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Abstract

Background: Optical silencing of activity provides a way to test the necessity of neurons in behaviour. Two
light-gated anion channels, GtACR1 and GtACR2, have recently been shown to potently inhibit activity in cultured
mammalian neurons and in Drosophila. Here, we test the usefulness of these channels in larval zebrafish, using
spontaneous coiling behaviour as the assay.

Results: When the GtACRs were expressed in spinal neurons of embryonic zebrafish and actuated with blue or green
light, spontaneous movement was inhibited. In GtACR1-expressing fish, only 3 μW/mm2 of light was sufficient to have an
effect; GtACR2, which is poorly trafficked, required slightly stronger illumination. No inhibition was seen in non-expressing
siblings. After light offset, the movement of GtACR-expressing fish increased, which suggested that termination of light-
induced neural inhibition may lead to activation. Consistent with this, two-photon imaging of spinal neurons showed
that blue light inhibited spontaneous activity in spinal neurons of GtACR1-expressing fish, and that the level of
intracellular calcium increased following light offset.

Conclusions: These results show that GtACR1 and GtACR2 can be used to optically inhibit neurons in larval zebrafish
with high efficiency. The activity elicited at light offset needs to be taken into consideration in experimental design,
although this property can provide insight into the effects of transiently stimulating a circuit.
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Background
One approach to understanding the role of specific
neurons in a given behaviour is to experimentally alter
their activity. A precise means of doing this is by using
light-gated channels [1–4]. Optogenetic activators such
as channelrhodopsin-2 [5], ChIEF [6] and CsChrimson
[7] can reversibly depolarize membrane potential with
millisecond resolution and have been widely used in a
range of organisms [8–11]. For numerous different
behavioural functions, these tools have enabled the
determination of neuronal sufficiency. However, estab-
lishing whether neurons are normally involved requires
additional experiments. Optical or electrical recording
can determine which activity patterns are correlated with
behaviour. However, for the crucially important loss-of-
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function experiment, effective tools for neuronal inhib-
ition are required.
A number of different optogenetic inhibitors have

been developed. The first generation of these tools in-
clude light-actuated pumps like halorhodopsin [12, 13],
which facilitates light-dependent chloride entry, and
archaerhodopsin [14, 15], a proton pump that is also
hyperpolarizing. A limitation of these molecules is their
low conductance and the high levels of expression and
illumination that are required for effective silencing. For
example, the archaerhodopsin derivative Archer1
requires 3 mW/mm2 of light to inhibit action potentials
in cultured mammalian neurons [16], while halorhodop-
sin requires ~20 mW/mm2 to inhibit activity in zebrafish
neurons [17]. A second generation of optogenetic inhibi-
tors includes genetically modified channelrhodopsins
such as ChloC [18] and iC1C2 [19], which hyperpolarize
neurons by light-gated conductance of chloride. Both
require similar levels of illumination, although an
improved version of ChloC, iChloC, requires 10 times
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less light [20]. More recently, naturally evolved anion-
conducting channels from the alga Guillardia theta were
shown to silence neurons at very low light levels, i.e. in
the range of microwatts per square millimetre [21].
Drosophila experiments have confirmed that these opto-
genetic tools are potent inhibitors in vivo [22]. Here, we
ask whether Guillardia theta anion channelrhodopsins
(GtACR1 and GtACR2) are effective inhibitors of neural
activity in the larval zebrafish, a genetically tractable
vertebrate.

Methods
The experiments here were carried out in accordance
with guidelines approved by the Institutional Animal
Care and Use Committee of Biopolis, Singapore.

