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1 GenPhySE, INRAE, INPT, ENVT, Université de Toulouse, Castanet-Tolosan, France, 2 Department of

Computer Science, Applied Mathematics and Statistics, University of Girona, Girona, Spain

☯ These authors contributed equally to this work.

* guillermo.martinez-boggio@inrae.fr

Abstract

Ruminants are dependent on their rumen microbiota to obtain energy from plants. The com-

position of the microbiome was well-known to be associated with health status, and produc-

tion traits, but published results are difficult to reproduce due to large sources of variation.

The objectives of this study were to evaluate the associations of ruminal microbiota and its

association with genetic lines selected by somatic cell score (SCS) or milk persistency

(PERS), as well as milk production, somatic cell score, fat and protein contents, and fatty

acids and proteins of milk, using the principles of compositional data. A large sample of 700

Lacaune dairy ewes from INRAE La Fage feeding the same diet and belonging to two diver-

gent genetic lines selected for SCS or PERS was used. The ruminal bacterial metagenome

was sequenced using the 16S rRNA gene, resulting in 2,059 operational taxonomic units

affiliated with 112 genera. The abundance data were centred log-transformed after the

replacement of zeros with the geometric Bayesian method. Discriminant analysis of the

SCS showed differences between SCS+ and SCS- ewes, while for PERS no difference was

obtained. Milk traits as fat content, protein content, saturated fatty acids and caseins of milk

were negatively associated with Prevotella (R = [-0.08;-0.16]), Suttonella (R = [-0.09;-0.16])

and Ruminococcus (R = [-0.08;-0.16]), and positively associated with Lachnospiraceae (R =

[0.09;0.16]) and Christensenellaceae (R = [0.09;0.16]). Our findings provide an understand-

ing of the application of compositional data to microbiome analysis, and the potential associ-

ation of Prevotella, Suttonella, Ruminococcaceae and Lachnospiraceae with milk

production traits such as milk fatty acids and proteins in dairy sheep.

Introduction

Ruminants are able to obtain energy from plant fibre to produce foods for human consump-

tion. This is achieved through rumen symbiosis with colonizing microorganisms, such as bac-

teria, protozoa and fungi. Bacteria are the most abundant microorganisms in the rumen and
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make the greatest contribution to the digestion and conversion of feeds to short-chain fatty

acids, microbial proteins and vitamins [1]. Associations of the ruminal microbiota with sire

breed [2] and with different traits, such as feed efficiency [3], methane yield [4–6], and milk

composition [7–9], have been reported, mainly in cows. However, in sheep only a few studies

reported changes in the rumen bacteria with different diets [10–12], but no associations with

milk production traits in dairy ewes. Research on cows considered a few animals with a maxi-

mum sample size of 16 [7–9] and used phenotypic differences, not genetic selection.

The main problem in published studies concerning the association between the micro-

biome and production traits is reproducibility. In the general workflow of microbiome analy-

sis, the sources of variation, from sampling to statistical analysis, are almost infinite [13].

High-throughput sequencing technologies have made an important contribution to the knowl-

edge of ruminal microbiome diversity. However, technologies with a limited number of

sequencing reads obtained per sample, such as metabarcoding of the 16S rRNA gene, place a

constraint on microbial data. Thus, the observed read counts is a fixed-size random sample of

the relative abundance of the operational taxonomic units (OTUs) in the ecosystem. More-

over, the counts obtained are not related to the absolute value of the OTU, but to the probabil-

ity of counting the OTU [14].

This kind of data is referred to as compositional, and a statistical approach adapted to this

data must be applied. The term compositional data [15, 16] is used to describe a data set in

which the parts of each sample have an arbitrary or noninformative sum, such as 100 for per-

centages. As result, the data contain only information about the relationships between the dif-

ferent parts of the composition. Three principles should be fulfilled in any statistical analysis of

compositions: scale invariance, permutation invariance and sub-compositional coherence

[16]. To meet one of the most important principles, scale invariance, it was proposed to work

with the log-ratio, whose invariant form is called the log-contrast [15]. Compositional data are

represented in a non-Euclidean space called a simplex. The log-ratio transformations proposed

by Aitchison [15] and Egozcue et al. [17] allow observations to be represented in Euclidean

space, on which most association analyses are statistically based. Centred log-ratio (CLR) and

isometric log-ratio (ILR) transformations are the most widely used types of log-ratio transfor-

mations; both are isometric and allow correct operation in Euclidean space. However, only the

ILR is orthonormal, generating a complete set of independent transformed variables on an

orthonormal basis (as a coordinate system). Thus, the ILR works with balances [17], while the

CLR works with OTU abundance, which allows a simple interpretation of the results.

