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Abstract: In recent years, various viral diseases have suddenly erupted, resulting in widespread
infection and death. A variety of biological activities from marine natural products have gradually
attracted the attention of people. Seaweeds have a wide range of sources, huge output, and high
economic benefits. This is very promising in the pharmaceutical industry. In particular, sulfated
polysaccharides derived from seaweeds, considered a potential source of bioactive compounds
for drug development, have shown antiviral activity against a broad spectrum of viruses, mainly
including common DNA viruses and RNA viruses. In addition, sulfated polysaccharides can also
improve the body’s immunity. This review focuses on recent advances in antiviral research on the
sulfated polysaccharides from seaweeds, including carrageenan, galactan, fucoidan, alginate, ulvan,
p-KG03, naviculan, and calcium spirulan. We hope that this review will provide new ideas for the
development of COVID-19 therapeutics and vaccines.
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1. Introduction

In recent years, viral infection has gradually become an important factor threatening
human health and is one of the leading culprits of human death worldwide. The severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged towards the end of 2019,
causing COVID-19 viral pneumonia [1]. The virus is a member of the β-genus of the
coronavirus family, which mainly causes infections in the pulmonary and digestive tract,
and is a close relative of the SARS-CoV virus that caused the 2002–2003 atypical pneumonia
outbreak [1–3]. It is reported that both viruses bind to the angiotensin-converting enzyme
2 (ACE2) cell receptor via a highly glycosylated spike protein (S-protein) and then enter
the cell through membrane fusion or endocytosis [4–8]. The spike protein on the surface
of the virus binds to vascular cells in the heart and kidney and epithelial cells in the
lung and intestine through angiotensin-converting enzymes [9]. As binding by the spike
protein is necessary for viral entry into the cell, interference with its interaction with
ACE2 and prevention of viral transcription and replication is a reasonable strategy to
combat SARS-CoV-2 infection [10]. However, drug development is both costly and time-
consuming; thus, the discovery and development of broad-spectrum antiviral agents would
be highly advantageous.

It is well known that approximately 70% of the world’s surface is covered by the
oceans, giving rise to unique marine environments distinct from those on land. Algae are
an important part of the marine ecosystem and are found in a wide variety of forms, from
microscopic blue-green algae in plankton to kelp species that may be up to several meters
in length [11]. Microalgae have traditionally been classified according to their cytological
and morphological characteristics, types of reserve metabolites, cell wall components, and
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pigments, and include the cyanobacteria, diatoms, and Chrysophyceae [12]. Macroalgae are
defined by both morphological and chemical features, especially in terms of the presence
of specific pigments, and are thus divided into red, brown, and green algae [13]. Many
researchers see macroalgae as an excellent opportunity to discover an inexhaustible resource
of new bioactive compounds that can be used as treatments. Marine algae have long been
harvested, producing large annual yields and significant economic benefits [14,15]. About
9% of the biomedical compounds in natural marine products on the market are isolated
from algae [15]. These marine organisms can synthesize different types of metabolites,
including polysaccharides, chlorophyll, vitamins, acetyltogenins, fatty acids, amino acids,
and halogenated compounds [16,17]. Recent scientific studies have shown that algae
contain a wide variety of bioactive components that have the potential for treating cancer
and bacterial and viral infections, and reducing oxidative stress and inflammation, and
preventing angiogenesis [18–20].

Marine algae are exposed to environmental stresses, including high salinity, low tem-
peratures, high pressure, and lack of nutrients, and have adapted by the development of
a wide variety of sulfated polysaccharides with diverse functions and which have found
applications in both food and pharmaceuticals. As early as 1958, Gerber and colleagues
showed that a polysaccharide from Gelidium cartilagineum (L.) Gaillon had some antiviral
activity against the influenza B and mumps viruses, and subsequent findings have shown
that polysaccharides derived from seaweeds are effective antiviral agents [21]. The polysac-
charides from algae differ from their terrestrial plant counterparts in having structures
that are rich in sulfated and uronic acid residues [22]. Sulfated polysaccharides have been
demonstrated to have antiviral, anti-inflammatory, antioxidant, antiarteriosclerosis, and an-
titumor activities [23–27] In addition, marine sulfated polysaccharides have the advantages
of low toxicity, good biocompatibility, and immunoregulatory abilities [28,29].

