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Abstract

We compare three state-of-the-art Bayesian inference methods for the estimation of the

unknown parameters in a stochastic model of a genetic network. In particular, we introduce

a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ull-

ner et al., 2007. By introducing dynamical noise in the model and assuming that the partial

observations of the system are contaminated by additive noise, we enable a principled

mechanism to represent experimental uncertainties in the synthesis of the multicellular sys-

tem and pave the way for the design of probabilistic methods for the estimation of any

unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of

the model parameters. Specifically, we compare three Monte Carlo based numerical meth-

ods for the approximation of the posterior probability density function of the unknown param-

eters given a set of partial and noisy observations of the system. The schemes we assess

are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo

(NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-

SMC) scheme. We present an extensive numerical simulation study, which shows that

while the three techniques can effectively solve the problem there are significant differences

both in estimation accuracy and computational efficiency.

Introduction

The field of systems biology is rich in problems that demand sophisticated computational tools

for estimation, detection and prediction. As a consequence, we are witnessing the development

of a rigorous engineering discipline to create, control and programme cellular behaviour [1].

The resulting branch of research, known as synthetic biology, has undergone a dramatic

growth throughout the past decade and is poised to transform biotechnology and medicine. A

core issue in synthetic biology is the analysis of networks of interacting biomolecules [2],
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which carry out many essential functions in living cells. However, the design principles under-

lying the functioning of such intracellular networks remain poorly understood. To develop

new models and to simplify significantly the associated engineering processes, one needs new

inference methods that enable the accurate calibration of potentially complex models by esti-

mating any unknown parameters. It is expected that the ability to design complex synthetic

networks will lead both to the engineering of new cellular behaviours and to an improved

understanding of naturally occurring networks.

A particular system that has drawn considerable attention is the so-called repressilator [3]

which is an oscillating network that periodically induces the synthesis of a green fluorescent

protein as a readout of its state in individual cells and can be considered as a synthetic biologi-

cal clock. Mathematical models, consisting of systems of nonlinear differential equations, that

describe the dynamics of the original repressilator and subsequent extensions of it have

appeared in the literature [3–9] and sparked interest from researchers in physics, engineering

and mathematics.

In this paper we investigate the application of state-of-the-art Bayesian inference methods

for the estimation of the unknown parameters in a stochastic model of a genetic network. In

particular, we introduce a stochastic version of the chaotic, continuous-time modified repressi-

lator model of [8], which consists of a set of stochastic differential equations (SDEs) driven by

Wiener noise processes. These equations depend on a number of unknown parameters, which

we model as random variables. We convert the system of SDEs into an (approximate) discrete-

time state space model using a standard Euler-Maruyama scheme and then consider the prob-

lem of computing the posterior probability distribution of the unknown parameters in the

model conditional on a sequence of partial observations that consist of noisy measurements of

a small subset of the (dynamic) state variables. This setup resembles the scenario considered in

[8] but (i) the system in this paper is stochastic, while in [8] only a deterministic model was

studied, and (ii) we pose a data-poor problem, with the collected observations being low

dimensional (2-dimensional, for a 14-dimensional state space), noisy and sparse in time,

whereas in [8] data were assumed available continuously in time and noise-free. The random-

ness in the proposed model dynamics can potentially account for experimental uncertainties

in the synthesis of the biological system. It also enables the application of probabilistic methods

for the calibration of the model and its simulation and forecasting.

Within this probabilistic framework we investigate the Bayesian estimation of the unknown

model parameters, i.e., the approximation of their posterior probability distribution condi-

tional on the available observations. In particular, we compare three state-of-the-art Monte

Carlo methods for Bayesian inference: the particle Metropolis-Hastings (PMH) method [10],

the nonlinear population Monte Carlo (NPMC) algorithm [11] and the approximate Bayesian

computation sequential Monte Carlo (ABC-SMC) scheme [8, 12]. PMH is a Markov chain

Monte Carlo (MCMC) [13] method that relies on a built-in particle filtering approximation

[14] to compute the likelihood of the unknown parameters, which cannot be obtained in

closed-form for general nonlinear systems (such as the stochastic repressilator). The algorithm

produces a sequence of parameter values that form a Markov chain and the limit probability of

this chain is precisely the posterior distribution of the unknown parameters. The NPMC

scheme relies on an importance sampling (IS) [15] approximation of the posterior parameter

distribution, rather than a Markov chain approach. It employs the same particle filtering

approximation of the parameter likelihoods as the PMH method but its key feature is the com-

putation of non-linearly transformed importance weights (unlike conventional IS methods) in

order to reduce the variance of the parameter estimates. Preliminary results on the application

of the NPMC method to the coupled-repressilator model can be found in the conference com-

munication [16]. Finally, the ABC-SMC algorithm is a likelihood-free procedure that relies on
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the computation of distances between observed and synthetic data in order to weight candi-

date values for the unknown parameters.

We have carried out an extensive numerical comparison of the three methods, taking into

account both the accuracy of the parameter estimates and their computational cost. We have

considered scenarios where

• the signals are generated from a stochastic coupled repressilator schemes and

• noisy observations are collected from a deterministic (conventional) coupled repressilator

system.

While the three schemes effectively solve the problem, the NPMC and PMH algorithm

attain a clearly smaller estimation error than the ABC-SMC scheme for the same computa-

tional cost. When the computational budget is kept low, the PMH and NPMC algorithms

attain very similar estimation errors, with some advantage for the PMH method in the stochas-

tic-signal scenario. As we increase the computational effort, the NPMC algorithm outperforms

the PMH scheme in our experiments.

In the sequel, we introduce the stochastic modified repressilator model to be investigated

and describe the probabilistic inference methods. Then we present and discuss the results of

an extensive set of computer simulations.

Methods

Intercellular network model

Modified stochastic repressilator. The standard repressilator is a “genetic clock” built

around three genes, where the protein product of each gene represses the expression of

another one in a cyclic manner [3]. It produces nearly harmonic oscillations in protein levels.

In the original repressilator design, the gene lacI expresses protein LacI, which inhibits tran-

scription of the gene tetR. The product of the latter, TetR, inhibits transcription of the gene cI.
Finally, the protein product CI of the gene cI inhibits expression of lacI and completes the

cycle. We can see this mechanism in the left side of Fig 1, where the genes are represented in

light blue colour.

Fig 1 represents a modification of the repressilator, introduced in [5], that includes an addi-

tional feedback loop involving a small autoinducer (AI) molecule produced by CI that can dif-

fuse through the cell membrane, and the protein LuxR, which responds to the AI by activating

the transcription of a second copy of the repressilator gene lacI. Placing the gene cI under

inhibitory control of the repressilator protein TetR leads to a repressive and phase-repulsive

coupling that, in turn, generates rich dynamical patterns, including chaotic oscillations [5].

Phase repulsive coupling is common in many biological systems, e.g., in neural activity, in the

brain of songbirds or in the respiratory system.

