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Assessment of the main plasma parameters
included in a metabolic profile of dairy cow
based on Fourier Transform mid-infrared
spectroscopy: preliminary results
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Abstract

Background: Although a metabolic profile represents a valid tool utilized in dairy herds to determine abnormalities
in blood chemistry related to an increased risk of production diseases, there are no studies on application of Fourier
Transform mid-infrared (FT-MIR) spectroscopy. This study assesses the potential application of FT-MIR to analyze the
main blood biochemical parameters included in the metabolic profile of dairy cows. Infrared transmission spectra
were acquired for 35 plasma samples (two replicates on each sample) of Italian Friesian dairy cows (14 primiparous
and 21 pluriparous), all without clinical events, and at different stages of lactation, although mainly in the transition
phase. Each sample was also analyzed independently using accepted reference clinical chemical methods and
these results were used as calibrating values to perform predictive models by PLS method using cross validation.

Results: Measured blood parameters concentrations were all within the reference ranges reported for healthy dairy
cows. The number of extracted factors with the PLS procedure for each prediction model ranged between 3 and 7.
The coefficient of determination (R2) of the prediction models ranged between 0.1 to values close to 1. R2 values
greater than 0.9 were observed for the prediction models of total cholesterol, total protein, globulin, and albumin;
values between 0.75 and 0.9 were observed for urea, NEFA, and total bilirubin, while values of R2 lower than 0.6
were observed for all minerals and for enzyme activity. The range error ratio (RER) and prediction to deviation (RPD)
ranged from 5.1 to 43.8 and from 1 to 13.8 for RER and RPD, respectively. Values of RPD greater than 5 were observed
for total cholesterol, total protein, albumin, and globulin. RPD ranged between 2 and 5 for the prediction models of
urea, NEFA, and total bilirubin, while RPD and RER were low for minerals and enzyme activities.

Conclusions: Although the results of this study require further validation, the use of FT-MIR spectroscopy was possible
and provides fairly accurate measurement of various parameters of great importance in the evaluation of the metabolic
and inflammatory status in dairy cows.
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Background
Blood biochemistry is mainly used in diagnostic investiga-
tion to provide supportive evidence of a suspected diagno-
sis, as a prognostic indicator, or for monitoring the progress
of disease in animals that are being treated. Payne et al. [1]
proposed that blood tests could be included in a metabolic
profile of dairy herds to indicate an inability to maintain

homeostasis, with the aim to determine abnormalities in
some blood parameters and, the signaling of an increase in
the risk of production diseases. Recently, Clarke and
Haselden [2] extended the meaning of metabolic profiling
and include the measurement of any parameter in animal
fluids that is able to reflect a dynamic response to genetic
modification, and physiological, pathophysiological and
developmental stimuli. Although substrate and analytical
methods are similar in evaluating disease diagnosis and
metabolic profiling, there are different approaches to
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sampling and interpretation. To diagnose disease, a small
population of clinically affected animals are selected for
the blood analysis. Diagnosis of disease is based on
changes in one or more blood analytes. Conversely, for
a proper assessment of the metabolic profile blood,
samples are collected from clinically healthy animals
within certain well-defined physiological phases [3].
The metabolic profile is then used to evaluate disease
risk in contrast to disease diagnosis. When used in associ-
ation with animal, diet and management assessments, a
metabolic profile can be a useful tool for prediction of peri-
parturient problems and infertility, to diagnose metabolic
diseases, to assess nutritional status [4–6], stress conditions
[7, 8], and to determine welfare condition [9, 10].
Because a metabolic profile considers clinically healthy

animals, the variability of analytes is lower than the vari-
ability in blood biochemistry for diagnosis of diseases.
As such, a metabolic profile requires high precision and
an accurate analytical method.
The blood tests included in a metabolic profile are in

generally analyzed by using an automated or semi-
automated analyzer. However, some critical aspects can
restrict its use, including the cost of analytical testing
and in some cases the long waiting time between the
sampling and return of analysis results. Human studies
have demonstrated the potential of infrared spectroscopic
methods for reliable clinical chemistry [11, 12], as well as
clinical applications and diseases diagnosis [13].
Applications of infrared spectroscopy as an analytical

tool in different areas of animal production are receiving
growing interest and attention. This technology is used
to assess feed composition and digestibility, traceability
assessment, and for determination of the main com-
position of animal products (meat, milk, fish, cheese,
eggs) [14]. For more information see the review paper
by Berzaghi and Riovanto [14]. Infrared spectroscopy has
several advantages over other analytical techniques: rapidity
of analysis, no use of chemicals, minimal or no sample
preparation, and easy applicability in different work envi-
ronments (on/in/at line applications) [11, 15].
To the best of our knowledge no reports have investi-

gated the possibility of using infrared spectroscopy to
analyze a metabolic profile in dairy cows. Considering
the results obtained in human studies that demonstrate
the potential application of infrared spectroscopy in this
field, the objective of the present research was to test
the feasibility of developing prediction models of the
main blood biochemical parameters included in a meta-
bolic profile for dairy cows using MIR spectrometry.