Zero values are slightly more problematic in compositional data analysis than in standard

multivariate statistical analysis because it is not possible to work with log-ratios if we have zero

values in the data set. Microbiome metabarcoding data represent the probabilities of counts

per OTU through a random sampling process [18], so some values in the data are true zero val-

ues due to true absence in the ecological environment, while others could arise randomly

because of the constraint generated by high-throughput sequencing technologies. In the litera-

ture, different ways of correcting these zero values are applied, from the use of arbitrary correc-

tions such as adding an offset of 1 to all values in the data set to the use of Bayesian models [18,

19].

Another procedure that must be considered when working with microbiome data, which

contributes to the reproducibility of the results, is adjusting the data according to the different

sources of experimental variation mentioned above. In the literature, these effects are known

as batch effects, and they can include technical factors such as sample collection and storage,

sample processing, and DNA sequencing; biological factors such as animal breed, health status

and environmental effects; and computational factors such as bioinformatic pipelines and the

statistical analysis used [20].
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Thus, to obtain robust and reproducible results when working with microbiome data, it is

crucial to use a compositional data approach, as stated by Gloor et al. [14] (“Microbiome data-
sets are compositional: and this is not optional”), and to adjust the data according to the princi-

pal sources of experimental variation.

The main purposes of this study are to present a conceptual framework for the composi-

tional data approach applied to metabarcoding data in a discriminant analysis of divergent

genetic lines of sheep selected on the basis of either somatic cell score (SCS) or milk persistency

(PERS) and to link ruminal bacteria with milk production and milk quality traits.

Materials and methods

Animal handling and sampling

Data were obtained from the INRAE Experimental Unit of La Fage (UE 321 agreement

A312031, Roquefort, France) between 2015 and 2019. The animals under study were adult

Lacaune dairy ewes (weighing 77 kg on average) raised indoors and fed 93% meadow hay and

silage plus 7% of concentrates (on dry matter basis). The genetic structure of the INRAE La

Fage flock includes independent divergent genetic lines of Lacaune dairy ewes: two selected

for milk SCS and the other two for PERS. Divergent selection based on estimated breeding val-

ues (EBVs) for milk SCS of sires of the whole Lacaune population and dams within the La Fage

flock was initiated in 2003 [21]. Two groups of ewes with extreme EBVs were created accord-

ing to the log-transformed somatic cell count (SCC): a high-SCS line, represented as SCS+,

and a low-SCS line, represented as SCS-. This selection was demonstrated to produce ewes

with susceptibility/resistance to natural clinical and sub-clinical mastitis [22]. Estimated breed-

ing values of Lacaune sires were estimated relative to the whole Lacaune population based on

the coefficient of variation of milk production on the testing day. Starting in 2009, extreme

sires were mated to produce the PERS divergent lines in the La Fage flock. Two extreme

groups of ewes were generated, one with high persistence (PERS+) and one with low persis-

tence (PERS-) in the milk production curve.

Ruminal contents were sampled from each ewe using a vacuum pump and a medical gastric

tube, that allows a qualitative representation of the rumen microbial community in a large

number of animals [23]. To avoid dilution of samples by feed or water, the animals did not

have access to feed and water 10 hours and 2 hours prior to sampling, respectively. Immobili-

zation was performed with a special cage adapted for ewes, sampling was performed by com-

petent staff, and the gastric tube was thoroughly rinsed with clean water between animal

sampling to minimize cross-contamination. The rumen samples were directly aliquoted, fro-

zen and stored at -80˚C. This protocol received approval from the Ministere de l’Enseignement

Superieur de la Recherche et de l’Innovation–Animal ethics committee with the following

approval number: APAFIS#6292–2016080214271984 v8.

The experimental data consisted of 700 ruminal samples, including 94 from SCS+ ewes, 204

from SCS- ewes, 200 from PERS+ ewes and 202 from PERS- ewes. The genetic difference

within the SCS and PERS lines was obtained by estimating index differences between SCS

+/SCS- and PERS+/PERS- expressed in standard deviations of the indexes estimated for the

whole Lacaune dairy population.

16S rRNA gene amplicon sequencing

Total DNA from 80 μL of ruminal sample was extracted and purified using the QIAamp DNA

Stool Mini Kit (Qiagen Ltd, West Sussex, UK) according to the manufacturer’s instructions,

with a previous bead-beating step in a FastPrep instrument (MP Biomedicals, Illkirch, France).