In this paper we study a model consisting of two modified repressilators with identical

parameters, driven by Wiener-type noise and coupled by the fast diffusion of the AI across the

cell membranes. The resulting mRNA dynamics in continuous time t 2 R is described by a

stochastic Hill-type equation with coefficient m, namely

dai ¼ � ai �
a

1þ Cm
i

� �

dt þ saaidWa
i ; ð1Þ
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dbi ¼ � bi �
a

1þ Am
i

� �

dt þ sbbidWb
i ; ð2Þ

dci ¼ � ci �
a

1þ Bm
i

�
kSi

1þ Si

� �

dt þ sccidWc
i ; ð3Þ

where the subscript i = 1, 2 specifies the cell; ai, bi, and ci are time-varying state variables (sto-

chastic processes) representing the concentrations of mRNA molecules transcribed from the

genes of tetR, cI, and lacI, respectively; the constant parameter α is the dimensionless transcrip-

tion rate in the absence of a repressor; the constant parameter κ is the maximum transcription

rate of the LuxR promoter; Si is a state variable representing the concentration of the AI mole-

cule inside cell i, and Wa
i , Wb

i , Wc
i , i = 1, 2, are independent standard Wiener processes scaled

by the constant non-negative factors σa, σb and σc, respectively. The additional time-varying

states Ai, Bi, and Ci, i = 1, 2, are stochastic processes representing the concentration of the pro-

teins TetR, CI, and LacI, respectively, whose dynamics obey the SDEs

dAi ¼ baðai � AiÞdt þ sAAidWA
i ; ð4Þ

dBi ¼ bbðbi � BiÞdt þ sBBidWB
i ; ð5Þ

dCi ¼ bcðci � CiÞdt þ sCCidWC
i : ð6Þ

The equations above show that the dynamics of the proteins is linked to the amount of the

responsible mRNA, and the constant parameters βa, βb and βc describe the ratio between

mRNA and the protein lifetimes (i.e, the inverse degradation rates). Similar to Eqs (1)–(3), the

Fig 1. Plot of the modified repressilator. The elements added to the standard repressilator are depicted on the right hand side of the dashed vertical line.

Genes and molecules are represented in light blue and red colours, respectively. The oval depicts the cell membrane and the long lines ending in small

vertical bars represent the corresponding inhibitory couplings.

https://doi.org/10.1371/journal.pone.0182015.g001
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dynamics is driven by independent standard Wiener processesWA
i , WB

i and WC
i , i = 1, 2, with

constant scale factors σA, σB, σC� 0. The model is made dimensionless by measuring time in

units of the mRNA lifetime (assumed equal for all genes) and the mRNA and protein levels in

units of their Michaelis constant. The mRNA concentrations are additionally rescaled by the

ratio of their protein degradation and translation rates [4, 5].

The term
kSi

1þSi
on the right-hand side of Eq (3) represents activated production of lacI by the

AI molecule, whose concentration inside cell i is denoted by Si. The dynamics of CI and LuxI

can be considered identical, given that their production is controlled by the same protein

(TetR). Hence, the synthesis of the AI is controlled by the concentration Bi of the protein CI.

Taking also into account the intracellular degradation of the AI and its diffusion, the dynamics

of Si is modelled as

dSi ¼ � ðks0Si � ks1Bi þ ZðSi � SeÞÞdt þ sSSidWS
i ; ð7Þ

where ks0, ks1 and η are constant parameters, the latter being a diffusion coefficient that

depends on the permeability of the membrane to the AI. The variable Se is the extracellular

concentration of the AI molecule. It is common to apply a quasi-steady-state approximation to

the dynamics of Se [4, 5], which leads to Se ¼ Q�S � Q 1

N

PN
i¼1

Si; where Q ¼ dN
Vext kseþ dN

Vextð Þ
, N = 2 is

the number of cells, Vext is the total extracellular volume, kse is the extracellular AI degradation

rate, and δ is the product of the membrane permeability and the surface area.

This model can produce a range of dynamic regimes. We achieve an underlying chaotic

behaviour for this model when the constant parameters are set as [5]

ðQ;m; a;ba; bb; bc; Z;k; ks0; ks1Þ ¼ ð0:85; 2:6; 216; 0:85; 0:1; 0:1; 2; 25; 1; 0:01Þ: ð8Þ

We will refer to these values as standard. Note that we focus on a system with underlying cha-

otic dynamics because this makes the parameter estimation problem more challenging. Due to

the system sensitivity to small variations of the parameters, two choices of parameter sets, one

closer than the other to the standard values, may appear equally “incompatible” with a

sequence of observations produced by a system endowed with the standard parameters. Meth-

ods that work well in the chaotic regime can be expected to work well in other scenarios.

Numerical integration and state space model. In order to integrate the 14-dimensional

SDE described by Eqs (1)–(7) numerically, we apply the Euler-Maruyama discretisation with

integration step h << 1, that can be explicitly written as

ai;mþ1 ¼ ai;m � h ai;m �
a

1þ C
m

i;m

 !

þ saai;mw
ð1Þ

i;m; ð9Þ

bi;mþ1 ¼ bi;m � h biðnÞ �
a

1þ A
m

i;m

 !

þ sbbi;mw
ð2Þ

i;m; ð10Þ

ci;mþ1 ¼ ci;m � h ci;m �
a

1þ B
m

i;m

�
kSi;m

1þ Si;m

 !

þ scci;mw
ð3Þ

i;m; ð11Þ

Ai;mþ1 ¼ Ai;m þ hbaðai;m � Ai;mÞ þ sAAi;mw
ð4Þ

i;m; ð12Þ
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Bi;mþ1 ¼ Bi;m þ hbbðbi;m � Bi;mÞ þ sBBi;mw
ð5Þ

i;m; ð13Þ

Ci;mþ1 ¼ Ci;m þ hbcðci;m � Ci;mÞ þ sCCi;mw
ð6Þ

i;m; ð14Þ

Si;mþ1 ¼ Si;m � hðks0Si;m � ks1BiðnÞ þ ZðSi;m � Se;mÞÞ þ sSSi;mw
ð7Þ

i;m; ð15Þ

where i = 1, 2 and fwð1Þi;m; . . . ;wð7Þi;mg are independent Gaussian random variables (r.v.’s) with

zero mean and variances s2
a; s

2
b; s

2
c ; s

2
A; s

2
B; s

2
C and s2

S , respectively.

The system described by Eqs (9)–(15) can be compactly written as the multidimensional

difference equation

�xm ¼ Fyð�xm� 1;wmÞ; ð16Þ

where Fy : R14 ! R14 is a function that accounts for both the deterministic and the stochastic

part of the model and depends on a vector of unknown parameters θ (modelled as random),

�xm ¼ ½�x>1;m; �x
>
2;m�

>
is the 14 × 1 state of the system at discrete time m 2 Z, �x i;m are the 7 × 1 state

vectors associated to the two cells, i = 1, 2, and wm ¼ ½w>1;m;w
>
2;m�

>
is an independent and iden-

tically distributed (i.i.d.) sequence of 14 × 1 zero-mean Gaussian vectors. Each 7 × 1 subvector

wi,m, i = 1, 2, has the same distribution and can be written as wi;m ¼ ½w
ð1Þ

i;m; . . . ;wð7Þi;m�
>

. In partic-

ular, note that, for each cell,

�x i;m ¼ ½ai;m; bi;m; ci;m;Ai;m;Bi;m;Ci;m; Si;m�
>
; ð17Þ

with the continuous-time state variables evaluated at time t ¼ mh, e.g., ai;m ¼ aiðt ¼ mhÞ. The

same as in [8], all constant parameters are assumed known except y ¼ ½Q;m; a; ba�
>

, which

are unknown and modelled as r.v.’s. We assume uniform and independent a priori probability

distributions for each one of these parameters, namely Q � Uð0; 1Þ, m � Uð1; 5Þ, a �

Uð50; 300Þ and ba � Uð0; 1Þ. The parameter vector θ, therefore, takes values on the set

S ¼ ð0; 1Þ � ð1; 5Þ � ð50; 300Þ � ð0; 1Þ. We denote the conditional (on θ) Markov kernel that

determines the state transition from time m − 1 to time m as �Kyðdxmjxm� 1Þ. In particular, for a

Borel set A � R14, �KyðAjxm� 1Þ is the probability of moving from the point �xm� 1 in the state

space to some �xm 2 A.

