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airway epithelia
Ari Jon Arason1,6†, Jon Petur Joelsson1†, Bryndis Valdimarsdottir1,6, Snaevar Sigurdsson1, Alexander Gudjonsson1,
Skarphedinn Halldorsson2, Freyr Johannsson2, Ottar Rolfsson2, Fredrik Lehmann6, Saevar Ingthorsson1,6,
Paulina Cherek4, Gudmundur H. Gudmundsson5, Fridrik R. Gardarsson6, Clive P. Page6,8, Olafur Baldursson6,7,
Thorarinn Gudjonsson1,3,6 and Jennifer A. Kricker1,6*

Abstract

Background: Azithromycin (Azm) is a macrolide recognized for its disease-modifying effects and reduction in
exacerbation of chronic airway diseases. It is not clear whether the beneficial effects of Azm are due to its anti-microbial
activity or other pharmacological actions. We have shown that Azm affects the integrity of the bronchial epithelial barrier
measured by increased transepithelial electrical resistance. To better understand these effects of Azm on bronchial
epithelia we have investigated global changes in gene expression.

Methods: VA10 bronchial epithelial cells were treated with Azm and cultivated in air-liquid interface conditions for up to
22 days. RNA was isolated at days 4, 10 and 22 and analyzed using high-throughput RNA sequencing. qPCR and
immunostaining were used to confirm key findings from bioinformatic analyses. Detailed assessment of cellular changes
was done using microscopy, followed by characterization of the lipidomic profiles of the multivesicular bodies present.

Results: Bioinformatic analysis revealed that after 10 days of treatment genes encoding effectors of sterol and cholesterol
metabolism were prominent. Interestingly, expression of genes associated with epidermal barrier differentiation, KRT1,
CRNN, SPINK5 and DSG1, increased significantly at day 22. Together with immunostaining, these results suggest an
epidermal differentiation pattern. We also found that Azm induced the formation of multivesicular and lamellar bodies in
two different airway epithelial cell lines. Lipidomic analysis revealed that Azm was entrapped in multivesicular bodies
linked to different types of lipids, most notably palmitate and stearate. Furthermore, targeted analysis of lipid species
showed accumulation of phosphatidylcholines, as well as ceramide derivatives.

Conclusions: Taken together, we demonstrate how Azm might confer its barrier enhancing effects, via activation of
epidermal characteristics and changes to intracellular lipid dynamics. These effects of Azm could explain the unexpected
clinical benefit observed during Azm-treatment of patients with various lung diseases affecting barrier function.
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Background
The global burden of chronic lung diseases has been dem-
onstrated in various epidemiological studies. Patients with
lung diseases including COPD, asthma, diffuse panbronch-
iolitis and cystic fibrosis (CF) are often admitted to hospi-
tals with acute exacerbations [1]. These admissions can be
due to underlying bacterial infections for which the first
line of treatment includes macrolide antibiotics [2–8].
Patients that receive macrolide therapy show improved
prognosis with fewer and less severe acute exacerbations
resulting in fewer hospital admissions [8–11]. These benefi-
cial effects appear to be independent of bactericidal activity
[12] and are particularly shown to improve health in
patients with COPD regardless of the status of the airway
bacterial infections, including that of P. aeruginosa
colonization [2, 13, 14].
Macrolides are compounds whose chemical structure in-

cludes a macrolactone ring backbone. The first identified
macrolide was the 14-membered erythromycin. [15, 16].
Azithromycin (Azm), a 15-membered macrolide derived
from erythromycin [17], is one of the most prescribed anti-
biotics in the U.S. [18] and is known to have additional ef-
fects aside from its primary role as an antibiotic. Meta-
analysis of patients receiving Azm for treatment of chronic
airway diseases reveals that many of these patients have
fewer acute exacerbations that require hospital admissions.
Traditionally macrolides are said to be anti-inflammatory
and capable of modulating inflammatory responses, in
addition to their bactericidal effect [19]. However, this
hypothesis is debated, and the pharmacological activities
that explain the observed clinical benefit of Azm remain
unproven. Indeed, a recent clinical study reported that
Azm reduced exacerbations when administered for 48
weeks to patients with asthma. Interestingly, sputum
samples neither indicated significant anti-microbial activity,
nor changes in the number of inflammatory cells [20].
Complementing these findings, it has been shown that

Azm enhances epithelial barrier function of bronchial epi-
thelial cells when cultivated under air-liquid interface (ALI)
conditions [21]. Azm increased the transepithelial electrical
resistance (TEER) of VA10, a bronchial epithelial cell line, in
ALI culture, while also affecting the processing of tight junc-
tion proteins. Moreover, epithelial integrity was maintained
during exposure of airway epithelia to P. aeruginosa infec-
tion [22]. In another study by Slater et al. [23], it was dem-
onstrated that Azm increased TEER in human primary
bronchial epithelial cells in ALI culture upon challenge with
lipopolysaccharides derived from P. aeruginosa. They
showed that Azm increased the thickness of the epithelium,
reduced the mucin production and resulted in a decrease in
metalloprotease (MMP9) production. Collectively the data
illustrate that AZM has a barrier effect. Further understand-
ing of this unusual and off target effect of Azm is important
and could produce novel strategies to combat barrier failure.