The 16S rRNA V3-V4 regions of the extracted DNA strands were amplified (first PCR: 30
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cycles) from purified genomic DNA with the primers F343 (50–CTTTCCCTACACGACGCT

CTTCCGATCTACGGRAGGCAGCAG–30; [24]) and reverse R784 (50–GGAGTTCAGACG

TGTGCTCTTCCGATCTTACCAGGGTATCTAATCCT–30; [25]). As Illumina MiSeq tech-

nology enables 250-bp reads, the ends of each read are overlapped and can be stitched together

to generate full-length reads of the entire V3 and V4 regions in a single run. Single multiplex-

ing was performed using a 6-bp index, which was added to R784 during a second PCR with 12

cycles using forward primer (AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGAC) and reverse primer (CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGA
CGTGT). The PCR products were purified and loaded onto an Illumina MiSeq cartridge (Illu-

mina, San Diego, CA, USA) at the Genomic and Transcriptomic Platform (INRAE, Toulouse,

France) according to the manufacturer’s instructions. This process was repeated each year

between 2015 and 2019, but in the first three years, the sequencing process was carried out at

different times, so the samples were not sequenced in the same batch.

The sequences of the 700 samples were processed using the FROGS pipeline [26] by follow-

ing the FROGS workflow operational procedure: (i) read demultiplexing, i.e., assigning each

paired-end read to its sample on the basis of the previously integrated index; (ii) read pre-pro-

cessing, i.e., removing sequences presenting a primer mismatch, displaying an unexpected

length (>300 or <500 bp) or with at least one ambiguous base; (iii) chimaera removal; (iv)

sequence clustering with denoising and a defined difference of d = 1 between sequences in

each aggregation step of clustering; (v) cluster filtering, i.e., removing clusters with abundances

<0.005% of the total sequences [27]; and (vi) taxonomy assignment to OTUs using SILVA

database (version 138). OTU number refers to the identification of the OTU in the abundance

table.

Abundance data

The abundance table and taxonomy files were imported into R (v4.0.2). Zeros were imputed

under the assumption that the probability of occurrence of the OTUs in the multinomial

experiment was not zero. Therefore, the geometric Bayesian-multiplicative (GBM) method

[19] was used, where the zero values were replaced in each sample by the posterior probability

obtained from the Bayesian model, which considered all the available data, and weighted by

the geometric mean. To maintain the ratios between all the abundance values, the non-zero

values were multiplied by a value generated as a function of the posterior probability and the

geometric mean. The GBM method was performed with the following formula, through the

cmultRepl function of the zCompositions package [28] in R (v4.0.2):

rij ¼

m̂ij

gi � ni þ 1
; if xij ¼ 0;

xij � 1 �
Skjxik¼0 m̂ik

gi � ni þ 1

� �

; if xij > 0:

ð1Þ

8
>>><

>>>:

where rij is a vector of replacement abundance values defined as rij = (ri1,. . .,ri2059), m̂ij is the

prior probability estimate for each category j, gi is the geometric mean of the i-th row, and ni is

the number of samples.

The abundance table with no zero values was CLR transformed with the following formula

through the compositions package [29] in R (v4.0.2):

clrðxÞ ¼ log
x1

gðxÞ

� �

; log
x2

gðxÞ

� �

; . . . ; log
xD
gðxÞ

� �" #

; ð2Þ
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where x is a row vector with abundances for the OTUs in the sample (x1 = OTU 1, x2 = OTU

2, to xD = OTU 2059), gðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffix1 � x2 � . . . � xDD
p

, is the geometric mean of x, and D is equal to

2,059.

The CLR-transformed bacterial abundances were adjusted with a unique general linear

model, performed with the sasLM package in R (v4.0.2), and the fixed effects that were signifi-

cant (P<0.05) for more than 10% of the OTUs were retained.

Finally, the model was:

y ¼ mþ a � DIM þ Nseqþ Year þ RunðYearÞ þ LactðYearÞ þ HourðYearÞ þ e ð3Þ

where y is the CLR-transformed traits of the OTUs, μ is the overall mean, DIM is the lactation

stage (from 28 to 133 days in milk) included as a covariable, Nseq is the number of sequences

per sample as a fixed effect (7 levels from <5,000 to>30,000 sequences), Year is the year fixed

effect (6 levels), Run(Year) is the fixed effect of run within year (5 levels), Lact(Year) is the

fixed effect of lactation number within year (3 levels), Hour(Year) is the fixed effect of the hour

of sampling in the morning/afternoon within year (8 levels), and e is the residual random

effect.

