
Spinal cord regeneration — the origins of progenitor cells for 
functional rebuilding

Sarah E Walker*, Karen Echeverri*

Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue 
Engineering, 7 MBL Street, Woods Hole, MA 02543, USA

Abstract

The spinal cord is one of the most important structures for all vertebrate animals as it connects 

almost all parts of the body to the brain. Injury to the mammalian spinal cord has devastating 

consequences, resulting in paralysis with little to no hope of recovery. In contrast, other vertebrate 

animals have been known for centuries to be capable of functionally regenerating large lesions 

in the spinal cord. Here, we will review the current knowledge of spinal cord regeneration and 

recent work in different proregenerative animals that has begun to shed light on the cellular and 

molecular mechanisms these animals use to direct cells to rebuild a complex, functional spinal 

cord.

Introduction

For centuries, functional spinal cord regeneration has fascinated scientists and propelled the 

field of regenerative research. Most mammalian species are unable to repair damage to the 

spinal cord after a traumatic injury, leading to the loss of motor, sensory, and autonomic 

function. In mammals, spinal cord injury results in a widespread apoptotic event, leading 

to the death of neurons and glial cells surrounding the injury site. This is followed by the 

formation of the glial scar, in which a compact barrier of reactive astrocytes, NG2+ glia, and 

microglia surrounds the lesion site [1]. The formation of the glial scar, although intended to 

prevent further damage to surviving neurons, acts as a physical barrier that prevents axons 

from growing through the injury site and subsequently inhibits regenerative repair. Recently, 

the spiny mouse was shown to exhibit functional regenerative repair of its spinal cord 

after injury, which was attributed to the lack of glial-scar tissue surrounding the injury site 

[2••]. Similarly, a variety of other nonmammalian species lack the formation of glial-scar 

tissue after spinal cord injury and thus possess the intrinsic ability to regenerate their spinal 

cord (Table 1). Such regeneration-competent species include the zebrafish [3], lamprey [4], 

axolotl [5], and larval Xenopus [6]. Work in these model systems has been instrumental in 

identifying the conserved cellular mechanisms that promote successful repair of the central 

nervous system (CNS) and have demonstrated an important role for ependymal glia cells in 
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spinal cord regeneration. In this review, we will discuss the role of ependymal glial cells in 

spinal cord regeneration, highlighting recent advances in understanding their origin and how 

these cells are activated after injury.

Ependymal cell response to injury

Ependymal glial cells are found across the entire CNS, lining the central canal of the 

spinal cord and the ventricles of the brain. In the spinal cord, the somas of ependymal glial 

cells form an epithelial barrier around the central canal and extend long radial processes 

containing end-feet-like structures to the pial surface (Figure 1a). Although ependymal glial 

cells are widely known for their important role in cerebral spinal fluid homeostasis, they 

have also been proven to play an important role in regenerative repair [7,8]. In regeneration- 

competent species, ependymal glial cells within the spinal cord express sex-determining 

region Y-box 2 (Sox2), a transcription factor that regulates stem cell pluripotency and 

self-renewal [9]. Even in adult organisms that are capable of regenerative repair, these 

ependymal glial cells are a relatively quiescent population of cells that rarely proliferate. 

After injury to the spinal cord, however, Sox2+ ependymal cells behave as neural stem cells 

(NSCs) and rapidly proliferate to regenerate the missing portion of the spinal cord [10–13]. 

In the axolotl, CRISPR–Cas9-mediated deletion of Sox2 completely abolishes spinal cord 

regeneration [10]. Similarly, Sox2 knockdown using anti-sense morpholinos in Xenopus 
[14] and zebrafish [13] impairs NSC proliferation and spinal cord repair.

Early studies investigating ependymal cell responses to spinal cord injury identified a 

response zone within 500 μm of the injury site in which NSCs are activated and rapidly 

proliferate after tail amputation [15,16]. Following a more targeted transection injury, this 

response zone is found 500 μm rostral and 350 μm caudal to the injury site (Figure 1b) 

[17,18]. To better characterize the spatio-temporal dynamics of NSC activation within 

the response zone, more recent work in the axolotl utilized transgenic reporter animals 

to visualize cell-cycle dynamics in vivo. Using fluorescent ubiquitination-based cell-cycle 

indicator transgenic axolotls, ependymal cell activation was detected 800 μm from the injury 

site for the first 85 h after tail amputation. This recruitment zone gradually diminished, until 

the NSC border included a 450 μm response zone at 5 days post injury [19••]. Moreover, 

transcriptional profiling in Xenopus and zebrafish identified a significant enrichment for 

various cell-cycle regulators within the ependymal cell response zone 1 day after injury 

[20,21••]. Collectively, these studies have demonstrated that ependymal cells in the mature 

tissue directly adjacent to the injury site are mobilized to proliferate and regenerate the 

spinal cord and do so by accelerating their cell-cycle progression.