Based upon several previous studies we hypothesized
that the effect of Azm was primarily on airway epithelial
cells. Therefore, we investigated the effects of Azm on epi-
thelial gene expression and found that Azm had pro-
nounced temporal effects on bronchial epithelial cells
grown in ALI culture. Gene sequencing analysis demon-
strated increasing differentiation towards an epidermal
phenotype with upregulation of several skin associated
markers. This was accompanied by the formation of mul-
tivesicular and lamellar bodies that may be one of the
factors that contribute to the barrier enhancing effects of
Azm. Exploring further the barrier enhancing effects of
Azm is of importance as barrier failure in the respiratory
system can contribute to a wide range of disease condi-
tions and exacerbation of chronic airway diseases.

Material and methods
Cell culture
VA10 [24] and BCi-NS1.1 [25] (Cornell University Licens-
ing Agreement) cells lines were cultured in BEGM
medium supplemented with retinoic acid, penicillin (50
IU/mL) and streptomycin (50 μg/mL) (Invitrogen). VA10
cells were used between passages 11–20, and BCi-NS1.1
cells between passages 11–24. Both cell lines were main-
tained in a humidified incubator at 37 °C and 5% CO2.
Medium was changed every 2 to 3 days.

Air-liquid interface culture
Air-liquid interface (ALI) culture was conducted using both
VA10 and BCi-NS1.1 cells. Transwell filter inserts (Corning
0.4 μM PET membrane) were pre-coated with human type
IV collagen (Sigma), and cells were trypsinized and seeded
in 50:50 DMEM/Ham’s F-12 containing 10% FBS (Ther-
moFisher). 2.0 × 105 cells/cm2 and 4.5 × 105 cells/cm2 of
VA10 and BCi-NS1.1, respectively, were seeded in 0.5mL
on the apical side of the insert, and 1.5mL medium added
to the basolateral chamber. After 1 day, the medium in
both chambers was changed to DMEM/Ham’s F-12 con-
taining 2% Ultroser G (Pall Scientific). After 2 days when
the cell layer was confluent, medium was removed from
the apical chamber to create an air-interface, and treat-
ments commenced. Typically, treatments were for either 2
or 3 weeks, and medium was changed every 2–3 days. Azm
used was Zithromax® (Pfizer, NY, USA) (53.4 µM) and from
Sigma (Missouri, USA) (31.8 µM). All experiments were
done in technical triplicates, as well as biological replicates.

Paracellular flux assay and TEER
VA10 cells were grown in ALI culture and sodium fluores-
cein (Sigma) permeation was performed at different time
points to determine the paracellular flux from the apical
to basolateral compartments. ALI cultures were equili-
brated for 30min in Hanks’ Balanced Salt Solution (Gibco
HBSS). Sodium fluorescein in HBSS (50 μM) was added to
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the apical chamber, with 1.5 mL of HBSS in the basolateral
chamber. Sampling from the basolateral compartment
was done after 20, 40, 60, 80 and 120min and HBSS vol-
ume replenished each time.
TEER was measured before and after the experiment

to ensure barrier integrity.

RNA sequencing and gene expression analysis
RNA was extracted from cells grown in ALI culture and
poly-A mRNA libraries were prepared for deep sequen-
cing analysis using an Illumina HiSeq 2500. Triplicate
samples were prepared and sequenced from Azm treated
cells and untreated cells at days 4, 10 and 22.
The Kallisto (v 0.43) program [26, 27] was utilized for

the measurement of differential expression and to obtain
q values for each transcript. For enrichment analysis we
selected transcripts with differential expression in Azm
treated cells versus untreated cells based on Kallisto/
sleuth q-values, and with at least two-fold increases in
expression (beta > 0.63). The top differently expressed
transcripts based on q-values (q < 0.01) (for day 22: 1000
upregulated transcripts and bottom 500 downregulated
transcripts) were analyzed with the Panther classification
system for GO biological processes (The PANTHER
(protein annotation through evolutionary relationship)
classification system (version 183), released on 12 Sep-
tember, 2018; http://www.pantherdb.org/) [28] to iden-
tify biological processes up or down regulated in the
Azm treated cells (Overrepresentation Test).