Methods
Animal and management conditions
The research protocol and the animal care were in
accordance with the Directive 2010/63/EU (European

Union, 2010) on the protection of animals used for
scientific purposes. The cows recruited in this trial were in-
volved in Research Projects authorized by Italian Ministry
of Health and approved by the ethics committee (Commis-
sione per la valutazione etica di sperimentazioni animali e
di correttezza della gestione dell’animal care) prot. N.
25906/13 of 22 Nov 2013.
The Italian Friesian dairy cows involved in this study

were raised in the experimental free stall barns of the
Università Cattolica del Sacro Cuore (Piacenza, Italy).
Dry cows and lactating cows were kept in two adjoining
pens. The cows were moved from a far-off pen to a late
pregnancy pen one month before the expected calving
day and the heifers were moved two months before their
expected calving day. After calving the cows were housed
in the pen for lactating cows. Fresh potable water was
available ad libitum within each pen. Cows were fed TMR
once daily for ad libitum DMI, at 0830 h and 1030 h for
lactating and dry cows, respectively. Diets were formulated
to meet requirements according to NRC system (2001).
The trial involved 35 Italian Friesian dairy cows (14

primiparous and 21 pluriparous) of good genetic merit,
in the last three months of pregnancy and till 280 days
in milk. The 40 % of cows (14 animals) were in the tran-
sition period (from 21 days before calving till 21 days
after calving).

Blood sampling and analyses with reference methods
Blood samples were collected from all cows all at one
time. The samples were collected in the morning, before
the feed distribution, by venipuncture from the jugular
vein, using 10-mL Li-heparin treated tubes (Vacuette,
containing 18 IU of Li-heparin mL−1, Kremsmünster,
Austria). Samples were immediately cooled in an ice-
water bath after collection.
The blood was centrifuged (3500 × g for 16 min at 4 °C)

and the plasma obtained was separated into two aliquots:
the first fraction was immediately used to collect the infra-
red spectra; the second one was stocked at −20 °C until
metabolites analysis and the results were used as cali-
bration values.
Plasma metabolites used as calibrating values were

analyzed at 37 °C by an automated clinical analyzer
(ILAB 600, Instrumentation Laboratory, Lexington, MA),
using the methodology showed in Table 1. Commercial
kits were used to measure glucose, total cholesterol, urea,
calcium, inorganic phosphorus, magnesium, total protein,
albumin, total bilirubin, and creatinine (Instrumentation
Laboratory SpA, Werfen, Monza, Milan, Italy), NEFA
and zinc (Wako, Chemicals GmbH, Neuss, Germany),
and β-OH-butyric acid (BHBA, kit Ranbut, Randox
Laboratories Limited, Crumlin, County Antrim, United
Kingdom Randox, UK). A Trinder end point [Glucose
oxidase (GOD)/Peroxidase (POD)] was used to measure
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glucose. Total cholesterol (cholesterol and cholesterol
esters) was also measured using Trinder end point
[Cholesterol oxidase (CHOD)/Peroxidase (POD)], after
a hydrolysis of cholesterol esters to free cholesterol.
Urea was measured with end point method using the
couple urease glutamate dehydrogenase (GLDH) en-
zyme system. Colorimetric methodology based on the
reaction of calcium with o-cresolphthalein complexone
was used to measure Ca with end point method. Inor-
ganic phosphorus was measured with end point UV
method, based on the reaction between phosphate ions
in an acidic medium with ammonium molybdate to
form a phosphomolybdate complex. The magnesium
determination was based on the reaction of magnesium
with Xylidyl Blue (as chelator) at alkaline pH, which
yields a purple colored complex. Total protein were
measured with the modified biuret methodology, based