Partial and noisy observations of the system are collected every m0 discrete time steps, i.e.,

every to ¼ m0h continuous time units. Only the variables ai, i = 1, 2, are observable, hence the

observations have the form

yn ¼
a1;nmo

a2;nmo

2

4

3

5 þ syϵn; n ¼ 1; 2; ::: ð18Þ

where ϵn is a sequence of independent 2 × 1 Gaussian random vectors (with zero mean and

identity covariance matrix) and σy> 0 is a known constant parameter that determines the

noise power.

In order to put the states and the observations on the same time scale, we define the

sequence of states {xn}n�0 as xn≜�xnm0
and introduce the composite Markov kernel

Kyðdxnjxn� 1Þ ¼
�Kyðdxnj�xnm0 � 1Þ

�Kyðd�xnm0 � 1j�xnm0 � 2Þ � � �
�Kyðd�xðn� 1Þm0þ1jxn� 1Þ: ð19Þ

Bayesian parameter estimation in models of genetic networks
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For a Borel set A � R14, KyðAjxn� 1Þ is the probability of the event xn 2 A (where xn ¼ �xnm0
)

conditional on xn� 1 ¼ �xðn� 1Þm0
(and on the parameter vector θ).

The pair of sequences xn and yn yield a discrete-time, Markov state space model [17] condi-

tional on the choice of parameters θ. The model is specified by the prior probability distribu-

tion of the state x0, which we denote as K0ðdx0Þ, the dynamics of the state sequence xn, which

is given by the Markov kernel Kyðdxnjxn� 1Þ, and the conditional pdf of the observations yn

given the states xn, which we denote as ln(yn|xn). We note that, in this model, the latter density

is independent of the parameters θ. Also, since yn − [a1,nm0
, a2,nm0

]> = ϵn, the form of the func-

tion ln(yn|xn) is given by the pdf of the noise term ϵn. We often refer to ln(yn|xn) as the likeli-

hood of the state xn.

Algorithms

In a Bayesian probabilistic setup, the unknown parameters are modelled as a random vector

and the aim is to approximate its posterior probability distribution, conditional on the avail-

able observations y = {y1, y1, . . ., yR} for some fixed R> 0. We denote the posterior pdf of the

unknown parameters as p(θ|y) and note that it can be readily factored, using Bayes’ theorem,

as p(θ|y)/ ℓ(y|θ)p0(θ), where ℓ(y|θ) is proportional to the conditional pdf of the observations y

given the parameters θ (i.e., the likelihood of θ) and p0(θ) is the prior density of θ, which has

been chosen to be uniform on the set S, as described in the previous section.

For the case of general state space models, an additional difficulty encountered when trying

to estimate the unknown model parameters (denoted θ in our setup) is that the likelihood ℓ(y|

θ) is intractable. In the last few years, though, it has become a common approach to approxi-

mate this likelihood via particle filtering (PF) (see, e.g., [10, 11, 18–20]). To be specific, we let

ℓN(y|θ) stand for the approximation of ℓ(y|θ) computed using a standard bootstrap filter (BF)

[21, 22] with N particles (see S1 Appendix for full details). One key feature of this approach is

that ℓN(y|θ) can be proved to be an unbiased estimator of ℓ(y|θ) [23].

Particle Metropolis-Hastings (PMH). The PMH is a member of the class of particle

MCMC methods [10] that have become very popular in recent years. It can be seen as a con-

ventional Metropolis-Hastings algorithm [15] where the likelihood of each candidate value of

θ is approximated via particle filtering and, hence, its acceptance probability is also approxi-

mate. Given a Markov kernel Mðy0jyÞ, the PMH algorithm generates a chain on the space of

the parameter θ as follows:

1. Initialisation: Draw θ0 * p0(θ) from the prior distribution of the parameters.

2. At the m-th iteration, and given the previous sample θm−1:

a. Draw a tentative new element ~ym from the kernel Mðyjym� 1Þ.

b. Compute the (approximate) likelihood ‘N ðyj~ymÞ and prior density p0ð~ymÞ. The accep-

tance probability for ~ym is

am ¼ min 1;
‘
N
ðyj~ymÞp0ðym� 1ÞMð~ymjym� 1Þ

‘
N
ðyjym� 1Þp0ð

~ymÞMðym� 1j
~ymÞ

 !

ð20Þ

c. Draw um � Uð0; 1Þ. If um< αm then ym ¼ ~ym, else θm = θm−1.

We use this procedure to generate a chain of length L, θ0, θ1, . . ., θL−1. It can be proved that,

as n!1, the probability distribution of θn converges to the posterior pdf p(θ|y) [10] despite

Bayesian parameter estimation in models of genetic networks
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the approximation ℓN(y|θ)’ ℓ(y|θ) in the algorithm. Since the chain requires a number of iter-

ations to converge to its limit distribution (this is often referred to in the literature as the “burn

in” period), in practice we need to discard some samples at the beginning of the chain. Herein

we assume that we use the second half of the chain to estimate θ. In other words, if we aim at

approximating the expected value of θ given the observations, often denoted E[θ|y], we

approximate it as the sample mean of θL/2, . . ., θL−1, i.e.

ŷL ¼
2

L

XL� 1

i¼L=2

yi ð21Þ

where we assume, for convenience, that L is even. Note that we can also approximate other

posterior statistics of θ (given y). For eample, the posterior covariance of θ can be estimated as

ŜL ¼
2

L

XL� 1

i¼L=2

ðyi � ŷLÞðyi � ŷLÞ
T
: ð22Þ

Nonlinear population Monte Carlo (NPMC). The NPMC algorithm of [11] is an itera-

tive importance sampling (IS) scheme that seeks to approximate a target probability distribu-

tion, in our case given by the pdf p(θ|y), using weighted Monte Carlo samples. This algorithm

generates a sequence of proposal pdf’s qk(θ), k = 1, . . ., K, from which samples can be drawn

and importance weights (IWs) can be computed. This sequence of proposals is expected to

yield increasingly better approximations of the target as the algorithm converges. The key fea-

ture of the NPMC method, which departs from the classical PMC technique of [24], is to com-

pute a set of transformed importance weights (TIWs) by applying a nonlinear function to the

standard IWs. The aim of this transformation is to mitigate the well known problem of the

degeneracy of the IWs (common to many IS methods, see [11, 25]) by controlling the weight

variability. Some basic results regarding the convergence in probability of estimators based on

TIWs are given in [11]. A specific analysis for the case of state space models, where the likeli-

hood function ℓ(y|θ) can only be estimated via particle filtering, can be found in [26].