qRT-PCR
Total RNA was extracted with Tri-Reagent (Ambion, Ther-
moFisher). One μg of RNA was reverse transcribed with
hexanucleotide primers using Superscript IV (Thermo-
Fisher). Resulting cDNA was used as template for qPCR.
Primer pairs and probes from Applied Biosystems (Taq-
Man) were used for CRNN (Hs.PT.58.45584843), DSG1
(Hs.PT.58.19323131), KRT1 (Hs.PT.58.24741966), SPINK5
(Hs.PT.58.27676526), and PPIA (Hs.PT.39a.22214851) or
GAPDH (Hs.PT.39a.22214836) as endogenous reference
genes. Gene expression is performed in triplicate technical
replicates, as well as biological replicates.

Immunostaining
Samples were fixed in formalin and embedded in paraffin
before being sectioned and immunostained. Three μm
thick slides were incubated at 60 °C for an hour prior to
staining. Before staining, the sample antigen retrieval was
done in a buffer with either citric buffer (pH 6) or TE buffer
(pH 9) for 20min. Samples were then blocked with serum.
The primary antibody was incubated overnight at 4 °C and
the secondary antibody incubated at room temperature for
30min. Secondary antibodies used included Dako EnVi-
sion+ system-HRP labelled polymer anti-mouse (K400011–

2), anti-rabbit (K400211–2) and the DAB substrate kit
(ab94665). A kit containing DAB chromogen and substrate
buffer (ab94665) was used according to the manufacturer’s
instructions.

Microscopy
Immunofluorescence was visualized and captured using
an Olympus FV1200 Confocal microscope (Olympus,
Tokyo, Japan). Bright-field and phase-contrast images of
samples were captured using an EVOS FL Auto 2 im-
aging system (ThermoFisher).

Transmission electron microscopy
VA10 and BCi-NS1.1 cells were grown as monolayers on
coverslips and under ALI conditions, and prepared for
electron microscopy. Cells were fixed with 2.5% glutaral-
dehyde for 20min. Fixed coverslips/filters were placed in
2% osmium tetroxide, followed by a phosphate buffer
rinse. Cells were dehydrated and then embedded in resin.
100 nm sections were cut with an Ultramicrotome (Leica
EM UC7). Sections were stained with lead citrate (3%, J.T.
Baker Chemical Co.) and imaged using a JEM-1400PLUS
PLTransmission Electron Microscope.

LipidTOX assay
Cells were grown with and without treatment of Azm
(53.4 μM) for 5 days. The cells were then seeded into 96
well plates containing 1X LipidTOX™ phospholipidosis
detection reagent (ThermoFisher) and incubated for 72
h and live cell imaged using an FV1200 Olympus
Inverted Confocal Microscope. Quantification of fluores-
cence intensity was measured using ImageJ. A total of
three biological repeats were done (n = 3).

Lipidomic analysis
Lipids were extracted from cell cultures by liquid-liquid
extraction. Thawed cell pellets were resuspended in ice-
cold methanol, vortexed vigorously and allowed to stand
on ice for 10min. Equal amounts of water and chloroform
were added to a final composition of 1:1:1 (CH3OH:H2O:
CHCl3), vortexed and left to stand overnight at 4 °C. The
organic phase was collected into a glass vial and solvent
evaporated in a miVac concentrator (SP scientific, War-
minster PA, USA) and reconstituted 2-propranol:ACN:
H2O (2:1:1, v/v/v) for analysis.
Lipidomic analysis was performed using ultra perform-

ance liquid chromatography (UPLC, ACQUITY, Waters,
Manchester, UK) coupled with a quadrupole time-of-flight
mass spectrometry (Synapt G2, Waters, Manchester, UK)
operating in MSE mode with ion mobility separation.
Samples were injected onto a 1.7 μm particle 100 × 2.1
mm CHS C18 column (ACQUITY, Waters, Manchester,
UK). Mobile phase A was water/acetonitrile 80:20 (v/v)
containing 0.05% formic acid and 5mM ammonium
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formate, mobile phase B was 2-propanol/acetonitrile 90:10
(v/v) containing 0.05% formic acid and 5mM ammonium
formate. Data acquisition took place over the mass range of
150–1100Da with two alternating scan modes: a low energy
mode with the collision energy in the trap cell set at 6 eV,
and a high energy mode with the collision energy in the trap
cell set at 6 eV and a collision energy ramp ranging from 20
to 30 eV in the transfer cell. In both scan modes the scan
time was 0.5 s. Data processing and analysis were performed
with MassLynx v4.1 (Waters), Targetlynx v4.1 (Waters) and
Driftscope v2.8 (Waters). Statistical analysis was performed
with Metaboanalyst as previously described [29].