Activation of neural stem cells

In recent years, numerous studies have focused on identifying the injury-induced signaling 

pathways that activate NSC proliferation. In the axolotl, the microRNA, miR-200a, was 

shown to play an important role in regulating NSC activation. After spinal cord injury, 

mammalian glial cells upregulate a heterodimeric complex comprised of c-Fos and c-Jun 

to promote the expression of the glial fibrillar acidic protein (GFAP). This increase in 

GFAP expression results in reactive gliosis and inhibits neuronal regeneration in mammals 
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[22]. In the axolotl, miR-200a suppresses c-Jun expression in NSCs, ultimately promoting 

the formation of a noncanonical c-Fos/JunB heterodimer to prevent the upregulation of 

GFAP and promote regenerative repair. Further, miR-200a inhibition resulted in the c-Jun 

in axolotl ependymal glial cells, leading to a reduction in NSC proliferation [23]. In other 

species capable of CNS regeneration, including zebrafish [20], Xenopus [24], and lamprey 

[25], a similar upregulation of Fos and Jun expression is shown after injury. However, 

both Xenopus and lampreys lack a GFAP gene, indicating that the formation of a Fos/Jun 

heterodimer may regulate alternative glial-specific genes in these species [26].

To further identify the regulatory networks and genes that may activate NSCs, high-

resolution profiling in Xenopus uncovered a markable increase in the Mechanistic target of 

rapamycinm (mTOR)-signaling pathway after spinal cord injury. Pharmalcogical inhibition 

of mTORC1 reduced the number of proliferating Sox2+ NSCs, subsequently impairing 

spinal cord regeneration. This reduction in NSC proliferation was attributed to the inability 

of mTOR to activate genes involved in cell- cycle transition [21]. Numerous reports 

have identified mTOR as an important regulator of protein-translation initiation, which is 

a well-established process that underlies CNS regeneration [27]. Past work has largely 

investigated the role of mTOR in regulating regenerative repair of surviving neurons in the 

CNS after injury. In adult mice, virus-assisted conditional knockout of Phosphatase and 

Tensin Homolog (PTEN), a negative regulator of mTOR, resulted in mTOR over-expression 

and promoted robust retinal ganglion-cell (RGC) regeneration after injury [28]. Further 

work compared the intrinsic regenerative capabilities of regenerating sensory neurons 

to nonregenerating RGCs in the rat CNS. mTOR was highly upregulated and activated 

protein translation in regenerating sensory neurons. In contrast, nonregenerating RGC 

neurons exhibited a reduction in mTOR signaling and protein synthesis after injury [29]. 

Collectively, these studies have demonstrated the necessity of mTOR signaling in initiating 

protein synthesis in regenerating CNS neurons. However, more recent work in Xenopus 
may indicate that mTOR also plays an important role in NSC proliferation and will be an 

interesting pathway to examine in other regenerating systems.

Origin of neural stem cells

In the past two decades, particular emphasis has been placed on understanding 

ependymal cell dynamics after spinal cord injury. Through this work, we have gained 

a more thorough understanding of the cell-cycle dynamics and regulatory networks 

that activate ependymal glial cells after injury. However, the origin of NSCs remains 

somewhat unclear, with multiple reports, indicating that NSCs can arise through 

different mechanisms in regeneration-competent species. Whether these cells undergo 

dedifferentiation, transdifferentiation, or instead represent a developmentally derived 

progenitor-cell population remains unknown (Figure 2).

Dedifferentiation

Dedifferentiation has long been associated with regenerative repair, describing a mature cell 

that reverts into a progenitor/stem cell, giving rise to cells of its own lineage or potentially 

other cell lineages (Figure 2). A classic example of dedifferentiation was first inferred from 
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static images of a regenerating salamander limb, indicating that mature nucleated muscle 

fibers were pinching off single nuclei to form cells that would populate the injury site 

through a process of dedifferentiation [30]. It has been widely postulated for decades that 

many animals that can regenerate utilize dedifferentiation to form a mass of undifferentiated 

stem cells adjacent to the injury site termed a blastema, which will eventually differentiate 

to replace lost structures. The dedifferentiation of mature cells into pluripotent stem cells, 

called induced pluripotent stem cells (iPSc), has been shown in vitro utilizing mouse and 

human fibroblasts. After treatment with various factors, including Oct3/4, Sox2, c-Myc, 

and Klf4, mature fibroblasts reverted to a pluripotent stem cell state, where they were able 

to differentiate into multiple cell types (Figure 2) [31]. However, more recent work has 

indicated that dedifferentiation into pluripotent stem cells does not occur in vivo during 

regenerative repair. Classical work in the axolotl limb utilized genetic lineage-tracing tools 

to demonstrate that mature cells instead dedifferentiate into progenitors that retain lineage-

specific cell markers, resulting in their differentiation into cells of a restricted lineage [32]. 