The NPMC algorithm with K iterations, M Monte Carlo samples per iteration, plain Gauss-

ian proposals {qk}k�1, and approximate likelihoods is outlined below. Recall that θ is the vector

of unknown model parameters.

Initialisation. Draw M i.i.d. samples y
1

0
; y

2

0
; . . . ; y

M
0

from the prior pdf p0(θ). Then,

1. compute non-normalised IWs ~wi
0 / ‘

N ðyjyi0Þ, i = 1, . . ., M,

2. compute TIWs as ŵi
0 ¼ T Mði; f~w

j
0g
M
j¼1Þ, where T M : f1; . . . ;Mg � f~w

j
0g
M
j¼1 ! ½0;þ1Þ is

a nonlinear map (to be specifically described below),

3. normalise the TIWs, wi
0 ¼

ŵ i
0PM

j¼1
ŵ
j
0

, i = 1, . . ., M.

Iterative step. For k = 1, . . ., K, take the following steps:

1. Let qkðyÞ ¼ N ðyjmk ;SkÞ be a multivariate Gaussian pdf with mean vector and covariance

matrix obtained, respectively, as

mk ¼
XM

i¼1

wi
k� 1

y
i
k� 1

and Sk ¼
XM

i¼1

wi
k� 1
ðy

i
k� 1
� mkÞðy

i
k� 1
� mkÞ

>
: ð23Þ

Note that the random variates y
i
k� 1

, i = 1, . . ., M, are 4 × 1 vectors.
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2. Draw yik , i = 1, . . ., M, i.i.d. samples from qk(θ).

3. Compute IWs, ~wi
k ¼

‘N ðyjyikÞp0ðy
i
kÞ

qkðyikÞ
, i = 1, . . ., M.

4. Compute TIWs, ŵi
k ¼ T Mði; f~w

j
kg
M
j¼1Þ, i = 1, . . ., M, using the same nonlinear map as for

k = 0.

5. Normalise the TIWs, wi
k ¼

ŵ i
kPM

j¼1
ŵ
j
k

, i = 1, . . ., M.

Following [11], the nonlinear map T M of choice is a “clipping” transformation. In particu-

lar, let i1, i2, . . ., iM be a permutation of the indices 1, 2, . . ., M such that the IWs become

ordered, namely ~w
i1
k � ~w

i2
k � � � � � ~w

iM
k . The clipping transformation T M , with parameter

1 � Mc �
ffiffiffiffiffi
M
p

, flattens the Mc largest IWs and makes them equal to the Mc-th non-normal-

ised IW, ~w
iMc
k . Specifically, for each i = 1, . . ., M, we obtain

ŵ
j
k ¼ T Mðj; f~w l

kg
M
l¼1
Þ ¼

~w
iMc
k ; if ~w

j
k � ~w

Mc
k ;

~w
j
k; if ~w

j
k < ~w

Mc
k ;

: ð24Þ

8
<

:

Other choices of T M are possible (e.g., tempering schemes [11]).

At any iteration k of the algorithm we may use the samples fy
i
kg

M
i¼1

and the normalised IWs

or TIWs for estimating θ or approximating any of its statistics. Hereafter, we assume that the

normalised TIWs fwi
kg

M
i¼1

are employed. Hence, the expected value of θ given the observations

y is estimated (at the k-th iteration) as

ŷM
k ¼

XM

i¼1

wi
ky

i
k ’ E½yjy� ð25Þ

where the superscript M indicates the number of samples used in the estimates. Similarly, the

covariance matrix of θ conditional on the data y can be approximated as

ŜM
k ¼

XM

i¼1

wi
kðy

i
k � ŷM

k Þðy
i
k � ŷM

k Þ
T
: ð26Þ

Approximate Bayesian computation sequential Monte Carlo (ABC-SMC). ABC meth-

ods have been conceived with the aim of approximating posterior probability distributions,

conditional on the available observations, without having to calculate likelihood functions [12,

27]. The computation of the likelihood is replaced by a comparison between simulated data

and actual observations. The ABC principle involves three general steps:

• Draw random candidate values for the parameter vector, say θ1, θ2, . . ., from the prior distri-

bution of the parameters p0(θ),

• Use these candidates to simulate synthetic realisations of the observable variables, y(θ1), y

(θ2), . . ., by means of the dynamic model equations and taking a fixed initial condition.

• Compare the actual data (observations) and the synthetic data, y(θ1), y(θ2), . . . using some

suitable distance d, i.e., evaluate d(y, y(θ1)), d(y, y(θ2)), . . .

Samples that yield a small enough distance, typically below a prescribed tolerance, ϵ, are

accepted, and those yielding large distances are discarded. Random candidates are generated

and tried until a prescribed number of them are accepted.
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The sequential Monte Carlo (SMC) version of ABC is a more sophisticated sampling algo-

rithm that generates a sequence of “populations”, i.e., sets of randomly generated parameter

values. Each population is associated to prescribed tolerance on the deviation between the

actual and synthetic observations. Hence, for a ABC-SMC algorithm generating T populations

with J members each we need to specify tolerances ϵ1, ϵ2, . . ., ϵT and the candidate parameter

vectors accepted in the t-th population, denoted fy
j
tg

J
j¼1

, all share the feature dðy; yðyj
tÞÞ < ϵt .

If the difference ϵt−1 − ϵt> 0 is small, the intuition is that it should not be hard to generate

fy
j
tg

J
j¼1

from fy
j
t� 1
g
J
j¼1

. Afther the T-th population is generated, we expect to have a population

fy
j
Tg

J
j¼1

such that dðy; yðyj
TÞÞ < ϵT for all j.

The ABC-SMC algorithm generating a sequence of T populations, J samples per population,

with tolerances ϵ1, ϵ2, . . ., ϵT and Markov kernel Kt(.|.), t = 1, . . ., T, is outlined below.

1. Initialisation: set the population indicator t = 1 and the sample indicator j = 1. Select the ini-

tial condition x0.

2. If t = 1, draw θ? from the prior p0(θ). Else, for t> 1 draw θ? from the mixture density

gtðyÞ ¼
XJ

j¼1

wj
t� 1Ktðyjy

j
t� 1
Þ ð27Þ

where Kt(.|θ0) is a symmetric kernel centred around θ0 and w1
t� 1
; . . . ;wJ

t� 1
are importance

weights such that
PJ

j¼1
wj

t� 1 ¼ 1.

3. If p0(θ?) = 0, then the parameter θ? is off the support set S. Return to step 2.

4. Simulate a dataset y(θ?) from the state Eqs (9)-(15) with initial condition x0.

5. If d(y, y(θ?))� ϵt reject θ? and return to step 2.

6. Otherwise, if d(y, y(θ?)) < ϵt, set yjt ¼ y? and compute the weight

~wj
t ¼

1; if t ¼ 1

p0ðy
j
tÞPJ

l¼1
wl

t� 1
Ktðy

j
tjy

l
t� 1
Þ
; if t > 0

ð28Þ

8
>><

>>:

7. If j< J, set j = j + 1 and go to step 2.

8. Normalize the weights: wjt ¼
~wjtPJ

l¼1
~wlt

, j = 1, . . ., J.