on the reaction of peptide bonds with Cu++ ions in
alkaline solution to form a colored complex. Albumin
was measured with an end point colorimetric method,
based on the binding between albumin with green bro-
mocresol resulting in a spectral change of the dye from
yellow to green. Total bilirubin was determined with an
end point analysis using modified Jendrassik-Grof
method, based on the reaction between total bilirubin
with diazotized sulfanilic acid in presence of lithium
dodecylsulfate to form azobilirubin. Creatinine was an-
alyzed with an end point colorimetric method, based
on the reaction of creatinine with picric acid under
alkaline conditions. NEFA were determined with an
Trinder end point [Acyl coenzyme A oxidase (ACOD)/
Peroxidase (POD)] assay, after the acylation of coen-
zyme A by NEFA contained in the sample. BHBA was
measured with a kinetic UV method, based on the
oxidation od D-3 hydroxybutyrate to acetoacetate by 3-
Hydroxybutyrate dehydrogenase. Electrolytes, Na, K,
and Cl, were measured using a potentiometric system,
with specific electrodes. Kinetic analysis was adopted to
determine the activity of enzymes: alkaline phosphatase
(AP, EC 3.1.3.1), aspartate aminotransferase (AST, EC
2.6.1.1), γ-glutamyltransferase (GGT, EC 2.3.2.2) using
Instrumentation Laboratory kits (Instrumentation La-
boratory SpA, Werfen, Monza, Milan, Italy). Cerulo-
plasmin was measured using the method described by
Sunderman and Nomoto [16], adapted to ILAB 600
condition. The method is based on measurement of p-
phenylenediamine dihydrochloride oxidation by the
oxidase activity of ceruloplasmin. Finally, haptoglobin
was measured using the method described by Skinner
et al. [17] and Owen et al. [18] and adapted to ILAB
600 condition. The method is based on peroxidase
activity of methaemoglobin-haptoglobin complex mea-
sured by the rate of oxidation of guaiacol (hydrogen
donor) in presence of hydrogen peroxide (oxidizing
substrate).

FT-MIR spectroscopy
FT-MIR measurements were performed with a MilkoScan
FT 120 (Foss Electric, Hillerød, Denmark). FT-MIR
spectra were collected (two replicates on each sample of
the calibration datasets, and one replicate on each sample
of the validation dataset) as % transmittance in the range
of 5012–926 cm−1. The transmittance spectrum measured
on each sample was standardized using the FT-MIR
Equalizer sample (Foss Electric, Hillerød, Denmark), in
order to use the same calibration for several instruments.
The instrument was standardized with the equalizer
sample before reading the spectra of the samples collected
from each farm.
In order to not use areas of the spectra that introduce

noise to the calibration, only the following areas were used

Table 1 Methodologies used to measure the plasma parameters
with reference methods

Parameter Methodology Wavelength (nm) CVa

Glucose Endpoint 510 1.50

Total cholesterol Endpoint 510 2.10

NEFAb Endpoint 546 1.50

BHBAc Endpoint 340 5.25

Urea Endpoint 340 1.20

Creatinine Endpoint 510 5.40

Ca Endpoint 570 1.40

Inorganig P Endpoint 340 2.00

Mg Rate 340 1.40

Na ISE deviceg 0.90

K ISE deviceg 1.30

Cl ISE deviceg 1.50

Zn Endpoint 546

Ceruloplasmin Endpoint 546 3.48

Total protein Endpoint 546 1.20

Albumin Endpoint 600 1.80

Total bilirubin Endpoint 546 6.70

Haptoglobin Endpoint 450 13.54

ASTd Rate 340 2.10

GGTe Rate 405 3.72

APf Rate 405 1.70
aCalculared on the results obtained between runs according to the National
Committee for Clinical Laboratory Standards (Document EP3-T: Guidelines for
Manufacturers for Establishing
Performance Claims for Clinical Chemistry Methods, Replication Experiment
Evaluation”, Villanova, PA, 1982.)
bNon esterified fatty acids;
cβ-OH-butyric acid;
dAspartate amino transferase
eγ-glutamyl transferase
fAlkaline phosphatase
gIon selective electrodes
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to develop the prediction model: 2971.7 to 2432.4 cm−1,
2272.4 to 1716.8 cm−1, and 1543.2 to 964.5 cm−1. The two
areas 3626.5 to 2970.7 cm−1 and 1716.8 to 1543.2 cm−1,
corresponding to water absorption areas, were not used to
calibrate plasma parameters. The 5012.0 to 3626.5 cm−1

area was excluded as this contains very little interesting
information (Foss Electric, 2002).