Similarly, the dedifferentiation of mature cells into progenitors of a restricted lineage plays a 

role in zebrafish heart and fin regeneration [33,34].

During spinal cord regeneration, dedifferentiation may also play an important role in 

successful regenerative repair. Interestingly, retrograde dextran tracing of axolotl neurons 

demonstrated that mature neurons in the spinal cord do not dedifferentiate after tail 

amputation. Instead, surviving neurons merely reincorporated axons into the regenerating 

spinal cord as early as 3 days post amputation [35]. In contrast, ependymal glial cells 

in the newt spinal cord were shown to upregulate various NSC markers after injury, 

thus indicating that these cells dedifferentiate into NSCs [36]. Consistent with these 

findings, gene expression profiling revealed a strikingly similar transcriptional landscape 

between regenerating axolotl NSCs and developing chick neuroepithelium stem cells, further 

suggesting that ependymal glial cells dedifferentiate into neural stem cells after injury [11]. 

In zebrafish, similar changes in the transcriptional profile of ependymal cells have been 

documented after a compression injury to the spinal cord. After injury, Foxj1a+ ependymal 

cells downregulate Foxj1a expression and rapidly proliferate. This reduction in Foxj1a 

expression in ependymal glial cells suggests that these cells dedifferentiate into a neural 

stem cell after injury [37]. Together, these studies indicate that the dedifferentiation of 

ependymal glial cells may be an important component to promote spinal cord regeneration 

after injury.

Transdifferentiation

Although cells in the regeneration blastema were originally thought to arise exclusively 

from the dedifferentiation of mature cells, further work identified the ability for mature cells 

to instead transdifferentiate and directly switch their cell lineage. Unlike dedifferentiation, 

trans-differentiating cells do not revert to a progenitor-cell state, but are instead converted 

directly into the required cell type of a different lineage for subsequent regenerative 

repair (Figure 2). Transdifferentiation of epithelial cells has become a well-established 

phenomenon during lens regeneration in urodele amphibians [38] and retina regeneration in 

Xenopus [39]. However, evidence of transdifferentiation has also been reported in urodele 

spinal cord regeneration.
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Lineage-tracing experiments in the axolotl have indicated that ependymal glial cells 

transdifferentiate into cells of both an ectodermal and mesodermal lineage after tail 

amputation. Although ependymal cells often gave rise to spinal cord cells, they were 

also shown to migrate out of the spinal cord to dramatically switch their lineage and 

transdifferentiate into cartilage and muscle [40]. Interestingly, this phenomenon has not 

been reported in Xenopus spinal cord regeneration. Instead, mature spinal cord cells in 

the stump tissue exclusively give rise to newly regenerated spinal cord cells, and lack 

transdifferentiation potential [41]. However, Xenopus only regenerate their spinal cords 

as larval animals and lose this ability after metamorphosis. Thus, transdifferentiation may 

instead represent a process that is exclusive to animals that regenerate throughout life.

Embryonic origins

Salamanders appear to potentially use transdifferentiation [40] and dedifferentiation [36] to 

successfully regenerate the spinal cord. However, more recent reports have indicated that 

ependymal cells may in fact arise through different mechanisms that more closely represent 

developmental-like pathways. The multipotent potential of Sox2+ NSCs to differentiate 

into neurons and muscle is reminiscent of a similar bipotent progenitor-cell population, 

neuromesodermal progenitors (NMps), that regulate axial elongation during development. 

NMps are classically defined as Sox2+/brachyury+ bipotent progenitor cells located in the 

tailbud of vertebrates that give rise to cells of an ectoderm and mesoderm lineage (Figure 

2). Initially discovered in the mouse embryo [42], NMps have since been described in chick 

[43], quail [44], zebrafish [45], and humans [46]. In these developing embryos, NMps arise 

at the beginning of the primitive streak regression and persist through the remainder of axial 

elongation. However, it remains unclear at what specific timepoint NMps disappear from the 

tailbud, or if they persist into adulthood, albeit as a smaller population of progenitor cells 

that may contribute to maintenance and repair.