Studies have shown that the SARS-CoV-2 spike glycoprotein (SGP) interacts with
glycosaminoglycans and heparan sulfate (HS) components on the host cell membrane,
possibly facilitating viral entry into the cell [30–32]. Surface plasmon resonance (SPR)
studies have demonstrated that SGP has a high affinity for heparin binding, suggesting
that heparin components may be useful targets for treating COVID-19 [4,33]. As shown
in Figure 1, Kalra et al. described the important role of heparan sulfate in facilitating the
opening of spike protein conformation for ACE2 binding, which can potentiate SARS-CoV-
2 infection [34]. Marine sulfated polysaccharides are HS analogs and can thus simulate
the effects of endogenous factors and inhibit viral interactions [35]. Therefore, marine
sulfated polysaccharides may be potential candidates for preventing and treating SARS-
CoV-2 infection. In this review, we summarize and analyze recent studies on the antiviral
activities of the algal sulfated polysaccharides that are commonly used in industry, to
provide new ideas for the development of drugs and vaccines to treat COVID-19.

Figure 1. (a–d) Heparan sulfate plays an important role in the binding of the SARS-CoV-2 spike
protein (S-protein) to ACE2 and related viral infections. Reprinted with permission from Ref. [34].
©2021, Rajkumar Sigh Kalra et al., (CC BY 4.0) (for a detailed interpretation of Figure 1, the reader is
referred to [34,36]).
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2. Sulfated Polysaccharides from Different Seaweeds
2.1. Red Seaweed
2.1.1. Carrageenan

Carrageenan is a soluble sulfated galactan isolated from red seaweed where it is a
component of the outer cell wall and intracellular matrix, and it accounts for 30–70% of the
dry weight of red algae. The galactan backbone is produced in the Golgi apparatus and is
subsequently sulfated by sulfotransferases in the cell wall [37]. Commercially, red seaweed
is considered more valuable than brown and green algae. Furthermore, the kappa-(κ-),
iota-(ι-), and lambda-(λ-) isoforms are most commonly used in industry. These differ in
the position and numbers of sulfate groups attached to the hexose scaffold, with the κ,
ι, and λ forms containing one, two, and three anionic sulfate ester moieties, respectively,
on each disaccharide repeat [38]. The degree of sulfation of the κ-, ι, and λ isoforms is
25–30%, 28–30%, and 32–39%, respectively [39]. The sol-gel transition, chemical cross-
linking, mechanical strength, and biological properties vary with the structural changes of
carrageenan. Due to its unique properties, carrageenan is mainly used in industries, such
as food, cosmetics, printing, textile formulations, and pharmaceuticals [40]. Significantly,
a higher degree of sulfation in carrageenan does not necessarily correspond with higher
antiviral activity [41], and it appears that both the position and density of the sulfate
moieties on the backbone influence the molecule’s antiviral capability [42]. This suggests
that carrageenan’s antiviral activity is not entirely dependent on the sulfate content. In
addition, carrageenan is the most studied sulfated polysaccharide in human clinical trials
for use against various viral diseases [43].

Kappa-(κ-)carrageenan

Kappa-(κ-)carrageenan inhibits viral replication both through blocking adsorption
to the surface and inhibition of protein expression. Low-molecular-weight κ-carrageenan
shows a better performance in these aspects [44,45]. Shao et al. investigated the molecular
mechanism by which k-carrageenan protects cells from invasion by H1N2009 influenza
(SW731) virus [44]. They treated MDCK cells with κ-carrageenan, observing significant
inhibition of SW731 influenza virus replication resulting from interference with viral ad-
sorption and protein expression [44]. Remarkably, low-molecular-weight κ-carrageenan
has better antiviral activity because of its better tissue penetration. Wang and colleagues
found that 2-kDa-κ-carrageenan (CO-1) prevented the replication of the influenza A (H1N1)
virus in MDCK cells more effectively than the 3 and 5 kDa forms (CO-2 and CO-3, respec-
tively), with IC50 values of 32.1, 239, and 519 µg/mL for the 3 isoforms, respectively [45].
Given these results, the authors recommend the use of low-molecular-weight carrageenan
oligosaccharides for influenza treatment as an alternative strategy [45]. Schütz et al. showed
that both nasal and oral sprays containing κ-carrageenan inhibited SARS-CoV-2 replication
in human airway epithelial cells [46]. Furthermore, κ-carrageenan also showed signifi-
cant inhibitory effects on HSV-2 and HPV16, with IC50 values of 1.6 and 0.044 µg/mL,
respectively [40,47].