9. If t< T, then set t = t + 1, set j = 1 and return to step 2. Otherwise stop.

The posterior estimate of θ is computed as

ŷABC
T;J ¼

XJ

j¼1

wj
Ty

j
T : ð29Þ

We remark that

• The algorithm performance can be optimised by tuning the number of populations, T, and

the tolerances ϵ1 > ϵ2 > . . .> ϵT. However, the latter are limited by the power of the obser-

vation noise, s2
y . For example, if dðy; yðy?ÞÞ ¼ 1

n
Pn

k¼0 jjyk � ykðy
?Þjj

2
and we assume that

the real data has been produced using exactly θ?, then dðy; yðy?ÞÞ ! 2s2
y as n!1.
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• The running time of the ABC-SMC algorithm is random, because of the accept/reject steps 3

and 5. To avoid that the algorithm get stalled at step 2 (sampling), in practice it is common

to set a maximum number of draws that can be tried before proceeding to the next popula-

tion. This implies that some populations may have less than J samples.

Results and discussion

We have carried out computer simulations to assess both the proposed model, i.e., the stochas-

tic modified repressilator model described by Eqs (9)–(15), and the performance of the Monte

Carlo based Bayesian inference methods. For all the simulations presented here, the true

model parameters are set to their standard values (see Eq (8)) in order to generate synthetic

(i.e., simulated) trajectories for the dynamic variables, �x i;m, i = 1, 2 and m = 0, 1, . . ., and

sequences of synthetic observations yn, n = 1, 2, . . ., according to Eq (18). This choice of

parameters yields an underlying chaotic dynamics of the state variables, as will be shown

below. The integration step of the Euler-Mayurama scheme is h ¼ 10� 3 time units. When

needed, observations are generated every mo = 20 discrete-time steps of model Eqs (9)–(15)

(equivalently, every moh ¼ 0:02 continuous time units). The observational noise ϵn in Eq (18)

is assumed to be zero-mean Gaussian with identity covariance matrix I2 ¼
1 0

0 1

" #

, and the

standard deviation parameter is σy = 1.

All the computer experiments to be presented here have been carried out using Matlab

R2016a (9.0.0.341360, 64 bits) running on an Apple iMac equipped with a 4 GHz quad-core

IntelCore i7 (turbo boost up to 4.2 GHz) and 32 GB of RAM.

When the parameters σa, σb, σc, σA, σB, σC and σS, which control the variance of the process

noise variables wðjÞi;m, j = 1, . . ., 7, i = 1, 2, are set to zero, we recover the deterministic modified

repressilator of [8], which displays chaotic behaviour. For this case, we have run a long simula-

tion of the noiseless system (10,000 continuous time units) and used the results to obtain

phase diagrams. In particular, Fig 2(a) shows the phase diagram for the variable b1 versus a1,

while Fig 2(b) depicts the phase diagram of a2 versus a1. What we observe are two views of the

multidimensional chaotic attractor generated by this system. When we add dynamical noise in

the state equations Eqs (9)–(15), by setting s2
a ¼ s2

b ¼ s2
c ¼ s2

A ¼ s2
B ¼ s2

C ¼ s2
S ¼ 0:022, we

obtain an stochastic dynamical system. However, if we repeat the experiment to generate long

trajectories (with the same initial conditions and the same duration) we obtain two similar

phase diagrams, as shown in Fig 2(c) and 2(d). Indeed, these figures simply depict perturbed

versions of the original deterministic attractor. This illustrates the fact that the underlying cha-

otic dynamics is preserved in the stochastic model, which can account for slight perturbations

or uncertainties in the physical system as well.

In the sequel, we compare the performance of the NPMC, PMH and the ABC-SMC param-

eter estimation methods described in the Algorithms section above. For the first set of com-

puter experiments, we simulate trajectories of the coupled stochastic repressilator model in

Eqs (9)–(15) with dynamical noise variance s2
a ¼ s2

b ¼ s2
c ¼ s2

A ¼ s2
B ¼ s2

C ¼ s2
S ¼ 0:052 and

random initial conditions. To be specific, the initial condition of each simulated trajectory is

drawn from a multivariate Gaussian distribution with mean

ða1;0; b1;0; c1;0;A1;0;B1;0;C1;0; S1;0; a2;0; b2;0; c2;0;A2;0;B2;0;C2;0; S2;0Þ ¼

ð4:5; 6; 3; 4:2; 19; 4:3; 0:1; 7:3; 1:5; 3:4; 7; 6:5; 3:6; 0:08Þ
ð30Þ

and covariance matrix s2
0
I, where s2

0
¼ 0:052. Once the system state trajectory is generated, we
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produce synthetic observations over an interval of 80 continuous time units (which amounts

to 80=h ¼ 80� 103 time steps in the Euler-Maruyama scheme). Since observations are

assumed to be collected every mo = 20 discrete steps, this yields a sequence of 4 × 103 2-dimen-

sional observation vectors contaminated with zero mean Gaussian noise with unit variance

(namely, s2
y ¼ 1). In order to compute the likelihood approximation ℓN(θ), which is necessary

to obtain the weights in the NPMC algorithm and the acceptance probability in the PMH

method, we run a bootstrap filter with N = 100 particles. We recall that the latter algorithm is

detailed in the supplementary material S1 Appendix.

We first consider the estimation of the posterior probability density functions (pdf’s) of the

unknown parameters given the ground truth signal and the sequence of observations produced

as described above. Fig 3 shows the kernel density estimators obtained for the Q parameter in
a single typical run of the PMH (left), PMH (middle) and ABC-SMC (right) algorithms. In the

three plots, the actual value of the parameter Q is indicated with a dashed vertical line. For the

NPMC algorithm with N = 200 samples per iteration, we additionally plot

• the a priori uniform pdf (solid red line)

• the pdf estimated after the first iteration of the algorithm (dashed black line), and

• the pdf estimated after 20 iterations of the algorithm (solid blue line).

Fig 2. Comparison of 2-dimensional phase space diagrams for the deterministic and the stochastic

repressilator models. (a) b1 versus a1 and (b) a2 versus a1 for the deterministic model; (c) b1 versus a1 and

(d) a2 versus a1 for the stochastic model with common variance 0.022 for the dynamical noise in every state

equation.

https://doi.org/10.1371/journal.pone.0182015.g002
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For the PMH algorithm, the figure shows the posterior pdf estimate computed from the last

2,000 samples of a chain of total length L = 20 × 200 = 4,000, so that the complexity is approxi-

mately the same as with the NPMC scheme. The last plot shows the results for the ABC-SMC

method with 5 populations. In particular, the dashed black line displays the pdf estimate from

the first population and the solid blue line corresponds to the density estimate obtained from

the fifth population. All pdf estimates have been obtained via the ksdensity function of Matlab

R2016a, which uses a Gaussian kernel and calculates the bandwidth automatically as a function

of the number of available samples.

We observe how the pdf estimate produced by the NPMC method improves significantly

from the first to the last (20-th) iteration. Both the NPMC and PMH methods yield final den-

sity estimates which fit the ground truth value fairly accurately: both density estimators have

their mode close to the true value of Q and the probability is also rather tightly concentrated

around this value (it falls toward 0 quickly). For the ABC-SMC algorithm, there is a also an

improvement from the first to the last population, but the final density estimate still leaves the

true value of Q on the left tail of the function.