Data processing
All analyses were performed using the statistical soft-
ware package SAS 9.2 (SAS Inst. Inc., Cary, NC). Data
were tested for non-normality by the Shapiro test. In
case of non-normality, parameters were normalized by
log or exponential transformation. Transformations were
performed for total bilirubin, haptoglobin, AST, GGT,
AP, NEFA, and BHBA.
The infra-red data were processed using the SAS

statistical package. In order to suppress side effects
from water absorption [19], before statistical analysis
the transmittance data of each area was referred to a
reference value, dividing the %T of each area by the %T of
the reference area (1492 to 1481 cm−1). The absorbance
was then calculated (−log10 of the corrected %T) for
each area.
Partial least-squares (PLS) analysis was used to process

the data by SAS. The selection of the optimal number of
the extracted PLS factors for the prediction model of
each plasma variable was obtained using cross validation
to prevent overfitting. The predictors and the responses
were centered and scaled to have a mean of 0 and a
standard deviation of 1. Centering the predictors and the
response ensures that the criterion for choosing succes-
sive factors is based on how much variation they explain,
in either the predictors or the responses or both. Scaling
serves to place all predictors and responses on an equal
footing relative to their variation in the data. The accuracy
of the predictive ability of the model is assessed by cross-
validation, by means of the root mean square error of
cross validation (RMSECV). All prediction residuals were
then combined to compute the predicted residual of sum
of squares (PRESS) [20]. A statistical model comparison
[21] was applied to test whether the differences between
the cross-validated residuals from models with different
number of extracted factors were significant. The chosen
prediction model was based on the results obtained with
the cross validation, and the number of factors chosen
was the fewest with residuals that were not significantly
larger than the residuals of a model with minimum
PRESS.
The accuracy of the calibration was evaluated con-

sidering the coefficients of determination R2 for pre-
dicted versus measured values in cross-validation; the
ratio of the range of each variable in the data was set
to its standard deviation of prediction errors; and the

ratio between the standard deviation of a variable in
the data set (SD) by its standard deviation of predic-
tion errors. Values for R2 between 0.66 and 0.81 indi-
cate approximate quantitative predictions, whereas, a
value for R2 between 0.82 and 0.90 is adequate for a
good prediction. Calibration models having a value for
R2 above 0.91 are considered to be excellent [22]. The
practical utility of the calibration was also evaluated by
using the range error ratio (RER). This ratio was calcu-
lated by dividing the range of each variable by its
standard deviation of prediction errors [23]. Values of
RER below 3 indicate that a model has little practical
utility; RER values between 3 and 10 are limited to
good practical utility and RER values above 10 indicate
models of high utility value [23]. Because RER could
be susceptible to the presence of extreme values at
both ends of the range, the ratio of the SD to the
standard deviation of prediction errors, called the ratio
of prediction to deviation (RPD), was also considered.
Based on the RPD value, five levels of prediction ac-
curacy according to Saeys et al. [24] were considered.
A value for the RPD below 1.5 indicates that the cali-
bration is not usable. Values for RPD between 1.5 and
2.0 reveal a possibility to distinguish between low and
high values, while a value between 2.0 and 2.5 allows
for approximate quantitative predictions. For values
between 2.5 and 3.0, and above 3.0, the prediction is
classified as good and excellent, respectively.
Repeatability (Sr) was obtained as the standard deviation

of the results obtained with the prediction models ap-
plied to the two replicates and infrared spectra of each
sample. Repeatability relative standard deviation (RSDr)
was also calculated.

Results
Table 2 presents descriptive statistics. The blood pa-
rameters with the lowest variability were the electro-
lytes. CV was 2.4, 4.9, and 2.3 % for Na, K, and Cl,
respectively. Plasma Ca was characterized by low vari-
ability (CV of 4.7 %). Greater variability was found for
Mg (9.8 %), inorganic P (19.34 %) and Zn (23.7 %).
The greatest variability was observed for haptoglobin

(CV of 108.0 %), total bilirubin (CV of 116.3 %) and
NEFA (87.9 %). These variables were characterized by an
asymmetrical distribution, with high skewness values,
indicating that the tail on the right side was longer or
fatter than the left side. These variables were also
processed after natural logarithm transformation, with
only a slight reduction of their variability.
The plasma parameters of energy metabolism, apart

from the NEFA, were characterized by high variability
with high CV and/or high range. The CV of glucose was
not high (16.7 %), but the range was very wide (range of
4.54 mmol L−1), with a high kurtosis value (5.6),
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indicating that more of the variance is the result of infre-
quent extreme deviations (leptokurtic distributions).
Conversely, total cholesterol was characterized by a high
CV (47.3 %), in tune with its wide range (range of
5.1 mmol L−1) and a slight negative kurtosis (−1.57).
BHBA was characterized by an intermediate CV com-
pared with those of glucose and total cholesterol. For
this ketone body the maximum value observed cannot
be considered among the high values.
Plasma total protein and albumin were characterized

by a low CV (8.2 and 7.4 %, respectively). The variability
of globulin (CV of 15.8 %) was only slightly greater.