Statistical analysis
All growth curves were performed in triplicate for statistical
accuracy. Graphs were created in GraphPad Prism. Statistical
significance was determined using Student’s t-tests. Error
bars represent the standard deviation (SD) of the sample.

Results
Azm treatment of human bronchial epithelial cells increases
transepithelial resistance and reduces paracellular flux
We first sought to confirm the effect of Azm on bronchial
epithelial cells from previous studies. Cells were grown in
ALI conditions for 3 weeks and TEER and paracellular flux
were measured. Here, we show that both the VA10 and the
bronchial-derived basal cell line BCi-NS1.1 [25] demon-
strate an inverse relationship between TEER and paracellu-
lar flux after treatment with Azm. After approximately 1
week of Azm treatment, TEER begins to increase as
compared to non-treated controls (Fig. 1a). Conversely, as
TEER increases, paracellular flux decreases (Fig. 1b). In
monolayer culture, the VA10 cell line shows a P63/Cyto-
keratin 14 positive basal epithelial phenotype [30] and thus,
the ALI cultures can be considered “naïve” at day 0. To
examine if Azm treatment resulted in histology alter-
ations in the ALI cultures, ALI filters were embedded
in paraffin and cross-sectioned for microscopic ana-
lysis. We observed a thickening of the epithelial layer
and the formation of large intracellular vesicles with
Azm treatment (Fig. 1c).

Azm treatment of bronchial epithelial cells results in
global and temporal changes in gene expression
In order to investigate the scope of gene expression
changes associated with the cellular observations after
Azm treatment in VA10 cells during ALI culture, RNA
sequencing was performed on samples collected at three
time points during culture: day 4, 10 and 22. The time
points selected reflect various stages of differentiation as
indicated by rising TEER and reduced paracellular flux.
This extended duration of treatment from 2 weeks to 3
weeks was based on reports stating that long term Azm
treatment is beneficial for patients with chronic airway

diseases [4, 31]. Gene expression analysis revealed global
changes throughout the culture period. To assist in
interpreting these data, we used the PANTHER gene
ontology (GO) classification system [32] to identify strik-
ing patterns in the development of increased epithelial
barrier function. At day 4, only a few gene transcripts
(36) were upregulated according to our statistical criteria
(q-value less than 0.01 and more than 2-fold upregula-
tion). However, at day 10, the expression profile was
enriched in genes associated with sterol/cholesterol me-
tabolism, an important component of epidermal barrier
formation (Table 1) [33–35]. Interestingly, after 22 days
of treatment, an overexpression profile in the domain of
epidermal ontology groups was enriched. This included
keratinization, cornification, keratinocyte differentiation,
and establishment of skin barrier regulation of water loss
via skin and desmosome organization. The 20 most up-
regulated genes and their assigned gene ontology groups
at the last time point were analyzed and a strong epider-
mal barrier fingerprint was evident (Table 2). Of particu-
lar interest we saw a significant upregulation of NDRG1,
which recently was directly associated with positive ef-
fects on airway epithelial barrier strengthening [36]. We
then set out to depict the differential expression pattern
of gene transcripts within these categories during Azm
treatment and included transcripts known to be active
in the formation of the skin barrier related to corneocyte
lipid envelope and the epidermal differentiation complex
(EDC). The EDC is a complex consisting of proteins
encoded by 51 genes involved in the terminal differentiation
and cornification of keratinocytes, spanning a 1.9Mb stretch
within chromosome 1q21. After 4 days of treatment, there
was very little effect on expression within these categories.
After 10 days there was low to intermediate upregula-
tion, while after 22 days a clear upregulation pattern
was distinct (Fig. 2a-e). Since transcripts can be classi-
fied into more than one GO group, we utilized a recent
publication to increase our confidence that these upreg-
ulating effects were truly epidermal related. Gerber et
al. [37] revealed 687 genes as being specifically skin as-
sociated genes (SAG) and assigned them to a total of
15 functional groups. Our results revealed that of the
statistically upregulated genes induced by Azm treat-
ment on day 22, 40.3% pertained to the SAG group, in
contrast to 14.8% of an equally numbered list of genes
that were randomly generated. Interestingly, one of the
three most represented functions was vesicle formation.
Expression of a selection of genes from each of the GO

groups was confirmed using qRT-PCR (Fig. 3a). Genes
showing significant increase after Azm treatment in-
cluded: Cytokeratin 1 (KRT1), that acts together with
keratin 10 to form intermediate filaments to provide
strength, albeit most notably in skin; Cornulin (CRNN),
also known as squamous epithelium shock protein 53 that
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is suggested to play a role in the mucosal/epithelial im-
mune response and epidermal differentiation; and des-
moglein 1 (DSG1), a major component of desmosome
cell-cell junctions. Additionally, we also observed
changes in the serine protease inhibitor Kazal-inhibitor
5 (SPINK5), which is known to regulate proteases and
be involved in respiratory processes. To assess any al-
terations in the tissue architecture, cross-sections of