Lambda-(λ-)carrageenan

Lambda-(λ-)carrageenan inhibits viral activity by inhibiting viral internalization
through targeting attachment cell surface receptors and binding to viral envelope pro-
teins [48–50]. Luo et al. found that λ-carrageenan P32 screened from different molecu-
lar weights (4–350 kDa) carrageenans had the highest inhibitory effect on RABV infec-
tion, which was consistent with the low molecular weight (4 kDa), high solubility, and
high stability of closely related P32 [48]. These results suggested that λ-carrageenan P32
was a promising drug to inhibit RABV infection by preventing virus internalization and
glycoprotein-mediated cell fusion [48]. In mice, the use of λ-carrageenan nasal drops
not only reduced weight loss resulting from influenza viral infection but also prevented
infection-related death in a majority of the mice [49]. In addition, λ-carrageenan was also
effective against SARS-CoV-2. The EC50 of λ-carrageenan was 0.9 ± 1.1 µg/mL and the
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principal mechanism involved λ-carrageenan targeting viral attachment to cell surface
receptors and subsequent prevention of viral entry [49]. λ-carrageenan extracted from the
red alga Gigantina skotsbergii was found to be effective in preventing infection by equid
herpesvirus 3(EHV3), bovine herpesvirus 1 (BoHV-1), and suid herpesvirus-1 (SuHV-
1), most likely because the compound binds to the envelope glycoprotein of the virus,
preventing viral attachment to the cell surface receptor [50]. In addition, λ-carrageenan
also had a significant inhibitory effect on DENV-3, with an EC50 of 0.14 µg/mL [51]. λ-
carrageenan polysaccharide induces the synthesis of interferon and has biological effects on
the immune response. Studies have shown that microwave degradation of λ-carrageenan
from Chondrus ocellatus can inhibit tumor growth, enhance interferon activity, and enhance
lymphocyte multiplication [52]. However, it has been reported that λ-carrageenan can
induce enteritis in rats after long-term oral administration [53]. Furthermore, these sul-
fated polysaccharides can be used in the manufacture of carbohydrate-based conjugate
vaccines to achieve the desired immunogenicity and potency. Luo et al. proved that λ-
carrageenan has increased the efficacy of ovalbumin-based prophylactic and therapeutic
cancer vaccines [54].

Iota-(ι-)carrageenan

Iota-(ι-)carrageenan’s antiviral activity against a variety of viruses, especially res-
piratory viruses, has been well documented [55–58]. Some scholars have proposed to
improve the therapeutic effect by combining carrageenan with other clinically common
antiviral drugs. A study using a combination of ι-carrageenan and oseltamivir showed
that this combination significantly improved the survival rate of infection with the H1N1
virus compared with a single therapy [57]. Ludwig et al. found that patients treated with
ι-carrageenan recovered more quickly than those in the placebo group, with a duration of
11.6 days compared with 13.7 days in the placebo group. In addition, the ι-carrageenan
group showed significantly faster remission of symptoms than the placebo group, with
lower viral loads in the nasal cavity [59]. ι-carrageenan from Euchema spinosum was able
to neutralize the SARS-CoV-2 Spike pseudotyped lentivirus (SSPL) in a concentration-
dependent manner at an MOI of 0.1 and an IC50 of 2.6 µg/mL [60]. In addition, different
forms of administration of ι-carrageenan can play a significant role in its antiviral activ-
ity. Morokutti et al. found that ι-carrageenan in lozenge form significantly reduced the
amount of SARS-CoV-2 virus in saliva, thus limiting interpersonal viral transmission and
the transfer of the virus to the lower respiratory tract [61]. In addition, ι-carrageenan can be
given directly to infected patients to treat COVID-19 with ivermectin via nasal spray and
oral antivirals. The number of people diagnosed with COVID-19 in the treatment group
was 3.4%, which was significantly lower than 21.4% in the control group (p = 0.0001) [62].
The Xylitol® nasal spray containing ι-carrageenan has been found to prevent SARS-CoV-2
infection in vitro, with an IC50 < 6.0 µg/mL [63]. Graf et al. developed a nasal spray
formulation containing 0.05% xylimeta-zoline hydrochloride and 0.12% ι-carrageenan. The
formulation was reported to be effective in relieving nasal congestion symptoms while also
providing antiviral protection to the respiratory mucosa [64]. Hassanzadeh et al. found
that ι-carrageenan can significantly inhibit SARS-CoV-2 in vitro, an effect caused by the
effect of positively charged regions on the glycoprotein envelope and protein aggregation
in host cells on the surface [65].

Although the three types of carrageenan, namely, κ-, ι-, and λ-carrageenan, showed
antiviral action against SARS-CoV-2, including the alpha, beta, gamma, and delta variants
of concern [46,49,60], ι-carrageenan showed the strongest antiviral activity with an IC50
value approximately ~1 log-stage lower than either λ-or κ-carrageenan [66]. Therefore,
ι-carrageenan is a potential respiratory virus inhibitor that can be used to prevent and treat
SARS-CoV-2 infection, irrespective of the viral variant.