Figs 4–6 display the kernel density estimators, computed in the same manner, for the

unknown parameters m, α and βa. The results are similar as for parameter Q. Both the NPMC

and PMH algorithms yield comparably fit pdf estimators with a similar computational cost of

20 × 200 = 4,000 random draws in total. The density estimators produced by the NMPC algo-

rithm improve significantly through the iterations. The ABC-SMC algorithm yields similarly

good density estimates for α and βa, with considerable improvement from the first to the fifth

population as well, but there is a poor outcome for parameter m. In this latter case, the density

estimate after the first iteration is actually better than the last one (after the fifth iteration).

While this effect does not necessarily occur in every simulation run, we show below that the

ABC-SMC method indeed has the poorest average performance of the three schemes.

From the plots in Figs 3–6, we observe that the probability mass of the pdf estimates tends

to concentrate around the region where the actual parameter value is located, e.g., for the

Fig 3. Estimated posterior pdf of Q. Posterior pdf’s computed from the outcome of: (a) the NPMC algorithm with M = 200 samples per iteration, over 20

iterations, (b) the PMH algorithm with scale parameter σ = 0.04 generating a chain of length L = 4,000 elements, and (c) the ABC-SMC method with 5

stages, tolerances�1:5 = {3.0, 2.4, 2.3, 2.2, 2.1} and 800 accepted samples per stage. The true parameter value is shown with a vertical dashed line. For

the NPMC method, the prior pdf, the pdf after the first iteration and the pdf after the last iteration are shown. For the ABC-SMC scheme, the pdf’s computed

from the first and last population are displayed.

https://doi.org/10.1371/journal.pone.0182015.g003
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NPMC and PMH algorithms and parameter Q, or for the ABC-SMC algorithm and parameter

α. However, there is no perfect match (the mode of the estimated pdf does not exactly coincide

with the ground-truth value of the parameter) and we can also see some cases, e.g., the density

estimate produced by the ABC-SMC scheme for parameter m, where the probability mass is

placed far away from the true parameter value.

To explain these mismatches, let us recall that the approximate statistics generated by the

NPMC and PMH algorithms converge to the true value of these statistics as the computational

effort is increased. For example, if we are interested in the posterior mean of θ, then the

Fig 4. Estimated posterior pdf of m. Posterior pdf’s computed from the outcome of: (a) the NPMC algorithm with M = 200 samples per iteration, over 20

iterations, (b) the PMH algorithm with scale parameter σ = 0.04 generating a chain of length L = 4,000 elements, and (c) the ABC-SMC method with 5

stages, tolerances�1:5 = {3.0, 2.4, 2.3, 2.2, 2.1} and 800 accepted samples per stage. The true parameter value is shown with a vertical dashed line. For

the NPMC method, the prior pdf, the pdf after the first iteration and the pdf after the last iteration are shown. For the ABC-SMC scheme, the pdf’s

computed from the first and last population are displayed.

https://doi.org/10.1371/journal.pone.0182015.g004

Fig 5. Estimated posterior pdf of α. Posterior pdf’s computed from the outcome of: (a) the NPMC algorithm with M = 200 samples per iteration, over 20

iterations, (b) the PMH algorithm with scale parameter σ = 0.04 generating a chain of length L = 4,000 elements, and (c) the ABC-SMC method with 5

stages, tolerances�1:5 = {3.0, 2.4, 2.3, 2.2, 2.1} and 800 accepted samples per stage. The true parameter value is shown with a vertical dashed line. For

the NPMC method, the prior pdf, the pdf after the first iteration and the pdf after the last iteration are shown. For the ABC-SMC scheme, the pdf’s computed

from the first and last population are displayed.

https://doi.org/10.1371/journal.pone.0182015.g005
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NPMC estimate has the form

ŷM
k ¼

XM

i¼1

wi
ky

i
k ð31Þ

after the k-th iteration. It can be proved [26] that limM!1ŷM
k ¼ E½yjy�, where E[θ|y] is the

expected value of the parameter vector θ conditional on the observations y. However, depend-

ing on the available data (especially, the dimension of vector y), the posterior mean E[θ|y] can

be significantly different from the true value of θ used to generate the synthetic data.

A simple way to illustrate this issue is to approximate the likelihood of two different param-

eter vectors, say y� ¼ ½Q�;m�; a�; ba�� ¼ ½0:85; 2:6; 216; 0:85� the ground truth, and θ0 = θ� +

[0, 0, −10, 0] a mismatched version, and see that, for a common and fixed observation vector,

they are approximately the same (actually, ℓN(θ0)> ℓN(θ�), even if the difference is small). This

is shown in Fig 7, which, for a fixed sequence y = {y1, y2, . . ., yn, . . .}, depicts the approximate

log-likelihood log(ℓN(y1:n|θ�)) and log(ℓN(y1:n|θ0)) versus n. The number of particles in the BF is

set to N = 600 in this case to ensure that we obtain low-variance estimates.

Next, we aim at a comparison of the three parameter estimation schemes in terms of their

normalised mean square error (NMSE). Assume that we run J independent simulations and

we let

ŷðjÞ ¼ ðQ̂ðjÞ; m̂ðjÞ; âðjÞ; b̂aðjÞÞ ð32Þ

be the estimate of the unknown parameter vector output by a given algorithm in the j-th

Fig 6. Estimated posterior pdf of βa. Posterior pdf’s computed from the outcome of: (a) the NPMC algorithm with M = 200 samples per iteration, over 20

iterations, (b) the PMH algorithm with scale parameter σ = 0.04 generating a chain of length L = 4,000 elements, and (c) the ABC-SMC method with 5

stages, tolerances�1:5 = {3.0, 2.5, 2.4, 2.3, 2.2, 2.1} and 800 accepted samples per stage. The true parameter value is shown with a vertical dashed line.

For the NPMC method, the prior pdf, the pdf after the first iteration and the pdf after the last iteration are shown. For the ABC-SMC scheme, the pdf’s

computed from the first and last population are displayed.

https://doi.org/10.1371/journal.pone.0182015.g006
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simulation trial. Then, we calculate the empirical NMSE for that estimation algorithm as

NMSE ¼
1

4J

XJ

j¼1

ðQ̂ðjÞ � Q�Þ
2

Q2
�

þ
ðm̂ðjÞ � m�Þ

2

m2
�

þ
ðâðjÞ � a�Þ

2

a2
�

þ
ðb̂aðjÞ � ba�Þ

2

b
2

a�

 !

; ð33Þ

i.e., the NMSE is the average empirical quadratic error, normalised per parameter.

The three schemes for Bayesian parameter estimation admit some tuning that may affect

their performance. For the NPMC algorithm, there is the choice of the proposal pdf and the

clipping parameter Mc. For all the experiments, we assume that the k-th iteration proposal qk,
is Gaussian (with mean and covariance computed using the TIWs from the (k − 1)-th itera-

tion) and Mc ¼ b
ffiffiffiffiffi
M
p
c, which is its maximum admissible value that guarantees asymptotic

convergence [11]. The number of samples in the BF (to compute the likelihood ℓN(y|θ)) is set

to N = 100, which has been found to yield a good trade-off between computational cost and

accuracy in the calculation of the weights.