Besides the low variability of these three variables, their
range could be considered wide. For albumin only, the
wide range was observed together with a high kurtosis
(5.68), indicating that more of the variance is the result
of infrequent extreme deviations.
Enzymes activities were characterized by high vari-

ability, with positive skewness. The natural logarithm
transformation decreased both the skewness and their
variability.
Table 3 shows the statistics of the prediction models

based on FT-MIR spectroscopy for each plasma variable.
The number of extracted factors with the PLS procedure

Table 2 Descriptive statistic (35 plasma samples)

Item Mean SD Min Max Median SKa KUb

Glucose, mmol L−1 4.02 0.67 1.66 6.20 3.95 −0.13 5.64

Total cholesterol, mmol L−1 3.36 1.59 0.80 5.87 3.18 0.05 −1.57

NEFAc, mmol L−1 0.33 0.29 0.06 1.18 0.20 1.06 0.30

NEFAc, ln(mmol L−1) −1.52 0.94 −2.83 0.16 −1.61 0.17 −1.49

BHBAd, mmol L−1 0.49 0.13 0.28 0.85 0.47 1.00 0.78

BHBAd, ln(mmol L−1) −0.74 0.25 −1.28 −0.16 −0.76 0.34 0.06

Urea, mmol L−1 4.21 1.42 1.50 7.52 4.02 0.21 −0.61

Creatinine, μmol L−1 99.54 10.67 83.62 125.89 97.57 0.47 −0.51

Ca, mmol L−1 2.58 0.12 2.36 2.86 2.61 0.33 −0.16

Inorganig P, mmol L−1 1.81 0.35 1.19 2.89 1.74 1.09 1.36

Mg, mmol L−1 1.02 0.10 0.57 1.12 1.04 −2.97 9.99

Na, mmol L−1 144.20 3.44 138.78 151.78 143.81 0.38 −0.68

K, mmol L−1 4.07 0.20 3.59 4.57 4.08 −0.09 0.20

Cl, mmol L−1 107.51 2.48 102.27 112.98 107.46 −0.09 −0.19

Zn, μmol L−1 11.43 2.71 5.17 16.19 11.40 −0.48 −0.19

Ceruloplasmin, μmol L−1 3.24 1.02 1.99 6.63 3.03 1.48 2.41

Total protein, g L−1 76.07 6.27 63.57 86.89 77.10 −0.35 −0.67

Albumin, g L−1 35.90 2.65 25.79 39.55 36.26 −2.07 5.68

Globulin, g L−1 40.05 6.33 27.99 52.08 40.61 −0.23 −0.78

Total bilirubin, μmol L−1 3.98 4.63 0.29 22.48 2.14 2.57 6.98

Total bilirubin, ln(μmol L−1) 0.94 0.91 −1.24 3.11 0.76 0.35 0.24

Haptoglobin, g L−1 0.25 0.27 0.03 0.91 0.10 1.46 0.69

Haptoglobin, ln(g L−1) −1.91 0.98 −3.51 −0.09 −2.30 0.60 −0.87

ASTe, U L−1 106.67 69.78 49.98 394.07 89.35 3.15 9.75

ASTe, ln(U L−1) 4.56 0.42 3.91 5.98 4.49 1.90 4.32

GGTf, U L−1 28.78 9.66 16.27 63.94 26.63 1.50 3.64

GGTf, ln(U L−1) 3.32 0.31 2.79 4.16 3.28 0.40 0.20

APg, U L−1 50.85 22.75 21.44 103.73 42.84 0.87 −0.21

APg, ln(U L−1) 3.84 0.43 3.07 4.64 3.76 0.23 −0.88
aSkewness
bKurtosis
cNon esterified fatty acids
dβ-OH-butyric acid
eAspartate amino transferase
fγ-glutamyl transferase
gAlkaline phosphatase
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for each prediction model ranged between 3 and 7. A
low number of extracted factors was observed for some
minerals (electrolytes, Ca, and Zn).
The coefficient of determination (R2) of the prediction

models ranged between 0.1 to values close to 1. Values
greater than 0.9 were observed, in decreasing order, for
the prediction models of total cholesterol (Fig. 1), total
protein (Fig. 2), globulin, and albumin. The R2 values
ranged between 0.75 and 0.9 for the prediction model of

urea, NEFA, and total bilirubin. Values of R2 lower than
0.6 were observed for all minerals, with a slightly greater
value only for Cl. The prediction models of enzymes ac-
tivity were also characterized by low R2 values, ranging
between 0.39 and 0.66.
The range error ratio (RER) and ratio to deviation