In addition, the combined use of antiviral drugs often has a multiplier effect. Morokutti-
Kurz et al. showed that carrageenan and Zanamivir act synergistically against several
influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7) in vitro; therefore, by acting
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synergistically, they can provide a broader spectrum of anti-influenza activity [58]. When
using ι- and k-carrageenan at the same time, the physical interaction of carrageenan with
the virus did not interfere with the inhibitory effect of zanamivir, and the spray effect was
increased [58]. Xylimidazolines have been used for over 50 years to relieve vasoconstric-
tion and acute nasal edema. Graf et al combine this vasoconstrictor and ι-carrageenan
in a scientific formulation. The experimental results show that ι-carrageenan does not
reduce the efficacy and safety of the drug, and the antiviral effect of iota-carrageenan is
also not affected [64]. Therefore, the most successful antiviral formulation of carrageenan
may be the recently developed nasal spray formulation for use against rhinoviruses and
SARS-CoV-2 [63,64].

2.1.2. Galactan

Sulfated galactans are the principal extracellular polysaccharides found in red seaweed.
With few exceptions, they consist mainly of linear chains of galactose. These polysaccha-
rides show good antiviral activity against HSV, DENV, HIV, and HAV [67–70]. Galactan
from the red alga Agardhiella tenera has been shown to inhibit HIV-1 and HIV-2 infection
by preventing the interaction between HIV gp120 and the CD4 + T cell receptor [69,71].
Similarly, 12.5 µg/mL galactan isolated from Schizymenia binderi was found to inhibit HIV
replication in vitro, and block the replication of HSV-1 in Vero cells [72]. Matsuhiro et al.
found that Schizymenia binderi galactan showed strongly selective antiviral activity against
HSV-1 and HSV-2, with EC50 values of 0.76 and 0.63 µg/mL, respectively [73]. Similarly,
3 galactan (F1, F2, and F3) isolated from Callophyllis variegate are effective inhibitors of
HSV-1 and HSV-2, with IC50 values ranging from 0.16 to 2.19 µg/mL, and are effective
against DENV-2 with IC50s in the range of 0.10–0.41 µg/mL [74]. The galactan (C2S-3)
extracted from Cryptonemia crenulata can inhibit the proliferation of DENV-2 in Vero cell
lines [75]. The result of the experiment showed that C2S-3 blocked the initial binding of the
virus to cells and its subsequent penetration, preventing DENV-2 from RNA replication
and other biomacromolecule synthesis functions in host cells. Moreover, compared with
heparin, C2S-3 was more effective as an antiviral against various DENV-2 strains [75].
Therefore, galactan is a very promising antiviral drug.

2.2. Brown Seaweed
2.2.1. Fucoidan

Fucoidan is an intercellular or mucilage matrix component of brown seaweed, account-
ing for approximately 5–20% of the dry weight of the plant [76,77]. Fucoidan is documented
to be effective against a wide variety of viruses, including HIV, HSV, and SARS-CoV-2, and
numerous other RNA and DNA viruses [78–84]. Dinesh et al. extracted fucoidan (CFF,
FF1, and FF2) from Sargassum swartzii, observing that the FF2 fraction was effective against
HIV-1 at concentrations between 1.56 and 6.25 µg/mL, shown by significant reductions in
the p24 antigen levels (95.6 ± 1.1%) and reverse transcriptase (78.9 ± 1.43%) at a concen-
tration of 25 µg/mL [81]. Fucoidans isolated from Dictyota mertensii, Lobophora variegate,
Fucusvesiculosus, and Spatoglossum schroederi were found to inhibit HIV reverse transcrip-
tases, thus preventing infection; it was further observed that the antiviral action was
positively associated with the numbers of sulfate moieties on the compound [85]. Lee
et al. demonstrated that the fucoidan extracted from Mekabu and Sargassum trichophyllum
significantly inhibited HSV-1, HSV-2, H5N3, and influenza A viral infection together with
enhancing the immune function [86]. High-molecular-weight fucoidan (KW) from the
brown alga Kelmanella crassifolia was shown to bind and block influenza A virus neu-
raminidase activity, inhibiting the release of viral particles. Fucoidan was also found to
block EGFR and subsequent activation of downstream PI3K/Akt and NF-κB signaling [87].
In addition, fucoidan also inhibits NDV La Sota infection (IS50 > 2000), significantly reduc-
ing the number of syncytia (inhibition rate of 70%), suggesting specific binding of fucoidan
to the F0 protein [88]. Fucoidan is considered a possible candidate for treating COVID-19 as
it has significant antiviral activity [89]. Recovery of the mitochondrial membrane potential
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∆ψm was observed in the PBMCs of patients after recovery from COVID-19, showing
that fucoidan has strong antioxidant activity and can restore cellular homeostasis [90–92].
RPI-27 extracted from Saccharina japonica is a high-molecular-weight fucoidan similar
in structure to glycosaminoglycans on the surfaces of host cells [93]. This could provide
opportunities for binding the S protein of SARS-CoV-2, resulting in competitive inhibition
with the virus, with an EC50 value of 8.3 ± 4.6 µg/mL [93]. Yuguchi et al. reported that the
fucoidan derived from Sargassum crassifolium and Padina australis showed similar anti-HIV
activity by blocking an early step in HIV entry into target cells [94].