Based on the results from [8] and a number of additional simulation trials (not shown in

the paper) we have selected a configuration for the ABC-SMC algorithm with 5 populations,

tolerances ϵ1:5 = {3.0, 2.4, 2.3, 2.2, 2.1} and a target of J accepted samples per population (with

take J = 200, 800 and 1,600 for different experiments). This is the configuration, with J = 800

samples, already used for the pdf estimates shown in Figs 3–6. We have tried other sequences

of tolerances with very similar results. The configuration of choice yields a computational cost

which is similar to the NPMC algorithm with M = 200 and K = 20, and the PMH scheme with

L = 4,000 entries in the Markov chain. The distance d(y, y(θ0)) is quadratic, namely,

dðy; yðy0ÞÞ ¼
1

K

XK� 1

n¼0

k yn � ynðy
0
Þ k2 ð34Þ

and, since the observations vectors are 2 × 1 and the observation noise has variance s2
y ¼ 1, the

expected distance is E½dðy; yðy0ÞÞ� � 2s2
y ¼ 2 even in the case of perfect parameter estimation

Fig 7. Comparison of the approximate likelihood of the true parameter vector θ* = [0.85, 2.6, 216, 0.85] and perturbed version

y
0
¼ ½0:85; 2:6;206; 0:85�. (a) Approximate log-likelihoods, ℓ(y1:n|θ*) and ℓ(y1:n|θ0) versus time n. (b) Zoom of plot (a) for a shorter time interval, showing that

the perturbed parameter θ0 yields a higher likelihood for the observation sequence y generated in this computer experiment. (c) The likelihood ratio
‘Nðy1:n jy�Þ

‘Nðy1:n jy
0 Þ

versus time n, showing that ℓN(y1:n|θ0) > ℓN(y1:n|θ*).

https://doi.org/10.1371/journal.pone.0182015.g007
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and perfect initialisation. Therefore, the tolerance of the last population should always be

greater than 2.

As for the PMH algorithm, we have assumed that the candidate samples ~ym are drawn from

a truncated Gaussian kernel Mðymjym� 1Þ, constructed from the Gaussian distribution with

mean θm−1, covariance matrix

S ¼ s2

0:01 0 0 0

0 100 0 0

0 0 0:01 0

0 0 0 0:01

0

B
B
B
B
@

1

C
C
C
C
A
; ð35Þ

and support restricted to the set S ¼ ð0; 1Þ � ð1; 5Þ � ð50; 300Þ � ð0; 1Þ. The likelihood

needed to determine the acceptance probability of a sample ~y is approximated as ‘
N
ðyj~yÞ,

using the BF with N = 100 particles, the same as for the NPMC scheme. Note that, given S

above, the parameters are sampled independently with variance proportional to their support

sets (the support of α being much larger). The scale parameter σ2 has a direct impact on the

performance of the PMH method and, hence, we have carried out computer simulations to

optimise it.

Fig 8 shows the variation of the NMSE, for the PMH algorithm with L = 4,000, as we

increase the value of the scale parameter from σ2 = 0.005 up to σ2 = 0.4. The plot has been

Fig 8. Performance of the PMH algorithm with varying scale parameter. NMSE attained by the PMH

algorithm with scale parameter s2 2 {0.005, 0.010, 0.040, 0.100, 0.400}. This parameter controls the variance

of the truncated Gaussian kernel used to generate candidate values of the Markov chain. The accuracy of the

algorithm is sensitive to the choice of s2 as it determines the pace of mixing [15] of the Markov kernel

Mðymjym� 1Þ.

https://doi.org/10.1371/journal.pone.0182015.g008
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obtained as an average of 40 independent simulation runs. For each run, a different sequence

of state realisations and observations is generated, and then the PMH algorithm is run five

times for the same observations with different values of σ2. The figure shows that the NMSE

keeps improving as we increase σ2 until it worsens for σ2 = 0.4. From this experiment, we

choose σ2 = 0.1 as the scale parameter for the PMH scheme that we compare with the other

two algorithms.

Fig 9 displays the NMSE versus running time (in minutes) attained by

• the NPMC scheme with K = 20 iterations and M = 50, 200, 400 samples per iteration,

• the PMH method with chain lengths of L = 50 × 20 = 1,000, L = 200 × 20 = 4,000 and

L = 400 × 20 = 8,000, and scale parameter σ2 = 0.1, and

• the ABC-SMC algorithm with tolerances ϵ1:5 = {3.0, 2.4, 2.3, 2.2, 2.1} and targets of J = 200

and J = 800 samples per population.

The values of M, K, L and J are chosen to attain comparable running times for the three

methods. Note, however, that while the running times for the PMH and NPMC algorithms are

deterministic given the parameters L, M and K, the running time of the ABC-SMC algorithm

is random (even for fixed J), since an a priori unknown proportion of samples is expected to

be rejected. Therefore, the times shown in the figure for this algorithm are an average (over 40

Fig 9. Normalised MSE of the PMH, NPMC and ABC-SMC algorithms versus running time. The figure

displays the average normalised MSE per parameter attained by the NPMC scheme (with M = 50, 200 and

400 samples per iteration, after K = 20 iterations), the PMH algorithm with chains of length L = 1,000,

L = 4,000 and L = 8,000, and scale parameter s2 = 0.1, and the ABC-SMC method with J = 200 and J = 800

samples per population. The lowest error is achieved by the NPMC algorithm, which demands a running time

slightly shorter than the PMH schemes and much shorter than the (average) running time of the ABC-SMC

method. Time is given in minutes.

https://doi.org/10.1371/journal.pone.0182015.g009
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independent simulations). Moreover, to avoid that the ABC-SMC procedure gets stalled at any

particular population, a limit of 4,000 × J random draws per population has been imposed

(which amounts to a minimum acceptance rate of�25 × 10−5). If this limit is reached, the pop-

ulation is taken as complete even if containing less than J samples. Even with this limitation,

the ABC-SMC has the largest (average) running time, and hence the highest computational

cost, of all the algorithms tested.

The figure shows that the PMH algorithm attains the best performance when the computa-

tional budget is kept minimal (M = 50 and L = 1,000 for the NPMC and PMH algorithms,

respectively) but the NPMC scheme yields the overall best results (for comparable running

times) as the computational effort is moderately increased. Both the NPMC and PMH schemes

outperform the ABC-SMC method clearly for this example. The most efficient choice for this

experiment appears to be the NPMC scheme with M = 200 samples per iteration and K = 20

iterations. Note that the error decreases only slightly as we increase the number of samples to

M = 400, even if the running time is duplicated.

Fig 10 displays box-plots of the NMSE outcomes of the same 40 independent simulation

runs carried out to obtain Fig 9, but only for the NPMC (M = 200 samples), PMH (L = 4,000,

Fig 10. Box plots of the empirical NMSE for the NMPC algorithm with M = 200 and K = 20, the PMH

scheme with scale factor σ2 = 0.1 and L = M × K = 4,000 samples and the ABC-SMC method. (a)

Parameter Q. (b) Parameter m. (c) Parameter α. (d) Parameter βa. For each box, the red central mark is the

median NMSE, the edges of the blue box are the 25th and 75th percentiles, the black whiskers extend to the

most extreme data-points which are not considered outliers. Outliers are plotted individually as red crosses.

https://doi.org/10.1371/journal.pone.0182015.g010
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scale factor σ2 = 0.1) and ABC-SMC (J = 800) algorithms, which demand comparable running

times. For each box, the red central mark is the median, the edges of the blue box are the 25th

and 75th percentiles, the black whiskers extend to the most extreme data-points which are not

considered outliers, and the outliers are plotted individually as red crosses. A point is taken to

be an outlier if it is larger than q75% þ
3

2
ðq75% � q25%Þ, where q75% and q25% are the 75% and

25% percentiles, respectively.