ALI cultures from day 22 were examined (Fig. 3b). Not-
ably, the Azm treated cultures were thicker and vesicle
formations were apparent. ALI cultures treated for 3
weeks with Azm were stained for markers with in-
creased gene expression. Again, staining of epidermal
barrier associated proteins revealed dramatic increase
in expression of cytokeratin 1 and corneodesmosin,
with notable de novo apical expression of the latter.

Fig. 1 Azm treatment enhances TEER and decreases paracellular flux of airway epithelium culture in ALI. a) Azm increases TEER in bronchial-derived basal
epithelial cell lines. VA10 (top left) and BCi-NS1.1 (top right). Cells were treated with 25 μg/ml (Azm) for 3 weeks, and then RNA was harvested. Bars
represent the average from triplicate wells. Significant differences between Ctrl and Azm are indicated (P< 0.05*; P< 0.01**). b) The apical to basolateral
permeability of airway epithelia decreased over time in both control and Azm treated cells. Apparent permeability of sodium fluorescein (Na-Flu was
measured as an indication of paracellular flux in VA10 cells. This was inversely correlated with an increase in TEER. c) Azm treatment produces a thicker cell
layer in airway epithelia. Representative cross-sectional images of VA10 (left) and BCi-NS1.1 (right) cells after culture in ALI for 3 weeks with Azm treatment
(bottom) and without (top). Note the increase in thickness of the epithelial layer and formation of vacuoles in Azm treated cells. Cells were counterstained
with hemotoxylin. Bar = 100 μm
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The tight junction protein claudin 1 along with desmo-
plakin and desmoglein 2 were also expressed (Fig. 3b).

Azm treatment induces accumulation of intracellular
vesicles containing phospholipids
To further characterize the vesicle formation following
Azm treatment, we performed transmission electron

microscopy imaging on airway epithelia grown in mono-
layer. Both VA10 and BCi-NS1.1 cells treated with Azm
for 5 days showed a clear increase in vesicle formation and
many of these vesicles were phenotypically identified as
multivesicular bodies (MVB) (Fig. 4a and Additional file 1:
Figure S1). These vesicles were shown to accompany lipid
accumulation as highlighted by a lipidTOX assay, whereby

Fig. 2 Heatmaps showing upregulated genes involved in late epidermal differentiation and barrier formation as a result of Azm treatment of
airway epithelia. Analysis of RNA sequencing of VA10 cells after 4, 10 and 22 days of treatment of Azm in ALI culture. Sequencing was done on
triplicate samples. Heatmap showing hierarchically clustered log2(ratio) data, where the ratio is defined as mRNA expression level in control cells
to Azm-treated cells. Data are shown for genes differentially expressed at one or more of the three time points during differentiation. Heatmaps
showing up/downregulation of transcripts arranged in gene ontology (GO)-groups involved, including (a) cornification, (b) regulation of water
loss via skin, (c) desmosomal organization, (d) epidermal differentiation complex (EDC), (e) corneocyte lipid envelope (CLE). Green color
represents increased gene expression relative to red color representing decreased expression
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phospholipids conjugated to a fluorescent dye are added
to the culture media (Fig. 4b). The Azm treated cells
showed a significant (P < 0.01) increase in lipid retention
when compared to the control (Fig. 4c).

Formation of multivesicular- and lamellar- bodies with
Azm treatment in ALI cultures
Combining the data from the epidermal GO groups and the
lipid-containing vesicles after Azm treatment raised the

question as to whether the MVB identified in Fig. 4a mature
into lamellar bodies (LB). Cells cultured in ALI conditions
and treated with Azm showed the same MVB formations as
the Azm treated monolayer cells as seen in cross sectional
electron microscope images (Fig. 5a). LB formations were
observed in these cell layers. This was not seen in any of the
ALI cultured control cells (Fig. 5a and Additional file 2: Fig-
ure S2A). LB formations were also prevalent in ALI cultured
cells treated with a clinical formulation of Azm (Zithromax)