(RPD) ranged between 5.1 and 43.8 for the former, and
between 1 and 13.8 for the latter. Values of RPD greater
than 5 were observed for total cholesterol, total protein,

Table 3 Calibration curves and cross validation

Item Extracted factorsa R2 RMSECVb RERc RPDd Sr
e RSDr

f

Glucose, mmol L−1 5 0.66 0.3893 11.7 1.7 0.1550 3.86

Total cholesterol, mmol L−1 7 0.99 0.1156 43.8 13.8 0.0690 2.06

NEFAg, mmol L−1 6 0.86 0.1094 10.2 2.7 0.0325 9.80

NEFAg, ln(mmol L−1) 5 0.78 0.4414 6. 8 2.1 0.1214 7.99

BHBAh, mmol L−1 5 0.38 0.1012 5.6 1.3 0.0245 4.98

BHBAh, ln(mmol L−1) 7 0.60 0.1572 7.1 1.6 0.0669 9.03

Urea, mmol L−1 6 0.90 0.4623 13.0 3.1 0.2454 5.83

Creatinine, μmol L−1 4 0.60 6.7608 6.3 1.6 0.3080 0.31

Ca, mmol L−1 3 0.60 0.0791 6.3 1.6 0.0048 0.19

Inorganig P, mmol L−1 5 0.55 0.2336 7.3 1.5 0.0545 3.00

Mg, mmol L−1 4 0.55 0.0701 7.8 1.5 0.0063 0.62

Na, mmol L−1 4 0.57 2.2673 5.7 1.5 0.3289 0.23

K, mmol L−1 2 0.10 0.1920 5.1 1.0 0.0043 0.11

Cl, mmol L−1 6 0.70 1.3219 8.1 1.9 0.3198 0.30

Zn, μmol L−1 4 0.49 1.9577 5.6 1.4 0.2240 1.96

Ceruloplasmin, μmol L−1 3 0.59 0.6575 7.1 1.5 0.0705 2.17

Total protein, g L−1 5 0.99 0.7452 31.3 8.4 0.1561 0.21

Albumin, g L−1 6 0.96 0.5082 27.1 5.2 0.1362 0.38

Globulin, g L−1 4 0.98 0.8128 29.6 7.8 0.2665 0.67

Total bilirubin, μmol L−1 5 0.75 2.2967 9.7 2.0 0.6654 16.71

Total bilirubin, ln(μmol L−1) 3 0.66 0.5320 8. 2 1.7 0.0225 2.40

Haptoglobin, g L−1 4 0.62 0.1678 5.2 1.6 0.0148 5.97

Haptoglobin, ln(g L−1) 4 0.66 0.5734 6.0 1.7 0.0494 2.59

ASTi, U L−1 6 0.69 39.5398 8.7 1.8 9.1112 8.54

ASTi, ln(U L−1) 4 0.54 0.2856 7.2 1.5 0.0282 0.62

GGTl, U L−1 4 0.40 7.5093 6.3 1.3 0.3565 1.27

GGTl, ln(U L−1) 3 0.42 0.2344 5.8 1.3 0.0154 0.46

APm, U L−1 7 0.66 13.2962 6.2 1.7 8.3024 16.33

APm, ln(U L−1) 7 0.64 0.2614 6.02 1.6 0.1696 4.42
aNumber of extracted factors with the PLS procedure
bRoot mean square error of cross validation
cRange error ratio, obtained dividing the range of each variable by its standard deviation of prediction errors
dRatio of prediction to deviation, obtained dividing the standard deviation of each variable with its standard deviation of prediction errors
eRepeatability of the standard deviation
fRepeatability relative standard deviation
gNon esterified fatty acids
hβ-OH-butyric acid
iAspartate amino transferase
lγ-glutamyl transferase
mAlkaline phosphatase
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albumin, and globulin. RPD ranged between 2 and 5 for
the prediction models of urea, NEFA, and total bilirubin.
In general RPD and RER were low for minerals and
enzymes activities.
The repeatability (Sr) between the two values obtained

with the two replicates of infrared spectra was good for

almost all parameters considered in this study. Poor
repeatability was observed for NEFA, BHBA, total bili-
rubin, AST and AP.