Generation of GtACR1 and GtACR2 transgenic zebrafish
lines
Sequences encoding GtACR1 and GtACR2 fused to
eYFP [22] were placed downstream of the upstream acti-
vating sequence (UAS) using Gateway cloning (Thermo
Fisher Scientific). The resulting construct was cloned
into a plasmid containing Tol2 sequences to facilitate
integration into the zebrafish genome [23, 24]. The con-
structs (33 ng/μl) were then injected into nacre-/- eggs at
the one-cell stage, along with elavl3:Gal4 DNA (15 ng/
μl, lacking Tol2 sequences) to induce GtACR expression,
and Tol2 mRNA (33 ng/μl) to facilitate genomic integra-
tion. Embryos were screened after 24–36 hs for eYFP
expression. Healthy embryos with eYFP expression were
grown to adulthood. At 2 months, fish were fin-clipped
and PCR-screened with GtACR-specific primers
(GtACR1 forward 5’-CACCGTGTTCGGCATCAC-3’,
GtACR1 reverse 5’-GCCACCACCATCTCGAAG-3’;
GtACR2 forward 5’-ATTACCGCTACCATCTCCCC-3’,
GtACR2 reverse 5’-TGGTGAACACCACGCTGTAT-3’)
to test for the presence of transgene. This led to the gen-
eration of two transgenic lines, Tg(UAS:GtACR1-
eYFP)sq211 and Tg(UAS:GtACR2:eYFP)sq212.

Zebrafish lines
Transgenic lines used in this study are elavl3:GCaMP6f
[25], TgBAC(gng8:GAL4)c416 [26], Et(-0.6hsp70l:Gal4-
VP16)s1020t [27], Et(-0.6hsp70l:Gal4-VP16)s1011t [27]
and UAS:NpHR-mCherry [17]. For brevity, the enhancer
trap lines are referred to as GAL4s1020t and
GAL4s1011t in the text and figures.

Confocal imaging
Twenty-four-hour-old F1 embryos were dechorionated,
anaesthetized with 160 mg/L tricaine, and mounted in
1% low melting agarose in E3. Imaging was carried out
using a Zeiss LSM800 confocal microscope with a 10×
and a 40× water immersion objective.
Spontaneous movement and light stimulation
GAL4s1020t, UAS:ACR1-eYFP and GAL4s1020t,
UAS:ACR2-eYFP embryos were screened with a fluores-
cence stereomicroscope at 23–24 h post-fertilization to
identify ACR-expressing fish. Embryos, still within their
chorions, were then placed in a glass dish with 24
concave wells on a stereomicroscope (Zeiss Stemi 2000)
with a transmitted light base. Behaviour was recorded
on the microscope using a Point Gray Flea2 camera
controlled by MicroManager. Stimulating light was de-
livered by LED backlights (TMS Lite), with peak inten-
sity at 470 nm (blue), 525 nm (green) or 630 nm (red),
placed adjacent to the glass dish. The power used for
high intensity illumination was the maximum that could
be delivered by these LEDs. The same voltage settings
were used with the three light boxes to give high,
medium and low intensities, but the irradiance produced
differed. We provided 595-nm (amber) illumination
using LEDs from CREE (XR7090-AM-L1-0001), which
were mounted onto thermal LED holders (803122;
Bergquist Company). The intensity of light was mea-
sured using an S120VC power sensor and a PM100A
console (Thorlabs, Newton, NJ, USA). LEDs were
switched on and off using an Arduino board controlled
by MicroManager to regulate the power supply unit.
Embryos were recorded for a total of 45 s, with the LED
being turned on 15 s after the start of recording and
turned off 15 s later. Each embryo was tested once for
each condition and tested with different intensities and
wavelengths.

Analysis of behaviour recordings
Image analysis was carried out using Fiji (RRID:
SCR_002285) [28] as well as scripts written in Python.
From the raw recordings, one frame was extracted per
second to obtain a total of 46 frames (including the first
and last frames). Circular regions of interest (ROIs) were
manually drawn around each chorion to isolate each fish.
Each frame was then subtracted from the next frame to
identify the differences between frames. The number of
different pixels in each ROI was taken as a measure of
movement of each embryo [22]. Any embryo that did not
move during the entire recording was discarded from ana-
lysis. Estimation statistical methods were employed to
analyse mean differences between control and experimen-
tal groups [29–31]. The 95% confidence intervals (CIs) for
the mean difference were calculated using bootstrap
methods [32]. All CIs were bias-corrected and accelerated
[33], with resampling performed 5000 times. All reported
P values are the results of Wilcoxon t tests.