Multiple reports in the axolotl have demonstrated that ependymal glial cells can differentiate 

into cells of multiple lineages after tail amputation, including ectoderm and mesoderm 

[15,40]. Whereas after a more targeted spinal cord ablation injury, ependymal glial cells 

exclusively give rise to cells of an ectoderm cell lineage [17]. The ability for NSCs to exhibit 

mono- versus multipotent activity after different spinal cord injuries was recently shown to 

be regulated by the microRNA, miR-200a. In ependymal glial cells, miR-200a represses 

the mesoderm marker brachyury after an ablation injury to promote NSC differentiation 

into ectoderm. After tail amputation, miR-200a itself is downregulated in ependymal cells 

to promote the co-expression of NMp cell markers brachyury and sox2, enabling NSCs to 

give rise to either ectoderm or mesoderm [47••]. Further gene expression profiling of axolotl 

ependymal glial cells after tail amputation demonstrated that NSCs dramatically upregulate 

genes associated with NMp maintenance, including Cdx4 and the Wnt-signaling pathway 

[11]. These findings indicate that the cell state of ependymal glial cells is dramatically 

altered, depending on the injury context, and that NSCs appear to behave like NMps after 

tail amputation. Rather than representing the transdifferentiation of glial cells into ectoderm 

or mesoderm, tail amputation may instead represent the transition into a developmental-like 

progenitor-cell state. Whether similar events occur in other regeneration-competent species 

remains unclear. As NMps have been described in zebrafish embryos [45], it will be 
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interesting to investigate their persistence into adulthood in this regeneration-competent 

species, and their potential role in adult spinal cord regeneration.

Future perspectives

Although significant advances have been made in our understanding of ependymal glial-cell 

responses during spinal cord regeneration, many questions remain un-addressed. The origin 

and underlying factors that activate NSCs remain somewhat elusive, along with how these 

mechanisms may be conserved across species. Regenerative repair is a complex process and 

thus, is likely regulated by varying signaling pathways across species. In the past decade, the 

development of single-cell transcriptomics and genetic profiling has revolutionized scientific 

research, allowing researchers to specifically analyze entire transcriptomes of single-cell 

populations. As these more sophisticated single-cell RNA- profiling techniques become 

more widely accessible and feasible for regeneration-competent animals, future analyses of 

the ependymal cell profile after spinal cord injury will be instrumental in identifying the 

underlying factors that mediate NSC responses to injury. Moreover, many classical studies 

that identified trans-differentiating or dedifferentiating ependymal cells were performed 

over two-decades ago, when many transcriptomic techniques had not yet been established. 

It will be interesting to revisit these lineage-tracing experiments using single-cell RNA 

sequencing to identify different cell states (progenitor cell, mature differentiated cell) to 

further confirm whether ependymal cells undergo transdifferentiation or dedifferentiation. 

Comparing the transcriptional landscape of ependymal glial cells across species will also 

be important for understanding the conserved mechanisms and species specific pathways 

that exist to promote complex functional regeneration. In particular, determining whether 

specific signaling pathways necessary for CNS regeneration are conserved in the newly 

established spiny mouse spinal cord injury model will be an important step on the pathway 

toward promoting functional human spinal cord repair.
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Figure 1. 
Schematic diagrams of ependymal glial-cell organization in the spinal cord. (a) Cross-

sectional view of the spinal cord, ependymal glial-cell somas line the central canal and 

extend radial processes toward the pial surface. (b) After injury to the spinal cord, 

ependymal glial cells ~500 μm rostral and ~350 μm caudal of the injury site are activated 

(response zone, yellow) and begin to rapidly proliferate, eventually differentiating into the 

necessary cell types required for regenerative repair.
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Figure 2. 
Generation of stem cells. During regeneration of appendages in salamanders, several papers 

have shown data supporting the reversion of differentiated cell types such as muscle into 

multipotent progenitor cells that partake in regeneration. Similarly, in the spinal cord, 

ependymal glial cells can revert to a neural stem cell identity, this process is called 

dedifferentiation. The conversion of fibroblasts to iPSc originally by overexpression of 

specific genes is a process of dedifferentiation. In vivo cell-tracing experiments in axolotl 

have illustrated that cells in the spinal cord can form cells of other lineages, this is referred 

to as transdifferentiation. Interestingly, during development, a population of bipotent cells 

has been identified, which express the mesodermal marker Brachyury and the classical 

neural stem cell marker Sox2, these cells give rise to both ectoderm and mesoderm during 

development.
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