The genetic line effect represented by differences among SCS+, SCS-, PERS+ and PERS-

was not considered in the model since it was used as a discriminating factor in the multivariate

discriminant analysis.

Phenotypic data

Daily recordings of milk production, milk somatic cell count (SCC) quantified with a Fosso-

matic cell counter (Foss, Nanterre, France), and milk fat and protein contents (FC and PC)

were performed as part of the official milk recording of the flock. Ruminal samplings were per-

formed between 0 and 3 days after the milking recordings were made in the morning and

afternoon milkings. Two samples per animal were sent for analysis at the Interprofessional

Milk Analysis Laboratory (Agrolab’s Aurillac, France). Milk FC and PC were analysed with

mid-infrared (MIR) techniques with a Milko-ScanTM FT6000 instrument (Foss, Nanterre,

France). The daily milk production traits studied were daily milk yield (MP), daily FC and PC

(as weighted averages), and daily SCS [SCS = 3 + log2(SCC/100,000)].

Moreover, for these official milk recordings (with the exception of those made in 2016), the

MIR spectra were recovered in order to predict the fine profile of milk proteins and fatty acids.

Fresh milk samples were analysed using MIR spectrometry [30]. The spectral data of the indi-

vidual milk samples were obtained on a Milko-ScanTM FT6000 instrument (Foss, Nanterre,

France). The proteins included in the analysis were the 4 caseins (CNs) αs1-CN, αs2-CN, β-CN

and κ-CN and the 2 soluble proteins α-lactalbumin and β-lactoglobulin [31]. The saturated

fatty acids (SFAs), unsaturated fatty acids (UFAs) and polyunsaturated fatty acids (PUFAs)

included in the analysis were only the FAs used in ewe milk predictions [30], such as butyric

acid (C4:0), caproic acid (C6:0), caprylic acid (C8:0), capric acid (C10:0), lauric acid (C12:0),

palmitic acid (C16:0), oleic acid (cis-9 C18:1), conjugated linoleic acid (cis-9 trans-11 C18:2)

and α-linoleic acid (C18:3n-3). Milk proteins and fatty acids are expressed in g per 100 ml.

The daily FC and PC, milk proteins and milk FAs were CLR transformed to account for

their compositional nature, and all traits were adjusted using the sasLM package in R (v4.0.2)

according to:

y ¼ mþ a � DIM þ Year þ LactðYearÞ þ e ð4Þ

where y is the milk production traits; μ is the overall mean; DIM is the lactation stage (from 28

to 133 days in milk) included as a covariable; Year is the fixed effect of year (6 levels); Lact
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(Year) is the fixed effect of lactation number within year (3 levels); and e is the residual random

effect.

Multivariate analysis

The multivariate analysis was performed with the residuals obtained from Eq (3) for bacterial

abundances and Eq (4) for milk traits.

Two discriminant analyses were performed on OTU abundances to discriminate the diver-

gent lines (for SCS and PERS separately), using sparse partial least-squares discriminant analy-

sis (sPLS-DA). The number of components selected was based on principal component

analysis, from which the sum of components explained at least 60% of the variation. The num-

ber of variables was selected using the CLR-lasso penalty method considering the optimal

number as a function of the lambda value after 25-fold cross-validation. The loading values

indicate the weight of a subset of OTUs whose linear combination maximizes the differences

between genetic lines.

Regression analyses of the relationships of ruminal bacteria with milk production traits and

MIR-predicted traits performed on all divergent lines together, using sparse partial least-

squares (sPLS) analysis. A single sPLS analysis was carried out for milk production traits and

fine milk FA and protein compositions predicted with MIR. The analysis included 561 ewes

with information for all traits. As previously described, principal components analysis and the

CLR-lasso penalty method were used to define the numbers of components and variables for

the sPLS model. The multivariate analysis were implemented using mixOmics package [32] in

R (V4.0.2). A Pearson correlation matrix was calculated with only the OTUs selected according

to the first principal component (PC1) and second principal component (PC2) of the corre-

sponding sPLS analysis. Statistical significance was declared at a P value<0.05. Then, cluster-

ing of OTUs and traits was performed with the heatmaply function in R (v4.0.2).

The classification reliability corresponding to the discriminant analysis model was assessed

as a function of the maximum prediction distance between the overall misclassification error

rate and balanced error rate (BER) after fivefold cross-validation repeated 10 times. BER was

calculated as 1 –balanced accuracy.

Results

As a result of the bioinformatics analysis, 9,536,442 sequences were retained (63% of the initial

total DNA sequences). The abundance table included 2,059 affiliated OTUs, represented by

751 to 168,617 sequences (mean of 1,761 DNA sequences). Rare OTUs represented by fewer

than 2,034 sequences across all samples were excluded from the analysis. Genera were defined

as the finest taxonomic level due to an unknown species frequency of 94%.