Two-photon calcium imaging
Triple transgenic zebrafish embryos (Et(-0.6hsp70l:Gal4-
VP16)s1020t, UAS:ACR1-eYFP, elavl3:GCaMP6f ) were
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mounted in agarose (2% low melting temperature, in
E3). To enable individual cells to be followed without
motion artefacts, fish were anesthetized with mivacur-
ium chloride (Mivacron; GSK, Auckland, New Zealand).
All imaging was performed using an upright Nikon
A1RMP two-photon microscope equipped with a 25×
1.1 NA water immersion objective. Images were cap-
tured at a rate of 1 Hz, with the laser tuned to 920 nm.
Blue light was delivered with the same light box used for
behaviour experiments, at the maximum intensity.
Green light was not used, as this overlaps with the emis-
sion spectrum of GCaMP6f and would saturate the
detector.

Analysis of calcium imaging data
Analysis was carried out using Fiji [28], unless otherwise
stated. Background correction was first performed by
subtracting the average value of a region outside the
embryo for each frame. This was done to eliminate the
bleed-through from the illuminating LED. A median fil-
ter with a radius of 1 pixel was then applied. Images
were registered using TurboReg in Fiji [34]. ROIs were
drawn manually around cells. The average fluorescence
intensity of cells within an ROI was obtained by measur-
ing only pixels above a threshold, so that pixels without
a signal, but that were located within the ROI, did not
reduce the value.

Acridine orange label
Embryos were incubated in acridine orange (Sigma
A6014) at a concentration of 0.01 mg/ml for 30 min,
then rinsed three times in E3. They were then anesthe-
tized in buffered MS222, mounted in 2% agarose in E3
and imaged with a 10× water immersion objective on an
LSM 800 laser scanning confocal microscope (Zeiss) at
1024 × 1024 resolution. The number of labelled nuclei in
the nervous system was counted manually with the aid
of the multipoint tool in Fiji.

Results
Transgenic zebrafish express GtACR1 and GtACR2 in
neurons
To express the anion channelrhodopsins in zebrafish,
transgenic lines containing the coding sequences under
the control of the UAS were generated using Tol2-
mediated transgenesis. When crossed with GAL4
drivers, expression of the protein could be detected by
the eYFP tag (Fig. 1a–f ). GtACR1 and GtACR2 were de-
tected in the cell membrane (Fig. 1c, d). Puncta could be
detected with both channels (arrowheads in Fig. 1c, d),
although membrane labelling with GtACR2-eYFP was
less prominent (Fig. 1d), suggesting that GtACR2-eYFP
was not efficiently trafficked to the plasma membrane.
When placed under different drivers, GtACR1-eYFP and
GtACR2-eYFP could be detected in different regions of
the nervous system, including the spinal cord, habenula
and olfactory epithelium (Fig. 1c–f ). Expression could be
detected at various stages, ranging from early develop-
ment (Fig. 1a–d) to 8 days post-fertilization (dpf ) (Fig. 1e;
see also Fig. 8 in the companion manuscript [35]).
Transgenic fish expressing GtACR1 or GtACR2 could be
grown to adulthood (>100 fish each) and could generate
viable offspring. When embryos were incubated in acrid-
ine orange, a marker of dying cells [36], no dying cells
were detected in regions expressing the transgene (Fig. 1
g, compare with Fig. 1 h). Scattered label was seen else-
where, and the mean number of acridine-orange labelled
cells in the nervous system of GAL4s1020t, UAS:GtACR1
fish (n = 5) was 34.6 [95% CI 31.5 37.7], while the mean
in non-expressing siblings (n = 5) was 37.2 [95% CI 31.8
42.6]. These values are not substantially different (mean
difference = –2.6 cells [95% CI –8.4, 2.6]), suggesting
that GtACRs can be expressed in zebrafish neurons
without inducing cell death.

Light-actuated GtACR1 and GtACR2 inhibit spontaneous
movement
To assess the ability of GtACR1 and GtACR2 to inhibit
neural activity, we used spontaneous movement as an
assay. Between 17 and 27 h post-fertilization, zebrafish
display spontaneous coiling movements [37] that are
dependent on the activity of spinal neurons [38]. As the
rate of coiling varies strongly with age, non-expressing
siblings were used as controls. We tested the effect of
different intensities of light of different wavelengths
(Fig. 2) on spontaneous movement of fish expressing
these channels in spinal neurons under the control of
the 1020 GAL4 driver. Fish were exposed to a 15-s pulse
of light in the middle of a recording lasting 45 s. The
amount of movement per animal was measured in terms
of pixel value differences between subsequent frames.
High and medium intensities of green and blue light