Fucoidan has a variety of immunomodulatory effects, such as stimulating the pro-
duction of NK (natural killer) cells, promoting cell development and other functions of
dendritic cells. In addition, it enhances Th1-type immune responses by producing an-
tibodies against specific antigenic determinants and generating memory T cells against
specific viruses [95]. Sulfated polysaccharides could provide an important approach to
designing therapeutic vaccines based on their desired physicochemical properties and
easily modifiable structural features. Fucoidan is reported to have the best adjuvant quality
for future vaccine production and can elicit strong cell-mediated and humoral immune
responses [96].

2.2.2. Alginate

Alginate is a soluble acidic polysaccharide found in the cell walls of brown seaweed,
especially Macrocystis pyrifera, Laminaria hyperborea, and Ascophyllum nodosum, amongst
others [97]. Alginate is a linear polymer formed by 1,4-linked β-D-mannuronic acid
and 1,4 α-L-guluronic acid moieties assembled in blocks [98]. The compound has both
antiviral and immunomodulatory activities [99–103]. Serrano-Aroca et al. summarized
and analyzed the effects of biomaterials constructed of alginate on 17 viruses, finding that
these materials were essentially non-toxic and effective against a variety of viruses [104].
In vivo results showed that oral administration of marine polysaccharide drug 911 reduced
viral infection and the plasma RNA copy number. In addition, the introduction of 911 has a
protective effect on CD4 cells [105–107]. Furthermore, the inhibitory effect of 911 on HIV-1
is dose dependent with low toxicity. Moreover, it can also inhibit HBV viral replication by
inhibiting DNA replication [108].

Polymannuroguluronate

Polymannuroguluronate (PMG) is a common low-molecular-weight alginate. Poly-
mannuroguluronate sulfate (PMGS) is capable of inactivating HPV particles and of blocking
virus capsid L1 protein binding, and downregulating the levels of the E6 and E7 viral onco-
genic proteins [109]. In addition, sulfated polymannuronate (SPMG) inhibits the interaction
between the HIV-1 gp120 protein and the CD4 + T lymphocyte receptor, thus preventing
entry of the virus into the lymphocyte [110]. In addition, Miao et al. suggested that the inter-
action between SPMG and the CD4 + T lymphocyte may provide a mechanistic explanation
for the immunoenhancement and anti-AIDS activity of SPMG in HIV-infected individu-
als [111]. Therefore, PMGS deserves further study as a novel candidate for the prevention
of HPV infection, treatment of genital warts or cervical cancer, and HIV infection.

Polyguluronate

Polyguluronate (PG) is another low-molecular-weight alginate. Polyguluronate sulfate
(PGS) significantly reduces the levels of HBsAg (51.8%) and HBeAg (36.2%), showing dose-
and time-dependent inhibitory effects [112]. PGS likely binds to HepG2.2.15 cells, upregu-
lating the NF-κB and RAF/MEK/ERK pathways to promote interferon-β production and
thus interfering with HBV transcription and exerting an anti-HBV effect [112]. In addition,
PGS can significantly reduce oxidative stress induced by H2O2 and improve the survival
rate of HepG2 hepatocytes due to its strong antioxidant activity [113]. Therefore, PGS, as
a new anti-HBV drug designed to regulate the host’s natural immune system, deserves
further study.
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2.3. Green Seaweed
Ulvan

Ulvan is the most common polysaccharide in the cell walls of green seaweed, making
up to 8–29% of the algal dry weight [114]. Both in vitro and in vivo investigations have
shown that ulvan has anticoagulant, antibacterial, antiviral, and immunomodulatory
activities [115–119]. Several low-molecular-weight ulvan isoforms (ULVAN-F1, ULVAN-F2,
and ULVAN-F3) were purified from Ulva pertusa, which were found to be effective in
preventing the infection and replication of vesicular stomatis virus [120]. The antiviral
activity of ulvan is not, however, consistently related to its molecular weight. Sun et al.
found that both ulvan purified from Ulva pertusa and its low-molecular-weight degradation
product, LUPP-3, had strong inhibitory effects [121]. In addition, ulvan from Ulva intestinalis
effectively suppressed measles virus (MeV) by reducing the formation of syncytia, with
an IC50 of 3.6 µg/mL [122], and ulvan from Ulva clathrata can effectively inhibit NDV
by inhibiting cell-to-cell fusion through the direct action of F0 protein, with an IC50 of
0.1 µg/mL [123]. The results showed that ulvan inhibited syncytium formation only before
F protein cleavage. Therefore, the antiviral activity of ulvan relies on interaction with intact
F0 protein rather than cleaved mature F protein [123]. The antiviral effect of SU1F1 is mainly
via inhibition of DNA replication and transcription while downregulating HSV protein
synthesis [124]. The polysaccharide extract containing ulvan blocks the adsorption of JEV
(Japanese encephalitis virus) and inhibits the entry of the virus into the host cell. In addition,
they effectively reduce the production of proinflammatory cytokines [125]. In addition to
antiviral activity, ulvan also has certain immunomodulatory activity. Ulva extract from
Ulva armoricana can induce the release of proinflammatory cytokines by activating avian
heterophile and monocytes in vitro, ultimately enhancing the innate immune system of
chickens [126]. Ulvan from green seaweed still warrants further research, although studies
on its isoforms suggest that it is not more effective than polysaccharides from red and
brown seaweed.