Fig. 3 Confirmation of genes and proteins upregulated after Azm treatment. a) Expression of four genes identified in the top 30 list (Table 2).
Expression was confirmed using qRT-PCR of RNA isolated from 22-day cultures treated with Azm compared to control. RNA was pooled from
duplicate wells and each sample was measured in triplicate in qPCR. Data shown is averaged from 3 separate experiments (*P < 0.05; ***P <
0.001). Abbreviations: CRNN-cornulin; KRT1-cytokeratin 1; SPINK5-serine protease inhibitor Kazal-type 5; DSG1-desmoglein 1. b) Expression of
epidermal associated markers in VA10 cells after Azm treatment. ALI cultures from 22 day treatment with Azm were stained using immunohistochemistry
for proteins shown to have enhanced gene expression in the sequencing data. Azm-treated samples stained positive for epidermal markers cytokeratin 1,
desmoplakin, desmoglein 2 and corneodesmosin, in addition to the tight junction protein claudin 1. In addition to positive staining, notable thickened cell
layers were observed after Azm treatment. Cells were counter-stained with hematoxylin. Bar = 100 μm
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(Additional file 2: Figure S2B). This was not limited to VA10
cells, as the BCi-NS1.1 cell line displayed similar MVB and
LB formation after Azm (Zithromax) treatment (Additional
file 2: Figure S2C). Figure 5b (adapted from [38]) summa-
rizes the formation of MVB and LB. Western blot analysis
for known markers related to LBs revealed an increased ex-
pression in LAMP1 (lysosome-associated membrane glyco-
protein 1) [39] in Azm treated cells, while pro-surfactant
protein B (Pro-SFPB) did not (Fig. 5c).

Lipid-Azm conjugates accumulate inside cells
To further analyze the lipid retention of the Azm treated
cells, non-polar metabolites were extracted from VA10

and BCi-NS1.1 cells grown in monoculture and VA10
cells cultured in ALI conditions, with and without Azm
treatment. Lipid extracts were analyzed with UPLC-MS.
Ion chromatograms of Azm treated VA10 cells cultured
in monolayer showed two large unidentified peaks at
2.99- and 3.66-min retention times that were not present
in the untreated cells (Fig. 6a). Ion spectra of these peaks
show that they contained fragment patterns similar to
Azm but without the native form at m/z = 750. Un-
known compounds of m/z = 239 (2.99 peak) and m/z =
267 (3.66 peak) appear to be conjugated to Azm to
create compounds of m/z = 988 or m/z = 1016, respect-
ively (Fig. 6b). These charge-mass ratios correspond to

Fig. 4 Increased vesicle formation and lipid retention in Azm treated airway epithelial monolayer. a. Transmission electron microscope
images showing that airway epithelia grown in monolayer (VA10 cells) treated with Azm have substantially more vesicle formation than
the controls. Many of these vesicles were identified phenotypically as multivesicular bodies (MVB). Top scale bars are 5.0 μm and bottom scale bars are
1.0 μm. b. Increased lipid retention in Azm-treated VA10 cells seeded with HCS LipidTOX reagent. Representative images from 3 biological replicates.
Top scale bar is 40 μm and bottom scale bars are 20 μm. c. Quantification of LipidTOX retention from confocal microscopy images in Fig. 4b. The
mean pixel intensity of different wells from 3 different experiments was calculated using ImageJ (P < 0.01)
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Fig. 5 Formation of epidermal barrier – Azm induced lamellar body formation. a. VA10 cells differentiated on 0.4 μm filters in ALI cultures treated
with Azm (Panel far right) showed a marked increase in MVB formation. LB formations were identified in the cells but not present in the control
cells (panel far left). Images show different magnifications. Scale bars are 10.0 μm for top images, 2.0 μm for middle images and 1.0 μm for
bottom images. b. Simplified illustration of LB formation based on Brasch et al. 2004 [38]. c. LAMP1 protein expression is increased in Azm treated
cells while Pro-SFPB expression is unchanged. LAMP1 quantification is seen on the right
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Fig. 6 (See legend on next page.)
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condensation of saturated fatty acids, specifically palmi-
tate (C16:0) and stearate (C18:0) to Azm (Fig. 6c). A
smaller peak representing Azm conjugation to myristic
acid (C14:0) was also detected. Azm-lipid conjugates
were detected in high quantities in both VA10 cells and
BCi-NS1.1 cells treated with Azm. These Azm-lipid con-
jugates were also present in VA10 ALI cultures treated
with Azm for 3 weeks, although these changes were not
as pronounced.
Targeted analysis of 57 lipid species of six lipid classes