Discussion
This study presented results concerning the use FT-MIR
spectroscopy to predict plasma parameters in the meta-
bolic profile of farm animals. In order to build a predic-
tion model that accurately predicts unknown samples,
the calibration data set should contain samples that rep-
resent all the possible sources of variation encountered
when the prediction model will be used on an unknown
sample. For this reason, the selection of samples is very
important to provide the largest range of information for
the building of the calibration data set [14]. The dairy
cows selected for this study were all clinically healthy,
consequently the variability observed through the data is
representative of a normal physiological condition. Al-
though the cows were not affected by clinical disease,
the subjects of a population are often characterized by
the presence of high variability for many blood bio-
markers, and also for the occurrence of sub-clinical con-
ditions [25]. In agreement with this consideration, all the
concentrations of blood parameters measured in the
present study were within the reference ranges [6, 26]
reported for dairy cows without clinical signs of disease.
To better represent the variability of blood biomarkers,
we took blood samples of various dairy cow physiological
stages, and reserved the transition period as having most
relevant importance (14 of 35 samples). We made this
choice because the peripartum period is the most critical
phase for dairy cows. Important physiological, metabolic,
and nutritional changes occur during transition [27, 28],
and consequently, blood indices are subjected to marked
changes [29–31]. In particular, parameters of energy and
protein metabolism are strongly affected, as are glucose,
NEFA, BHBA, urea and creatinine, as well as parameters
related to an inflammatory response, such as haptoglobin,
ceruloplasmin, total bilirubin, albumin, paraoxonase and
cholesterol [25, 32, 33].
This study utilized a low number of blood samples,

and the sampling was mainly focused around calving
and limited to only one herd. The low number of samples
used in this research suggested use of internal validation
involving validation of the calibration models using the
same sample set as that used for calibration development.
Cross validation is a very reliable method of validation; it
seeks to validate the calibration model on an independent
test data set, but it does not use samples for testing only.
These findings need to be confirmed with a further study
on a wider population belonging to more herds, and with
external validation with an independent and represen-
tative set of test objects, in order to give relevant and
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Fig. 1 Linear regression plots for total cholesterol. Relationship between
total cholesterol concentration (mmol L−1) measured by the reference
method and by FT-MIR spectrometry in plasma using mid-infrared
spectra (70 observations). (R2 = 0.995; root mean square error of cross
validation = 0.1156; RER = 43.8; RER is the range error ratio, and is
obtained dividing the range of total cholesterol with its standard
deviation of prediction errors; RPD= 13.8, where RPD is the ratio of
prediction to deviation, and is obtained dividing the standard deviation
of total cholesterol with its standard deviation of prediction errors)
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Fig. 2 Linear regression plots for total protein. Relationship between
total protein concentration (g L−1) measured by the reference
method and by FT-MIR spectrometry in plasma using mid-infrared
spectra (70 observations). (R2 = 0.985; root mean square error of
cross validation = 0.7452; RER = 31.3; RER is the range error ratio,
and is obtained dividing the range of total protein by its standard
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to deviation, and is obtained dividing the standard deviation of total
protein by its standard deviation of prediction errors)
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reliable estimates on the prediction ability of the pre-
dictive models.
The accuracy of infrared analysis is affected by the

quality of the reference assays used [34]. In our study
the reference assays used to analyze some blood parame-
ters (i.e., BHBA, creatinine, ceruloplasmin, total bilirubin,
haptoglobin, and GGT) were characterized by not having
optimal repeatability between runs, with a CV greater than
3 %. For these blood parameters the developed calibration
curves where characterized by a RPD lower than 2, which
is considered to be the minimal threshold for acceptable
approximate quantitative predictions. Among these blood
variables without optimal repeatability in the reference
chemistry, only the calibration curve of total bilirubin
could be considered near to acceptability. Our results
suggest that an improvement in the reference assays for
all these blood parameters without optimal repeatability
could improve the predictive ability of the calibration
curve based on FT-MIR spectroscopy.
Poor prediction ability characterized the calibration