had a similar effect on GtACR1-expressing fish, namely
inhibition of coiling (Figs. 2a, b, 3a–d; Movie 1, see
Additional file 1). Siblings that did not express the
channel continued to coil in the presence of high in-
tensity light (fourth column of Fig. 2a, b; Movie 2, see
Additional file 2). Low intensities (3 μW/mm2 for blue
and 2 μW/mm2 for green light) were able to cause
freezing, but at reduced efficiency compared to the
higher intensities (compare the third column in Fig. 2a,
b with the first two columns). For GtACR2-expressing
fish, high and medium intensities of blue light were
able to induce similar levels of freezing, while a low
level of blue had a small effect (Figs. 2c, 4a, b); green
light inhibited embryo movement only when used at
high intensity (Figs. 2d, 4c, d). Red light did not in-
hibit coiling of either GtACR1 or GtACR2 fish at the
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Fig. 1 Expression of GtACR1 and GtACR2 in transgenic zebrafish. a, b Expression of GtACR1-eYFP in the trunk of 1-day-old GAL4s1020t, UAS:GtACR1-eYFP (a)
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intensity tested (Figs. 2e, f, 3e, f, 4e, f ), consistent
with the reported action spectrum of both GtACR1
and GtACR2 [21]. Together, these data suggest that
GtACR1 is more effective than GtACR2.
Additional file 1: Movie 1. The effect of 10 μW/

mm2 green light on spontaneous movement of
GAL4s1020t, UAS:GtACR1 embryos. Twenty-four-
hour-old embryos exhibit spontaneous coiling, ex-
cept during the period of green light delivery, which
is indicated by the green dot on the bottom left.
(MP4 975kb)Additional file 2: Movie 2. The effect
of 10 μW/mm2 green light on spontaneous move-
ment of embryos without GtACR1 expression.
Spontaneous coiling persists during delivery of green
light. (MP4 921kb)

GtACRs increase behavioural activity at light offset
When the actuating light was turned off, an increase in
the movement of GtACR1- and GtACR2-expressing
embryos was detected (Fig. 2a–c lower trace). To assess
whether this reflected an increased amount of move-
ment per animal, or an increased probability but similar
level of movement, we looked at the response of each
fish, comparing movement in the 5-s period after light
offset with the 5-s period before light onset. As can be
seen in Figs. 3 and 4, there is a greater amount of
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Fig. 2 Light sensitivity of GtACR1- and GtACR2-expressing fish. a, b Response of ACR1 fish to blue (a) and green (b) light of three different intensities (high,
medium and low). For each panel, the top trace shows the movement of each fish in 1 s. This is measured by number of pixels that differ, relative to the
cross-sectional area of the chorion. Each line represents one fish. The lower trace shows the mean value and 95% CIs. Controls refer to siblings lacking eYFP
expression that were exposed to high intensity light. c, d Effect of blue (c) and green (d) light of different intensities on ACR2-expressing fish. e, f The effect
of red light on ACR1- (e) and ACR2- (f) expressing fish. Line colour corresponds to the colour of light used for illumination. For all conditions, the period of
illumination lasted from t= 15 s to t= 30 s
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movement following light offset, implying that loss of
light (light OFF) triggers stronger movement than what
is seen spontaneously.
This effect was observed in larvae expressing GtACR1