We observe four plots in Fig 10, labeled (a), (b), (c) and (d), and corresponding to the

parameters Q, m, α and βa, respectively. The outcomes are similar for all four parameters. The

NMPC and PMH method perform similarly, with the median of the NPMC errors being

slightly lower for all parameters and the dispersion (jq75% � q25%j) being similar or slightly

smaller for NPMC compared to PMH. The ABC-SMC algorithm displays a consistently higher

median NMSE and a slightly larger dispersion than the other two schemes.

The purpose of introducing a stochastic model of the coupled repressilator system is, as

explained in the Introduction to this paper, twofold. On one hand, it provides a formalism to

account for uncertainties in the design and realisation of the system. On the other hand, it sets

up a probabilistic framework that enables the application of the NPMC and PMH computa-

tional schemes (and possibly other Bayesian techniques) for parameter estimation. From the

latter point of view, it is of interest to test whether these methods are still useful when the

underlying signals are produced by a deterministic, rather than stochastic model. With this

aim, we have repeated the same computer experiments as in Figs 8–10 when the realisations of

the state variables (ai, bi, ci, Ai, Bi, Ci) are produced by the deterministic system given by Eqs

(9)–(15) with null variances (i.e., σa = σb = σc = σA = σB = σC = σS = 0). We still generate noisy

observations, with s2
y ¼ 1 as in the previous experiments, to account for observational noise.

Fig 11 shows the NMSE achieved by the PMH method with varying scale parameter σ2 for

the deterministic coupled repressilator with noisy observations. Compared to the results with

the stochastic system, we observe that the best performance is attained with a smaller kernel

variance, namely with a scale factor σ2 = 0.04 (versus σ2 = 0.1 in Fig 8).

Fig 12 displays the empirical NMSE of the competing algorithms when the state trajectories

are realisations of the deterministic coupled repressilator model. As before, we compare the

NPMC algorithm with M = 50, 200 and 800 samples per iteration (and K = 20 iterations), the

PMH algorithm with chain lengths L = 1,000, L = 4,000 and L = 8,000, and scale parameter σ2

= 0.04 (optimised for this scenario) and the ABC-SMC algorithm with J = 200, 800 and 1,600

samples per population, and otherwise the same configuration as for the simulations with the

stochastic model.

Although the results are similar to Fig 9 (corresponding to the stochastic model), there are

some significant differences in Fig 12. First, we observe that the average running time of the

ABC-SMC method (�580 minutes for J = 800) reduces considerably and becomes slightly

smaller than the running time of the PMH algorithms (�596 minutes for L = 4,000) and the

NPMC scheme (with M = 200, which takes�586 minutes). The average error of the

ABC-SMC scheme is, however, still higher than the error of the other methods. The other rele-

vant outcome is that the NMPC algorithm is now consistently better than the PMH method,

including the case with minimum running time (which corresponds to M = 50 samples per

iteration for the NPMC algorithm and L = 1,000 for the PMH scheme).

Finally, Fig 13 shows the box plots for the NMSE values obtained in the set of 40 indepen-

dent simulation runs, for the NPMC (M = 200), PMH (σ2 = 0.04, L = 4,000) and ABC-SMC

(J = 800) methods, which demand a similar running time. The results are plotted separately for

the parameters Q (a), m (b), α (c) and βa (d). We see that the median NMSE of the NPMC

algorithm is slightly better than the median NMSE of the PMH scheme for all parameters
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except βa. For all four parameters, the NPMC algorithm yields a smaller dispersion of the

errors.

Conclusions

We have proposed a stochastic version of the coupled repressilator model of [5] that enables

1. a mathematically principled manner of describing experimental uncertainties in the synthe-

sis of multicellular clocks, and

2. the design of probabilistic methods for the estimation of unknown parameters in the

model, even if the underlying dynamics is chaotic, which makes the problem more

challenging.

Fig 11. Performance of the PMH algorithm with varying scale parameter for the deterministic coupled

repressilator with noisy observations. Empirical NMSE attained by the PMH algorithm with scale

parameter s2 2 {0.005, 0.01, 0.04, 0.1}. This parameter controls the variance of the truncated Gaussian kernel

used to generate candidate values of the Markov chain. Compared to the case with stochastic trajectories, the

best performance is attained with a smaller value of s2 (hence, by a Markov kernel with less variance). Results

obtained averaging 40 independent simulation runs.

https://doi.org/10.1371/journal.pone.0182015.g011
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In particular, we have compared three Bayesian methods for computational model infer-

ence that enable the calculation of a posteriori probability distributions for the set of unknown

parameters given a sequence of noisy observations of just two state variables. We have pre-

sented an extensive computer simulation study that illustrates the relationship between the

deterministic and stochastic repressilator models and demonstrates the relative efficiency and

accuracy of the nonlinear population Monte Carlo (NPMC), particle Metropolis-Hastings

(PMH) and approximate Bayesian computation sequential Monte Carlo (ABC-SMC) algo-

rithms. The best trade-off between accuracy and computational cost is attained by the NPMC

algorithm, both for the deterministic and the stochastic coupled repressilator models, although

the PMH scheme can attain a similar performance. The ABC-SMC method, on the other

Fig 12. NMSE of the PMH, NPMC and ABC-SMC algorithms versus running time, for noiseless

trajectories. The figure displays the average NMSE per parameter attained by the NPMC scheme (with

M = 50, 200 and 400 samples per iteration, after K = 20 iterations), the PMH algorithm with scale parameter s2

= 0.04 (optimised for this scenario) and chain lengths L = 1,000, L = 4,000 and L = 8,000, and the ABC-SMC

method with J = 200, 800 and 1,600. The ground truth signal is generated from a deterministic coupled

repressilator system, although the observations are noisy. The lowest error is achieved by the NPMC

algorithm, which demands a running time slightly shorter than the PMH schemes and slightly longer than the

(average) running time of the ABC-SMC method. Time is given in minutes.

https://doi.org/10.1371/journal.pone.0182015.g012
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hand, has a two drawbacks. It demands knowledge of the initial condition of the system and its

accuracy is directly limited by the variance of the observational noise.

Supporting information

S1 Appendix. The bootstrap filter.

(PDF)

S1 Code. Coding supplement (zip file). These are the matlab scripts used for the simulations

in the paper. The main script is repress.m. The first part of the code includes the main simula-

tion parameters. Notation is essentially the same as in the paper.

(ZIP)

Fig 13. Box plots of the empirical NMSE for the NMPC algorithm with M = 200 and K = 20, the PMH

scheme with scale factor σ2 = 0.1 and L = M × K = 4,000 samples and the ABC-SMC method. State

trajectories are noiseless, generated from a deterministic coupled repressilator model. Observations are

noisy. (a) Parameter Q. (b) Parameter m. (c) Parameter α. (d) Parameter βa. For each box, the red central

mark is the median NMSE, the edges of the blue box are the 25th and 75th percentiles, the black whiskers

extend to the most extreme data-points which are not considered outliers. Outliers are plotted individually as

red crosses.

https://doi.org/10.1371/journal.pone.0182015.g013
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