showed accumulation of phosphatidylcholine (PC) spe-
cies and lyso-phosphatidylcholine (lysoPC) in Azm
treated ALI cultures, as well as ceramide derivatives
(ceramide and sphingomyelin (SM)) (Fig. 7a). Figure 7b
depicts a heatmap of all lipids identified in the analysis.
In general, most of the PCs are higher in all the Azm
treated samples than any of the control samples. The
only exceptions are the long-chain poly-unsaturated
PCs; PC 38:4 and PC 38:5 that are either not different
between the two groups or higher in untreated cells. All
lysoPCs analyzed here are more pronounced in the Azm
treated cells than the untreated cells. In contrast, with
the exception of PC-plasmalogen 34:0, the plasmalogens
detected were found to be reduced in Azm treated cells
compared to untreated cells. All SM species detected
were more abundant in Azm treated cells as were most
of the ceramide species. The only exception was
ceramide 18:1/16:0 which was higher in the untreated
cells. Of the 18 triacylglycerol (TAG) species, all but one
were found at similar levels between Azm treated and
control cells. The exception was TAG 54:5 that was
found to be higher in the untreated cells. This was the
TAG species with the highest level of unsaturation hav-
ing five double-bonds.
Taken together, Azm appears to be conjugated to satu-

rated fatty acids upon entering the cell. The direct func-
tional consequences of this are unknown. During
differentiation of the cells during ALI, Azm treated cells
maintain far higher levels of structural phospholipids
such as PC and SM while storage lipids such as TAG are
unaffected.

Discussion
We have previously shown that Azm increases TEER in
a bronchial-derived basal epithelial cell line, VA10, when
cultured in ALI conditions [21]. Here, we show that

Azm induces an increase in TEER that corresponds to a
decrease in paracellular flux, in both the VA10 and the
bronchial-derived basal cell line BCi-NS1.1 [25].This
suggests that Azm treatment of cultured airway epithe-
lial cells results in increased integrity of an epithelial
barrier in culture and enhanced barrier functions. Fur-
thermore, we have demonstrated that Azm treatment al-
ters the global gene expression pattern over time in
airway epithelial ALI cultures. Ten days of Azm treat-
ment results in increased lipid metabolism, which com-
plements microarray study findings from Ribeiro et al.
[40], who found that Azm treatment of human bronchial
epithelial (HBE) cells resulted in upregulated lipid /
cholesterol metabolism after 24 h of treatment. In the
skin, lipid-rich lamellar bodies (LB) are first seen in the
spinous layer, accumulate in the granular layer and fi-
nally form the intercellular lamella of the stratum cor-
neum. The intercellular lamellae contain cholesterols,
along with phospholipids and glucosylceramides, and to-
gether these lipids create a hydrophobic layer that is key
in the permeability barrier of the skin [41]. Here, we
have observed initial alterations associated with lipid re-
modeling and metabolism at day 10, with an increased
expression pattern towards epidermal differentiation ex-
tending to day 22. Within the epidermal gene expression
data set, subclasses such as desmosome-related genes,
corneocyte lipid envelope and cornification, are highly
enriched. Conceivably related to this epidermal pheno-
type shift, we found the formation of MVB and ultim-
ately, LB. LB formation in the lungs has traditionally
been associated with type 2 alveolar cells, but has re-
cently been reported in bronchial epithelial cells [42].
Club cells also express surfactant proteins (A, B, C and
D) [43]. In the lungs, LB derived from MVB are lipid-
protein transporters, important in the transporting of
surfactant proteins to the lumen of the alveoli and vital
to epidermal barrier formation [38]. Pro-surfactant B
(Pro-SFPB) is processed into its mature form from the
Golgi complex via the MVB into LB, which in turn
transport the surfactant to the cell membrane for excre-
tion [38] (Fig. 5c). In the epidermis, LB are formed in
the trans-Golgi network and their main function is to
secrete and deliver lipids (mostly cholesterol, glucosyl-
ceramides, phospholipids and sphingomyelin) to the
extracellular reaches of the stratum corneum, crucial for
the integrity of the permeability/water barrier. The