in both green and blue light, at all three light intensities
tested (Fig. 3a–d). However, for larvae expressing
GtACR2, this effect was only observed upon exposure to
blue light (Fig. 4a, b). This suggests that the movement
to light offset is not due purely to change in illumination
(i.e. a startle response), but is caused by the light-gated
anion channel.
Comparison of GtACRs with halorhodopsin
Halorhodopsin has previously been used to inhibit
neural activity in zebrafish larvae [39]. We compared the
performance of this chloride pump with the anion chan-
nelrhodopsins. At the intensities at which GtACRs en-
abled a behavioural manipulation of zebrafish, no light-
evoked inhibition of spontaneous movement or
induction of movement at light offset was seen in fish
expressing NpHR-mCherry (Fig. 5). This is consistent
with published reports that stronger light (e.g. 19 mW/
mm2) is required for halorhodopsin-mediated inhibition
of spinal neuron activity in the GAL4s1020t,UAS:NpHR-
mCherry line [39]. Thus, anion channel rhodopsins are
more effective tools for optical control of behaviour in
zebrafish, compared with halorhodopsin.
Calcium imaging of spinal neurons
As an independent method of assessing the effect of
light and loss of light on neurons in zebrafish larvae
expressing GtACR1, two-photon calcium imaging was
carried out. We used the elavl3 promoter to drive broad
neuronal expression of the calcium indicator GCaMP6f.
Cells expressing GtACR1-eYFP could be identified by
the presence of strong membrane fluorescence (see, e.g.
the green arrowhead, Fig. 6a). Spontaneous fluctuations
in GCaMP6f fluorescence could be detected in these
cells, and this was reduced in the presence of blue light
(Fig. 6b). Cells without a bright membrane label (e.g. the
orange arrowhead in Fig. 6a) also showed a loss of spon-
taneous calcium transients in the presence of actuating
light, consistent with loss of activity in the spinal net-
work, and not only in GtACR1-expressing cells. To fur-
ther explore this, imaging was carried out at a more
dorsal plane of elavl3:GCaMP6f, GAL4s1020t, UAS:G-
tACR1 fish, where cells do not express GtACR1-eYFP
(Fig. 6c; see also Fig. 1). Here, again spontaneous cal-
cium spikes were absent in the presence of blue light
(Fig. 6d; Movie 3, see Additional file 3). Suppression of
calcium transients was seen over the entire period in
which light was delivered, which was 60 s, suggesting
that inhibition of activity can occur for longer than the
15 s used in the behaviour test. Additionally, this indi-
cates that, at the offset of blue light, fluctuations in cal-
cium levels resumed. In siblings that did not express
GtACR1, fluctuations in calcium levels persisted in the
presence of light (Fig. 6e, f ), indicating that light itself
cannot suppress calcium transients in these fish.
Additional file 3: Movie 3. The effects of blue light

on the trunk of GAL4s1020t, UAS:GtACR1, elavl3:G-
CaMP6f fish. Twitches of the body are accompanied by
increase in GCaMP6f fluorescence. In the presence of
blue light (from 60 to 120 s), which can be seen by an
overall increase in brightness, the embryo no longer
twitches and there is no fluctuation in GCaMP6f fluores-
cence. After the blue light is switched off, movement
and change in GCaMP6f fluorescence resume. This is a
dorsal view, with anterior to the left. (AVI 2660kb)
To test whether offset of the actuating light can drive

neural firing in fish expressing GtACR1, as suggested by
behavioural data, we used fish at a later stage where
spontaneous activity was not as prominent, so that sig-
nals evoked by loss of light can be clearly distinguished
from spontaneous activity. As seen in Fig. 6 g, h, spinal
neurons that had no activity before light showed an
increase in fluorescence after the offset of blue light.
This observation suggests that the termination of light-
gated silencing mediated by GtACR1 can lead to
depolarization of neurons within the spinal network.

Discussion
We have investigated the usefulness of anion channelr-
hodopsins from Guillardia theta as a tool for optical
control of larval zebrafish behaviour. By expressing these
channels in spinal neurons of larval zebrafish and expos-
ing the animals to light, spontaneous coiling movements
could be completely and reversibly inhibited. GtACR1
appears to be a more effective tool, as ACR1-expressing
fish were affected by both green and blue light at the
lowest intensity tested, which is ~3 μW/mm2. GtACR2
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Fig. 3 The effect of light and loss of light on spontaneous movement of GtACR1 embryos. a, c, e The amount of movement displayed by
individual embryos, in the 5 s before light onset (‘5 s before’), in the first 5 s after light onset (‘First 5 s’) and in the first 5 s after light offset (‘5 s
after’). Different intensities of blue (a), green (c) and red (e) light were tested. Controls refer to siblings lacking eYFP expression. The line colour of
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Red light has a small effect (f)
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was able to inhibit movement, but it was effective mainly
with blue light at medium or high intensity; green light
could inhibit movement only at high intensity. This is
similar to findings in Drosophila, where 1.3 μW/mm2 of
green light was sufficient to actuate GtACR1, whereas a
higher intensity of blue or green light was required for
GtACR2 [22]. Halorhodopsin, which has been shown to
be effective in GAL4s1020t zebrafish when actuated with



