from sub-databases representing

different behaviors of the controlled system.

3 Multiple neural control and stabilization
strategy

The multiple neural controller and stabilization strategy is

used in order to increase the system’s stabilization domain.

It consists on the build of neural controllers of which the
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learning step is carried out through sub-databases repre-

senting different regions (behaviors) of the system.

3.1 Principle

The principle idea in this control strategy is to decompose

the operating domain into locals regions where the system

presents different behaviors (comportments in the case of

equilibrium points) in order to solve modeling problems,

control and stabilization [6, 9]. An example of behaviors

partition in an overall operating domain is shown in Fig. 2.

The multiple neural control and stabilization strategy is

based on the accomplishment of neural controllers direct

neural models related to each behavior. The achievement

of the learning for controllers and direct models is made

from sub-databases identified around the center of each

behavior. Each region may be represented in the space of a

sphere or an ellipsoid whose center is the desired stabi-

lization point.

3.2 Structure of the multiple control

and stabilization

In our case, the centers of the operating modes (behaviors)

are the equilibrium system points. The used controllers’

selection method is a binary one, so at each simple time

only one neural controller (NC) from the bank of con-

trollers is active. The selection criterion is based on the

computation of algebraic distance between the current

states of the direct neural local model (DNLM) and the

desired state. The chosen controller is the one in which the

corresponding direct neural local model gives the minimal

distance. The diagram of the control strategy is illustrated

in Fig. 3.

The selection criterion C (1) is based on the computation

of the minimum distance between the current and the

desired states, so the selected neural controller i is such

that:

C ¼ minðdiÞ i 2 1; . . .; nf g ð1Þ

where di is the distance between the current state xiðkÞ of
the direct neural local model i and the desired state xdj .

3.3 Controller principle

Consider a nonlinear system described by the following

state-space model [9]:

xðk þ 1Þ ¼ f ½xðkÞ; uðkÞ� ð2Þ
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where xðkÞ 2 Rn is the vector of state variables at time k

uðkÞ 2 Rm is the control vector and f [.] is the vector of

nonlinear functions.

It is assumed that the state variables are accessible and

measurable. We can write (2) such that:

xðk þ 2Þ ¼ f ½xðk þ 1Þ; uðk þ 1Þ� ð3Þ

which can be written:

xðk þ 2Þ ¼ f ½f ½xðkÞ; uðkÞ� ; uðk þ 1Þ� ð4Þ

This implies that the states at time k ? 2 are determined

from the states at time k and the control values between

times k and k ? 2.

By repeating this reasoning, we can write:

xðkþNÞ ¼ f ½. . .f ½f ½xðkÞ; uðkÞ� ; uðkþ 1Þ� ; . . .;uðkþN� 1Þ�
ð5Þ

which can be rewritten in the following compact form:

xðk þ NÞ ¼ F½xðkÞ;UðkÞ� ð6Þ

where

UðkÞT ¼ ½uðkÞ; uðk þ 1Þ; . . .; uðk þ N � 1Þ� ð7Þ

In conclusion, the states at time k ? N are determined by

the state vector at time k and controls values between times

k and k ? N - 1.

If Eq. (6) is invertible [10], then U(k) can be solved

according to x(k ? N) and x(k). In fact, the authors proved

that in this case, the condition of invertibility is interpreted

as a local condition freely achievable. In addition, in Ref.

[11], it is shown that if the linearized model of the system

is controllable and observable, then the local inverse model

of the system exists.

UðkÞ ¼ G½xðkÞ; xðk þ NÞ� ð8Þ

where G is a nonlinear function and Eq. (8) is a funda-

mental relationship representing the inverse dynamic of the

system [10]. The nonlinear function G can be approximated

by a neural network. This last will be exploited as a neural

controller providing the control actions to stabilize the

system around an equilibrium point or a desired state.

3.4 Structure of the neural controller

A large class of nonlinear dynamic systems is presented

with the state-space models (2), so to realize neural control

strategy it is necessary to build neural controllers based on

input and states data.

Generally, a multilayer feed-forward neural network

with one hidden layer is used to model the direct and

inverse dynamic nonlinear systems [10, 12, 13]. The same

structure of neural network will be used to generate the

system control law, given the current state and the future

state (desired state) [14]. Figure 4 shows the structure of

the used neural controller.

The connection weight wj,i network and wo,j are adjusted

in order to minimize a quadratic error criterion (12)

between network outputs Û(k) and the desired outputs

U(k) [10–13].

The activation function used is sigmoidal one given by

(13).

The neural controller output layer contains

M = N�m nodes if the dimension of the control vector

u(k) is equal to m.

N is the necessary number of iterations to evolve the

system from the actual state x(k) to the future state

x(k ? N).

This neural network structure provides a function

Ĝ½xðkÞ; xðk þ NÞ; W � that models the inverse dynamics of

the system. It is trained to provide the control action law

Û(k) to the system.