curves of all minerals analyzed in this study. A similar
result has been described in milk, mainly for electrolytes.
In particular, Mg, Na and K showed poor prediction
ability in FT-MIR spectroscopy [35]. Conversely, Soyeurt
et al. [35] and Toffanin et al. [36] have suggested the
potential of FT-MIR spectroscopy to predict Ca and P
content in milk. Because the correlations between Ca
and P concentrations estimated by the FT-MIR predic-
tions and the known milk components were inferior to
the correlation calculated based on the cross-validation,
Soyeurt et al. [35] concluded that these equations of cali-
bration were obtained from a real spectral absorbance.
On the whole, these results confirm the difficulty in pre-
dicting mineral content in plasma with FT-MIR spec-
troscopy, in particular for minerals that are not included
in organic compounds. Nevertheless, a similar condition
also occurs for milk Ca, mainly included in casein under
an organic (20 %) or inorganic form (46 % as tri-calcium
phosphate) [37]. The difficulty observed in our study to
predict mineral content in blood is likely due to two
main reasons. First, among the minerals measured in the
blood, a large proportion is in ionized form and not in-
cluded in organic compounds. About 50 % of total Ca in
plasma is in the ionized form and about 45 % is linked to
protein, whereas, the quota of Mg ionized is about the 70 %
[19]. Second, the variability “captured” for the mineral from
the samples in this dataset was lower compared to variabil-
ity measured for other blood parameters. A low variability,
in particular for electrolytes, was observed. A better assay
of minerals requires a dataset containing samples with a
greater variability, which allows for an improvement in the
predictive ability of FT-MIR spectroscopy. To increase the
variability of these indices, it would be useful to include
some animals with clinical diseases in the population.

A poor predictive ability characterized the calibration
curves of all enzymes activities measured in this study.
The inadequate estimation was probably due to the poor
variability of these indices and also the non-normal dis-
tribution of the data, with a very low proportion of high
values in this dataset. The log transformation did not
provide an improvement in the predictive ability of the
calibration curve. For a better assessment of enzymes
activities, it is necessary to obtain a wider distribution of
the data, in particular a representative number of
samples with high values could improve the prediction
ability of FT-MIR spectroscopy. An improvement is
probable, considering that with FT-MIR spectroscopy,
some authors were able to measure plasminogen con-
centration in milk and the distinction between plasmin
and plasminogen [38], as well as secondary and tertiary
structural changes in bovine plasminogen [39].
An excellent prediction ability was obtained for several

of the parameters, mainly regarding energy, protein me-
tabolism and inflammatory status. These results are very
promising, but further studies are necessary to confirm
the results and require validation on a larger population,
data on different breeds, and herds raised in different
environments. Among energy parameters, an excellent
calibration curve was developed for total cholesterol.
Interestingly, the determination of cholesterol in dairy
products by using FT-MIR spectroscopy also showed
good results [40].
Among the parameters of protein metabolism excel-

lent calibration curves were developed for total protein,
albumin and globulin. From this point of view, the FT-
MIR technique is a widely used tool in many different
fields and is even used to evaluate parameters with a
“complex etiology” like secondary and tertiary protein
structure studies [41, 42], differentiation of plasmin and
plasminogen in milk [38], and determination of secondary
and tertiary structural changes in bovine plasminogen [39]
and casein [40].
For inflammatory status, it appears possible to predict

with FT-MIR spectroscopy the blood parameters used to
calculate the liver functionality index (LFI) according to
Bertoni and Trevisi [4]. LFI measures the variation of
some negative acute-phase proteins, which are reduced
during inflammation, or related parameters (albumin,
cholesterol, and total bilirubin) to help evaluate changes
in liver function caused by inflammatory events. LFI
takes into account changes in albumin, lipoproteins
(measured as total cholesterol) and total bilirubin (its
secretory enzymes are synthesized by the liver) occurring
between 3 and 28 days in milk [2]. The lower the value of
LFI, the more severe are the consequences of the inflam-
matory events that occur in the transition period and the
inability of cows to adapt their metabolism to these
challenges [31], causing a worsening of health status
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(clinical or subclinical problems). Our results may
open an interesting perspective for an easier and more
cost-effective approach to monitoring farm animals
during critical periods, such as in the transition phase
of dairy cows.

Conclusions
Although the results of this study require further validation,
they are very promising. We have shown that FT-MIR
spectroscopy offers fairly accurate measurement of various
plasma biomarkers of great importance for the evaluation
of the metabolism and inflammatory status of dairy cows.
All the animals selected in this investigation were healthy
(i.e., without clinical events of disease) and the variability of
the range of the checked parameters was restricted to a
normal physiological condition. In these circumstances the
accuracy required for the estimation of the biomarkers is
very high and was reached for only some parameters. As
such, FT-MIR technology may have even more success for
the study of animals with pathological conditions (clinical
and subclinical), especially when blood is used as main
substrate for disease diagnosis. In this context, pathological
changes occur for many markers and, in these conditions,
it is certainly acceptable to have a greater range of error
from an indirect assessment method with IR.
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