a
7 µW/mm2; n=59 3 µW/mm2; n=55 14 µW/mm2; n=63

s1020t:GAL4, UAS:ACR2-eYFP Control

0
2
4
6
8

10
12

M
ea

n
P
ix
el

D
iff

(%
)

b

5s
be
fo
re

Fi
rs
t 5
s

5s
be
fo
re

5s
af
te
r

5s
be
fo
re

Fi
rs
t 5
s

5s
be
fo
re

5s
af
te
r

−3
−2
−1
0
1
2
3

D
el
ta

M
ea

n
P
ix
el

D
iff

(%
)

-0.39 [-0.68;-0.13]
P=4.29×10−4

1.42 [0.97;1.97]
P=6.29×10−7

-1.0 [-1.55;-0.59]
P=4.11×10−5

1.07 [0.55;1.68]
P=3.02×10−5

-0.44 [-0.93;-0.07]
P=0.041

0.9 [0.39;1.45]
P=0.001

-0.44 [-1.08;0.19]
P=0.143

-0.36 [-0.83;0.1]
P=0.117

5s
be
fo
re

Fi
rs
t 5
s

5s
be
fo
re

5s
af
te
r

5s
be
fo
re

Fi
rs
t 5
s

5s
be
fo
re

5s
af
te
r

c

0
2
4
6
8

10
12

M
ea

n
P
ix
el

D
iff

(%
)

2 µW/mm2; n=54 10 µW/mm2; n=63

s1020t:GAL4, UAS:ACR2-eYFP Control

d

−3
−2
−1
0
1
2
3

D
el
ta

M
ea

n
P
ix
el

D
iff

(%
)

-0.82 [-1.26;-0.35]
P=2.97×10−4

0.26 [-0.33;0.89]
P=0.444

-0.21 [-0.69;0.36]
P=0.097

0.38 [-0.22;1.01]
P=0.138

-0.05 [-0.47;0.59]
P=0.39

0.38 [-0.13;1.0]
P=0.332

-0.19 [-0.88;0.44]
P=0.844 -0.42 [-1.23;0.28]

P=0.405

5s
be
fo
re

Fi
rs
t 5
s

5s
be
fo
re

5s
af
te
r

5s
be
fo
re

Fi
rs
t 5
s

5s
be
fo
re

5s
af
te
r

5s
be
fo
re

Fi
rs
t 5
s

5s
be
fo
re

5s
af
te
r

5s
be
fo
re

Fi
rs
t 5
s

5s
be
fo
re

5s
af
te
r

e

0
2
4
6
8

10
12

M
ea

n
P
ix
el

D
iff

(%
)

s1020t:GAL4, UAS:ACR2-eYFP
9 µW/mm2; n=58

Control
9 µW/mm2; n=63

f

−3
−2
−1
0
1
2
3

D
el
ta

M
ea

n
P
ix
el

D
iff

(%
)

-0.13 [-0.69;0.42]
P=0.673

-0.12 [-0.67;0.39]
P=0.758

-0.35 [-0.96;0.21]
P=0.387

-0.23 [-0.84;0.4]
P=0.351

5s
be
fo
re

Fi
rs
t 5
s

5s
be
fo
re

5s
af
te
r

5s
be
fo
re

Fi
rs
t 5
s

5s
be
fo
re

5s
af
te
r

Fig. 4 The effect of light and loss of light on spontaneous movement of GtACR2 embryos. a, c, e The amount of movement displayed by
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amber light at ~20 mW/mm2 [39], appeared to be un-
affected by the low intensity that could be used with
GtACR-expressing embryos. This suggests that, as in
Drosophila [22], the anion channelrhodopsins are potent
tools for light-mediated reversible inhibition of neural
activity in zebrafish.
The assay adopted here to establish parameters for use
of GtACR1 and GtACR2 in zebrafish larvae is spontan-
eous coiling. Friedman et al. have found that dark-
adapted AB wild-type larvae, which coil in the dark, stop
coiling when exposed to light due to the presence of
extraretinal opsins [40]. We find no light-evoked
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inhibition of coiling in control fish that lacked GtACRs
in our experiments. The reason for this difference is un-
clear. Regardless of the cause, this observation reflects
an important factor that should be taken into consider-
ation when designing optogenetic experiments with lar-
val zebrafish, namely the presence of extraretinal opsins.
The zebrafish has at least 42 opsins [41], many of which
are expressed outside the retina [42, 43] and can affect
behaviour independently of the visual system [44, 45].
Innate behaviours can be triggered by low levels of light
[46] — within the range that actuates GtACRs. Thus,
when performing optogenetic manipulations, an essential
control is the use of siblings that do not express the chan-
nel that is being used to manipulate the cells of interest.
Although the GtACRs are potent tools, there may be