(See figure on previous page.)
Fig. 6 Conjugation of fatty acids to Azm in treated airway epithelia. a) Total ion chromatograms of representative samples of control (blue) and
Azm treated VA10 cells (red). Large peaks appear at 2.99 and 3.66 min in the Azm treated cells. b) Fragmentation of these peaks (2.99 peak
shown here) shows many similarities to the fragmentation pattern of Azm but with an m/z shift of 239.3 in some of the fragments. This
corresponds precisely to condensation of palmitate to one of the side-groups of AZM while releasing H2O. A similar pattern, with a shift of m/z =
267.3 was seen in the fragmentation of the 3.66 peak. This corresponds to condensation of stearate to Azm. c) Chemical structure of palmitate -
Azm conjugate
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Fig. 7 Lipid composition of Azm treated airway epithelia during prolonged ALI culture. a) Relative abundance of 6 lipid classes in Azm treated
(red) and untreated cells (blue). b) Heatmap of the 50 compounds that demonstrate the largest differences between Azm treated and untreated
cells. Values were normalized by total lipid intensity
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finding that Azm induces the expression of various sub-
classes within epidermal differentiation in bronchial epi-
thelial cells and enhances the epithelial barrier is of
interest, not only for the respiratory epithelium but pos-
sibly for other epithelial layers as well. Increased TEER
in ALI cultured lung cells and thus enhanced barrier ef-
fect has been explained by greater tight junction expres-
sion [21]. Our results indicate that a contributing factor
to increased TEER could be lipid accumulation in cells,
as fatty tissues are among the most resistant of human
tissues [44].
The results presented here indicate that the induction of

epidermal differentiation genes following treatment with
Azm causes formation of MVB and LB. This is accompan-
ied by thickening of the cell layer and sequestering of
Azm-lipid conjugates into intracellular droplets that may
partly be responsible for barrier enhancement. Azm is a
cationic amphiphilic drug and as such is a known inducer
of phospholipidosis [45]. In a recent article, Liu et al. ar-
gued that drug induced phospholipidosis, which has
historically been viewed as an adverse side-effect of
macrolide treatment, could be beneficial under certain cir-
cumstances [46]. These authors demonstrated that Azm-
induced phospholipidosis brought about accumulation of
LB in human Meibomian gland epithelial cells promoting
their function. We propose that Azm is having a similar
effect in the airway epithelium. Azm has been shown to
improve disease burden of patients with idiopathic pul-
monary fibrosis [47] and CF, making it essential to better
understand the mechanisms involved in order to discover
and produce more specific and relevant pharmaceuticals
aimed at patients with these debilitating diseases.
Azm has been of clinical interest due to its immuno-

modulatory properties and the reports of it leading to a
reduction in chronic airway disease exacerbations. At-
tempts have been made to analyze alterations in gene
expression of airway epithelium subsequent to low dose
Azm treatment, mostly focusing on downregulated genes
[48]. The targeted research for the immunomodulatory
mechanism has dominated the field and other possible
mechanisms have been largely neglected. We herein, re-
port on the temporal involvement of lipid-cholesterol
metabolism and cornification resulting in a strengthened
epithelial barrier.
Azm displays beneficial effects in chronic airway dis-

ease patients, but as it is an antibiotic, extended clinical
use of Azm has the potential to facilitate pathogen drug
resistance. A more effective drug in the treatment of
these patients would be a non-antibiotic derivative of
Azm with anti-inflammatory and epithelial barrier en-
hancing effects. It is anticipated that our results will as-
sist in the development of non-antibiotic derivatives of
Azm to enhance epithelial barrier function as a novel
approach to the treatment of respiratory diseases.

Conclusions
The data provided herein contribute to our understand-
ing of the mode of action of Azm in the treatment of re-
spiratory diseases and confirm that Azm is more than an
anti-microbial drug. Via mechanisms involving lipid me-
tabolism and upregulation of distinct ontologies of genes
pertaining to epidermal differentiation, Azm strengthens
epithelial airway barriers. The barrier enhancing effects
of Azm in vitro are likely a consequence of a combin-
ation of events that occur during long term treatment
and which results in multiple intracellular changes,
which require deeper investigation.

Additional files

Additional file 1: Figure S1. Azm treatment of BCi-NS1.1 cells leads to
increased vesicle formation Transmission electron microscope images
show that BCi-NS1.1 cells treated with Azm have substantially more
vesicle formation than the untreated controls. Left scale bars are 10.0 μm
and right scale bars are 1.0 μm. (TIF 18391 kb)

Additional file 2: Figure S2. Azm induced MVB and LB formation. A)
BCi-NS1.1 cells differentiated in ALI cultures treated with Azm showed a
marked increase in MVB and LB formations. Shown are two different cross
sectional TEM images of transwell filters. Scale bars are from left 10.0, 2.0,
1.0 and 1.0 μm. B) Treating differentiated VA10 cells with a clinical formu-
lation of Azm (Zithromax) also resulted in increased MVB and LB forma-
tions. Top scale bars are 5.0 μm and bottom scale bars are 1.0 μm. C)
Differentiated BCi-NS1.1 cells showed similar MVB and LB formations after
treatment with Azm (Zithromax). Top scale bars are 5.0 μm and bottom
scale bars are 1.0 μm. (TIF 33306 kb)
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