ÛðkÞ ¼ Ĝ½xðkÞ; xðk þ NÞ; W � ð9Þ

W is the vector connection weights of the neural network.

The number of nodes in the input layer is defined

according to the number of current and future states.

The number of nodes of the output layer is equal to the

components number of the sequence of control actions

applied to the system to reach the future state from the

current state.

The number of nodes in the hidden layer is chosen after

learning experiences. It is fixed by the structure which

gives the lowest value of the error criterion (12).

3.5 Learning procedure

The learning procedure of the neural controller is referred to

the inverse neural modeling of the system [10–15] and [16].

The process that accomplished this step is shown in Fig. 5.

Here, sequences of synthesized signal U(k) are applied

as inputs to the system. The corresponding states of these

last are used as inputs to the neural network of which the

outputs are compared with the training signal (the input of
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Fig. 4 Structure of the neural controller
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the system). The resulting error is used to adjust the neural

network connection weights. This procedure tends to force

the neural network to emulate the inverse dynamics of the

system.

This learning structure is a classic method of supervised

learning, where the teacher (i.e., the synthesis signal)

provides directly target values to the output of the learner

(i.e., the network model).

The used algorithm for learning is the back-propagation

one ([17, 18]). For each input vector, the network calculates

the output vector and adjusts the connections weights as

described byEqs. (16) and (20). The purpose of learning is to

minimize the error e(k) obtained for each learning pattern.

eðkÞ ¼
XN

q¼1

Xm

o¼1

uodðk � qþ 1Þ � uoðk � qþ 1Þ½ �
2

ð10Þ

3.6 Weights connection adaptation

The values of the input nodes are distributed to the hidden

nodes through the weights connection wji. The input value

of the jth node in the hidden layer is computed such that:

nethj ¼
X2n

i¼1

wji xi þ hhj ð11Þ

where wji is the weight connection between jth node and

the ith node of the input layer and hj is the bias value of the
node j.

The output of the node j is given by:

ej ¼ g nethj

� �
ð12Þ

where g is a sigmoidal function (13)

gðxÞ ¼ 1

1þ e�xj
ð13Þ

The input value of the oth node in the output layer is

computed such that

netso ¼
XL

j¼1

wo;j ej þ hs
o

ð14Þ

the output is:

so ¼ g netso
� �

ð15Þ

The adaptation of the connection weights woj between the

hidden layer and the output layer is performed as follows:

wo;j½t þ 1� ¼ wo;j½t� � g
o e

owo;j
ð16Þ

o e
owo;j

¼ o e
o uoðkÞ

o uoðkÞ
owo;j

ð17Þ

o e
o uoðkÞ

¼ �ðuodðkÞ � uoðkÞÞ ð18Þ

and

o uoðkÞ
owo;j

¼ s
0

o � ej ¼
enet

s
o

1þ enet
s
oð Þ2

1

1þ e�neth
j

� � ð19Þ

The adaptation of the connection weights wji between the

input layer and the hidden layer is such that:

wj;i½t þ 1� ¼ wj;i½t� � g
o e
owj;i

ð20Þ

o e
owj;i

¼ o e
o uoðkÞ

o uoðkÞ
owj;i

ð21Þ

and

o uoðkÞ
owj;i

¼
XN�m

o¼1
s
0

o:wo;j � e
0

j � xi ð22Þ

where

s
0

oðxÞ ¼
o soðxÞ
o x

¼ enet
s
o

1þ enet
s
oð Þ2

ð23Þ

e
0 ðxÞ ¼ o eðxÞ

o x
¼ enet

h
j

1þ enet
h
j

� �2
ð24Þ

where g is the learning rate.

4 Single neural stabilization strategy

After a learning step, the neural network emulating the

inverse dynamic of the system can be operated in a closed-

loop control providing the control law. In this case, the

neural network is placed in a cascade with the system. Both

of them (neural network and system) established a neuronal

stabilizing feedback control states [14]. Figure 6 shows this

control structure.

SystemNeuronal 
controller

Back-propagation
algorithm

X(k+N )û (k)...
û (k+N-1) +-

(k)

q-N

u(k)...
u(k+N-1)

ε

Fig. 5 Learning procedure of the neural controller
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The controller provides the system an N control values

in each interval of N sampling periods.

The parameter N must be at least equal to n (order

system) for local controllability [11].

This structure of stabilization and control will be used in

the case of multiple neural control and stabilization.

In order to compute the value of the selection criterion

(1) at each sample time in the case of multiple neural

control and stabilization, only the first component of the

input vector ûðkÞ will be applied to the system. This is

illustrated in Fig. 7.

5 Simulation results

In this section, we present the simulation results after the

application of multiple neuronal and stabilization strategy

for a nonlinear unstable system extract from Ref. [19].