some limitations that should be borne in mind. Anion
channelrhodopsins may not be able to silence neural
activity in all cells. As noted by Wiegert et al. [47],
actuating these pumps in cells with high levels of intra-
cellular chloride may lead to depolarization. Thus,
characterization of cellular response should be under-
taken to confirm that there is loss of activity.
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Additionally, these pumps may be useful only for short-
term inhibition, in the range of seconds and possibly up
to 1 min (see the companion manuscript [35] and Fig. 6c,
d) [47, 48]. It is unclear whether they can be chronically
actuated. Although the pumps are sensitive, it does not
seem that expression during larval development and
growth has strong adverse effects. We do not find evi-
dence that expression of the pumps causes cell death,
and larvae expressing GtACR1 or GtACR2 can grow to
adulthood and give rise to viable offspring. Nevertheless,
to control for potential developmental effects, the
behaviour of siblings that do not express the transgene
can be compared to that of expressing siblings, in the
absence of the actuating light. The use of GtACR2,
which is less sensitive than GtACR1, may also minimize
potential adverse effects from ambient light. Finally, it
should be noted that the termination of light-evoked
silencing can lead to depolarization of neurons. This could
be seen in larval zebrafish where GtACRs were expressed
in spinal motor neurons, as judged by increased coiling
behaviour as well as a rise in intracellular calcium of spinal
neurons at the offset of light. This property of GtACRs
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has been observed in other light-gated chloride pumps,
including halorhodopsin [17], and it is linked to an
increase in excitability due to accumulation of chlor-
ide ions inside the cell, which elevates mean spike
probability and mean stimulus-evoked spike rate by
changing the reversal potential of the GABAA receptor
[49]. Thus, in designing experiments where the goal is to
test the effects of silencing a particular set of neurons, it
would be advisable to restrict observations to the period
during which light is delivered. The burst of activity that
occurs after the offset of light may be problematic in a
study of long-term processes, such as memory [50] or
emotion [51]. For acute processes, however, this property
may be beneficial, as it provides a way to test the effects of
activating the same set of neurons. An example of this is
shown in the companion manuscript [35], where the dir-
ection of swimming is reversed in light versus darkness
when GtACRs are expressed in the anterior thalamus.

Conclusions
The anion channelrhodopsins GtACR1 and GtACR2
enable optical inhibition of neural circuits in zebrafish.
They are effective at illumination levels that fail to actu-
ate NpHR, and may thus enable efficient testing of the
necessity of neurons in a given behaviour.

Additional files

Additional file 1: Movie 1. The effect of 10 μW/mm2 green light on
spontaneous movement of GAL4s1020t, UAS:GtACR1 embryos.
Twenty-four-hour-old embryos exhibit spontaneous coiling, except
during the period of green light delivery, which is indicated by the
green dot on the bottom left. (MP4 975kb)

Additional file 2: Movie 2. The effect of 10 μW/mm2 green light on
spontaneous movement of embryos without GtACR1 expression.
Spontaneous coiling persists during delivery of green light. (MP4 921kb)

Additional file 3: Movie 3. The effects of blue light on the trunk of
GAL4s1020t, UAS:GtACR1, elavl3:GCaMP6f fish. Twitches of the body are
accompanied by increase in GCaMP6f fluorescence. In the presence of
blue light (from 60 to 120 s), which can be seen by an overall increase in
brightness, the embryo no longer twitches and there is no fluctuation in
GCaMP6f fluorescence. After the blue light is switched off, movement
and change in GCaMP6f fluorescence resume. This is a dorsal view, with
anterior to the left. (AVI 2660kb)
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