2.4. Microalgae
2.4.1. p-KG03

p-KG03 is a homogeneous polysaccharide derived from Gyrodiniumimpudicum and com-
plexed by galactose with uronic and sulfonic acid groups [67]. p-KG03 extracted from the
dinoflagellate Gyrodinium impudicum is the first marine compound (EC50 = 26.9 µg/mL) re-
ported to significantly inhibit encephalomycarditis RNA virus (EMCV) infection in vitro [127].
Kim et al. also observed that p-KG03 was effective against IAV infection [128]. Further
investigation of the mechanism showed that p-KG03 had the greatest inhibitory effect on
IAV replication within six hours, suggesting that the compound targeted the steps of virus
adsorption and internalization [128]. Therefore, the potential antiviral activity of p-KG03
indicates that it is a promising candidate for development as an antiviral drug.

2.4.2. Naviculan

Naviculan is derived from the diatom Navicula directa. Lee and colleagues reported
that naviculan reduced virus infection by inhibiting the binding and internalization of
HSV-1, HSV-2, HIV, and INF A, with IC50 values in the 7.4–170 µg/mL range [129].

2.4.3. Calcium Spirulan

Calcium spirulan is obtained from the alga Arthrospira platensis. Due to the chelation
of calcium ions with the sulfate groups on the polysaccharide, it has high antiviral activity
against coated viruses [130–133]. Hayashi and colleagues found that calcium spirulan
(Ca-SP) from Spirulina platensis is an inhibitor of several viruses. It can inhibit replication
and infiltration of HSV-1, HCMV, MeV, MUV, INF A, and HIV-1, with EC50 values in the
0.92–23 µg/mL range [134].
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3. Conclusions and Future Outlooks

Sulfated polysaccharides are important bioactive substances in marine algae, and have
various biological activities, of which their antiviral actions are especially attractive. In
addition, their high yields, low production costs, broad-spectrum antiviral activities, and
unique antiviral mechanisms suggest that sulfated polysaccharides from seaweeds are
promising antiviral drugs. It should be noted that the source of marine polysaccharides
is not limited to seaweed but also includes a large number of marine animals and marine
microorganisms, such as Thais clavigera [135], Sepia pharaonis [136], sea cucumbers [137],
Haliotis discus hannai [138], and Celtodoryxgirardae [139].

In Table 1, we summarize recent studies on the effects of sulfated polysaccharides from
different marine algae on DNA and RNA viruses. From these studies, we may conclude
that: (1) there are more kinds of sulfated polysaccharides from red and brown algae, and
there are more studies on the antiviral activities of sulfated polysaccharides from different
seaweed; (2) sulfated polysaccharides from different seaweeds have significant inhibitory
actions against various DNA and RNA viruses; (3) the inhibitory activities of sulfated
polysaccharides from different seaweeds towards the same virus differ; and (4) the antiviral
activities of the sulfated polysaccharides vary according to the type of virus and the type
of host cell. Therefore, the antiviral effect of sulfated polysaccharides is not only related
to the type and source of sulfated polysaccharides but also closely related to the type of
host cell, virus type, and other factors. This suggests that we should not only focus on the
antiviral drug polysaccharide itself but also explore more factors that affect the antiviral
effect when researching antiviral polysaccharides. Furthermore, more detailed research into
the antiviral mechanisms of sulfated polysaccharides is required. Sulfated polysaccharides
have complex antiviral mechanisms that essentially include two aspects: (1) inhibition of
virus activity and (2) enhancement of the host immune response to the virus.

Table 1. Advances in research on the antiviral activity of sulfated polysaccharides from seaweeds.