5.1 Presentation of the system

The considered nonlinear system of the third order (three

states) defined by the following equations:

x1ðk þ 1Þ ¼ x2ðkÞ � x3ðkÞ þ u2ðkÞ
x2ðk þ 1Þ ¼ 2x1ðkÞ � ½1þ 0:5x2ðkÞ� � uðkÞ
x3ðk þ 1Þ ¼ x1ðkÞ ½x2ðkÞ � x3ðkÞ� þ uðkÞ

8
<

: ð25Þ

This system presents two equilibrium points xTe1 ¼
0 0 0ð Þ and xTe2 ¼ 1 2 1ð Þ.
In order to apply the multiple neural control and stabi-

lization strategy, we have made two sub-databases around

each equilibrium point (behavior). These sub-databases

will be used to learn neural controllers and direct neural

local models useful to compute the selection criterion

C and then to select the appropriate controller.

5.2 Sub-databases

The considered system (25) is highly unstable and diver-

gent. The sub-databases are built by varying the system

input at a random manner. The inputs should be bounded

with low values, so that the system doesn’t diverge from

the first iterations. For both sub-databases, we adopt an

input signal uðkÞ 2 ½�0; 5; 0; 5� and different initial states

x(k) chosen near a considered equilibrium point. The future

states values x(k ? N) are the computed, and all values

from time k to time k ? N (in our case N = 3) are then

recorded in text file establishing a sub-database which will

be used to learn neural controller and direct neural local

model.

For the first sub-database related to the first equilibrium

point xTe1 ¼ 0 0 0ð Þ, the initial states

xðkÞ ¼ x1ðkÞ x2ðkÞ x3ðkÞð ÞT are chosen at random val-

ues belonging to the interval ½�1; 1� and the second sub-

database on the second equilibrium point xTe2 ¼ 1 2 1ð Þ
where the initial states are chosen at random values

belonging, respectively, to the intervals ½0; 2�, ½1; 3�, ½0; 2�.

5.3 System response with multiple neural control

and stabilization

In this part, we will apply the multiple neural controller and

stabilization strategy in order to stabilize the system around

its two equilibrium states which are defined as desired

states. The controller’s selection is based on the compu-

tation result of the criterion (1) (here n = 2), minimal

distance between the current and the desired states.

xd1 ¼ xTe1 ¼ 0 0 0ð Þ and xd2 ¼ xTe2 ¼ 1 2 1ð Þ ð26Þ

To show the benefits of the considered control and sta-

bilization strategy, we have considered initial states in the

neighborhood of the first equilibrium point and others near

the second equilibrium point, and then, we have applied

this strategy of control and stabilization.With a first initial

state xið1Þ ¼ �0:5 0:3 0:7ð ÞT , the states evolutions

through time with the multiple neural control and stabi-

lization strategy are shown in Fig. 8.

Here, the first controller is selected and the system sta-

bilizes around the desired state (first equilibrium point) xd1.

In this case, the distance between initial and desired states

is d1 ¼ 0:911. With the second controller where the dis-

tance between initial and second desired states is

d2 ¼ 2:287, the system diverges.

With the same initial state and using single neural

control stabilization, the states diverge. Figure 9 shows the

evolution of the states.

Note that with the multiple neural control strategy, the

system is stabilized around the first equilibrium point

Neural 
controller

System

Fig. 6 Single neural control and stabilization strategy

Neural 
controller

System

Fig. 7 Modified single neural control and stabilization strategy
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(desired state), whereas with a single neural control strat-

egy the system diverges.

Then with a second initial state is

xið2Þ ¼ 1 3:3 1ð ÞT , the evolutions of the states through
time with a single neural control strategy are given in

Fig. 10.

We remark that with the single control strategy the

states diverge.

With the same initial state and using multiple neural

control strategy, the states stabilize around the second

equilibrium point. Figure 11 shows the evolution of the

states.

Here, the selected controller is the second one, the dis-

tance between initial and desired states is d2 ¼ 1:3, and the

system stabilizes around the desired state (second equilib-

rium point) xd2. While with the first controller where the

distance between initial and desired states is d1 ¼ 3:59, the

system diverges.

These results confirm the efficient of the multiple neural

control and stabilization strategy.

6 Conclusion

We have presented a multiple neuronal control and stabi-

lization strategy which can be applied on systems charac-

terized by different behaviors in different regions of the

functional domain. In the simulation results, we have

considered an unstable system possessing two equilibrium

points. So two neural controllers and two direct neural

local models have been built around each point; then, the

multiple neural control and stabilization strategy has been
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Fig. 8 Evolutions of the states in the case of the multiple neural

control and stabilization strategy with the initial state xið1Þ
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applied using a distance criterion between the current and

the desired states to select the appropriate controller. The

use of the latter strategy increases the system stabilization

domain further. As future work, we hope to use an adaptive

multiple neural control and stabilization strategy with

weighting functions representing the validity of models.
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