Seaweed
Name (Source)

Polysaccharide
Name Virus Group Cell Lines Efficacy (µg/mL) Reference

Red seaweed

κ-carrageenan

HPV16 DNA Hela IC50 = 0.044 µg/mL [40]
H1NI RNA MDCK IC50 = 32.1 µg/mL [45]
HSV-1 DNA Vero IC50 = 1.9 µg/mL [47]
HSV-2 RNA Vero IC50 = 1.6 µg/mL [47]

λ-carrageenan

RABV RNA NA IC50 = 22.1 µg/mL [48]
RABV RNA BSR IC50 = 57.7 µg/mL [48]
RABV RNA SK-N-SH IC50 = 19.93 µg/mL [48]

SARS-CoV-2 RNA Vero IC50 = 0.9 ± 1.1 µg/mL [49]
DENV-2 RNA HepG2 EC50 = 0.22 µg/mL [51]
DENV-2 RNA Vero EC50 = 0.15 µg/mL [51]
DENV-3 RNA HepG2 EC50 = 0.14 µg/mL [51]

ι-carrageenan

DENV-2 RNA Vero EC50 = 0.4 µg/mL [55]
H1N1 RNA MDCK IC50 = 0.39 µg/mL [58]
H3N2 RNA MDCK IC50 = 0.92 µg/mL [58]
H5N1 RNA MDCK IC50 = 10.14 µg/mL [58]

SARS-CoV-2 RNA Vero IC50 = 0.046 µg/mL [60]

Galactan
HIV-2 RNA Vero EC50 = 4.7 µg/mL [70]
HSV-1 DNA Vero IC50 = 4.1 µg/mL [72]

DENV-2 RNA Vero EC50 ≈ 1 µg/mL [75]
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Table 1. Cont.

Seaweed
Name (Source)

Polysaccharide
Name Virus Group Cell Lines Efficacy (µg/mL) Reference

Brown seaweed
Fucoidan

HIV-1 RNA CD4 IC50 = 0.33–0.7 µg/mL [84]
H3N2 RNA MDCK IC50 < 6.5 µg/mL [87]
NDV RNA Vero IC50 = 0.75 ± 1.6 µg/mL [88]

SARS-CoV-2 RNA Vero EC50 = 8.3 ± 4.6 µg/mL [93]

PMGS
HPV DNA Hela IC50 = 2.8 µg/mL [109]
HIV-1 RNA CD4 IC50 = 30 µg/mL [111]

PGS HBV DNA HepG2 EC50 ≈ 250 µg/mL [112]

Green seaweed Ulvan
Measles RNA Vero IC50 = 3.6 µg/mL [122]

NDV RNA Vero IC50 = 0.1 µg/mL [123]
HSV DNA HEp-2 IC50 = 28.25 µg/mL [124]

Microalgae
p-KG03

EMCV RNA MT-4 EC50 = 26.9 µg/mL [127]
H1N1 RNA MDCK EC50 = 0.48 ± 0.23 µg/mL [128]

Naviculan HSV-2 DNA CD4 IC50 = 7.4 µg/mL [129]
Calcium Spirulan HSV-1 DNA Hela EC50 = 0.92 µg/mL [134]

As shown in Figure 2, although the life cycle of a virus varies from species to species,
it includes six basic stages: attachment, penetration, uncoating, replication, assembly, and
release. The initial stage of virus entry into cells is by attaching to the cell surface through re-
ceptors (heparan sulfated proteoglycan), modifying their surface, or by electrostatic means.
Seaweed polysaccharides can target the viral attachment stage by directly interacting with
virions or by mimicking the binding of virus-associated proteins to the corresponding
receptors The internalization process of viruses usually involves the following three steps:
endocytic uptake, vesicular transport, and then delivery to the endosomes and other intra-
cellular organelles. Antiviral strategies targeting the viral penetration and uncoating stages
typically interfere with the release of endosomal DNA and RNA by blocking structural
changes in viral glycoproteins. In addition, seaweed polysaccharides can inhibit viral
transcription and replication through direct interference with viral replication enzymes or
inhibition on other intracellular targets [140]. Marine polysaccharides, especially sulfated
polysaccharides from marine algae, appear to block viral infection by inhibition of one
or more of these stages, with the specific mechanisms dependent on the structure of the
individual polysaccharide [140–144].

Figure 2. Viral infection and the antiviral phase of seaweed polysaccharides. Reused with permission,
license number: 5265040871103 Adapted with permission from Ref. [140]. ©2017, Elsevier Ltd. All
rights reserved.
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Since sulfated polysaccharides are an abundant source of polyanions, they can stimu-
late the production of interferon by host cells, thereby promoting the immune response
to viral infection. Furthermore, sulfated polysaccharides can lead to effective immune
activation and modification of cell signaling mechanisms, thereby eliciting higher antiviral
responses in cells. Barbosa et al. summarized several pathways of polysaccharides that
activate immunosuppression, and all the mechanisms described can be seen in Figure 3,
including Figure 3A direct route mediated by mitochondria, Figure 3B MyD88 protein
signaling pathway, and Figure 3C MAPK protein signaling pathway [145]. These studies
should be focused on the effects of polysaccharides for modulating the immune systems,
especially via cytokines (TNF-α and IL-6) release, increased phagocytosis of macrophages,
production of nitrous oxide (NO), reactive oxygen species (ROS) formation, and signaling
pathway activation (e.g., toll-like 4, type A hijacker receptor, NF-κB, and glucan recep-
tor) [145–148]. In addition, sulfated polysaccharides can also enhance the immune response
of the host by stimulating the production of immune factors to indirectly block viral replica-
tion and facilitate viral clearance [140,149]. Therefore, sulfated polysaccharides are suitable
interferon inducers, natural immunomodulatory drugs, or dietary supplements for the
treatment of COVID-19 [150].

Figure 3. Major inflammatory pathways mediated by the immune system and polysaccharide
signaling mechanisms that may contribute to immunosuppressive pro-inflammatory production
pathways. (A) Direct route mediated by mitochondria; (B) MyD88 protein signaling pathway;
(C) MAPK protein signaling pathway. Reprinted with permission from Ref. [145]. ©2021, Elsevier
Ltd. All rights reserved. (for a detailed interpretation of Figure 3, the reader is referred to [145,146]).
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Vaccination can effectively reduce deaths from infectious diseases and promote the
anticipation of life. Due to the nature and mutation of host strains, the development of
coronavirus vaccines is critical. Adjuvants are biologically active substances added to
vaccines to promote immune responses with vaccine antigens [151]. Long-term immune
memory and protection of the immune system can be achieved by adding adjuvants to
enhance vaccine efficacy. Studies have shown that sulfated polysaccharides have strong
immune-stimulating activity and are suitable as adjuvants for various vaccines [152,153].
Therefore, sulfated polysaccharides can be used as a potential adjuvant candidate for the
production of SARS-CoV-2 antiviral vaccines [153]. However, further in vivo studies and
validations are needed to obtain an effective vaccine against the coronavirus.

Oxygen-free radicals and nitric oxide can cause oxidative tissue damage. Additional
evidence suggests that patients affected by either RNA virus may experience chronic oxida-
tive stress. Therefore, antioxidants are also an antiviral drug that cannot be ignored [154].
SARS-CoV-2 is a positive-stranded single-stranded RNA virus with a high mutation rate,
which causes it to escape host immunity and currently exhibits drug resistance [155]. Sul-
fated polysaccharides are good sources of antioxidants for their effective scavenging and
chelating potential in various applications [156,157]. The structure of sulfated polysaccha-
rides has so far shown remarkable antioxidant activity and reduced oxidative stress in
various diseases [158,159].

The antiviral activity of marine sulfated polysaccharides is largely dependent on
their structures, specifically, the degree and type of sulfation, molecular weight, and
monosaccharide compositions, together with other structural characteristics, such as the
three-dimensional structure and hydrogen bonds [160,161]. Polysaccharides are usually
extracted and purified from marine algae, and these procedures may be complicated by
the diversity of structures and characteristics of these molecules [162]. Water extraction
and alcohol precipitation are commonly used to extract and purify marine polysaccha-
rides, which is different from the extraction method of terrestrial plants using toxic organic
reagents. Seaweed polysaccharides cannot be digested by digestive enzymes in the hu-
man body. However, these biopolymers can effectively increase the activity of beneficial
bacteria in the gut [100]. The physicochemical and mechanical properties of sulfated
polysaccharides can be easily modified, increasing their application in the pharmaceutical
industry [163]. Chemical synthesis has also been put into practice as an effective alternative
to obtaining pure marine oligosaccharides with specific structures [140]. At present, the
commonly used methods for sulfation include the Nagasawa method, Wolfrom method,
and SO3-pyridine method [164–166]. Although the chemical synthesis and purification
of polysaccharides are still difficult, the further development of chemical synthesis will
surely provide new possible routes for the synthesis of those marine polysaccharides with
well-defined structures.

Significantly, most of the current pharmacological investigations into the effects of
polysaccharides are restricted to preclinical studies. For example, many reported phar-
macological studies are limited to in vitro studies of single host cells. However, clinical
evaluation is key to drug development, and such studies will provide a foundation for the
clinical application of these potential antiviral drugs in the future. In addition, the combined
use of a variety of different sulfated polysaccharides, the combined use of polysaccharides
and common antiviral drugs, and different dosage forms of the same drug or different
modes of administration will provide useful references to the clinical application of antivi-
ral drugs. Furthermore, the rationality and safety of the clinical compatibility of related
drugs need further research. Research into the antiviral actions of sulfated polysaccharides
derived from marine algae on SARS-CoV-2 has resulted in much new information. These
studies also provide strong support for the development and application of algae-derived
drugs in the future.
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