Overall, the 2,059 OTUs from the 700 samples were attributed to 11 phyla and 112 genera.

Expressed as a percentage of total sequences for all samples, the most representative phyla

were Bacteroidetes (50.8%), Firmicutes (43.3%) and Proteobacteria (2.7%), and the most abun-

dant genera were Prevotella (34%), Lachnospiraceae NK3A20 group (6.4%), Ruminococcus
(5.8%), Christensenellaceae R-7 group (5.3%), Oscillospiraceae NK4A214 group (3.8%) and

Rikenellaceae RC9 gut (3.6%). The percentage of zero values in whole abundance table is

shown in Fig 1.

Discriminant analysis of SCS and PERS lines

Divergent selection created large differences between the lines: 2.19 units of SCS EBVs (i.e., 3.6

genetic SD) created between the 94 SCS+ and 204 SCS- ewes and 5.52 units of milk CV EBVs

(i.e., 2.1 genetic SD) created between the 200 PERS+ and 202 PERS- ewes.
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The discriminant model defined for SCS lines included 100 principal components (63% of

variance explained) and 17 variables. The SCS+ and SCS- ewes could be discriminated on the

basis of their ruminal bacteria (Fig 2). Table 1 includes the 34 OTUs most associated with the

SCS lines in each of the first 2 principal components. Only two OTUs were removed from the

abundance table because of zero values for all samples. The BER obtained from the model was

0.50, and the first two principal components explained 4% of the variance.

The Prevotella genus was well represented, with 11 OTUs associated with either the SCS

+ or the SCS- ewes, through components 1 and 2 (Table 1). Only OTU1145 was associated

with SCS- ewes for the two main components. The Christensenellaceae R-7 group genus

appeared to be associated with SCS- ewes in PC1, but in PC2, OTU285 and OTU382 belonging

to this same genus were associated with SCS+ ewes. The family Lachnospiraceae was well rep-

resented by Lachnospiraceae NK3A20 group, Lachnospiraceae NK4A136 group and Lachnospir-
aceae AC2044 group, which were associated with either SCS- or SCS+ ewes.

The discriminant model for PERS lines included 120 principal components (62% of vari-

ance explained) and 5 variables. The PERS+ and PERS- lines could not be discriminated

according to their ruminal bacteria (Fig 3). Table 2 includes the 10 OTUs most associated with

the PERS lines in each of the first 2 principal components. The BER obtained from the model

was 0.71, and the first two principal components explained 2% of the variance. The Prevotella
genus, represented by OTU1482 (PC1) and OTU1395 (PC2), was positively associated with

PERS- ewes. In addition, the PERS- line was associated with Oscillospiraceae NK4A214, Blautia
and an unknown genus (order Clostridia UCG-014) through component 1 and with Strepto-
coccus through component 2. Thus, the genera Ruminococcus and Oscillospiraceae NK4A214
were associated with PERS+ ewes.

Fig 1. Percentage of zero values in data by genetic line. SCS+ and SCS- as somatic cell score lines susceptibility/

resistance, and PERS+ and PERS- as milk persistency line high/low persistence.

https://doi.org/10.1371/journal.pone.0254874.g001
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Regression analysis between ruminal bacterial abundance and milk traits

The sPLS regression model included 150 components and 9 variables. Fig 4 shows only the 17

most representative OTUs from PC1 and PC2 (OTU1593 was representative for both compo-

nents and all traits).

Daily milk production and SCS were each correlated with one OTU of the genus Prevotella
(Fig 4). Milk FC and PC had similar correlations with 5 common OTUs: they were negatively

correlated with 2 Prevotella OTUs (R = [-0.11;-0.13], P< 0.01) and with Suttonella (R =

[-0.09;-0.12], P< [0.05;0.01]) and positively correlated with Lachnospiraceae NK4A136 group
(R = [0.10;0.15], P< [0.05;0.01]) and Christensenellaceae R-7 group (R = [0.09;0.11], P<

[0.05;0.01]). Moreover, PC was specifically correlated with Endomicrobium, while FC had

numerous correlations, such as positive correlations with Lachnospiraceae probable genus 10
and Christensenellaceae R-7 group, negative correlations with 2 Ruminococcus OTUs and vari-

able correlations with 2 OTUs of the Muribaculaceae family (R = [0.12;-0.14], P< 0.01).

αs1-CN, κ-CN and β-lactoglobulin were positively correlated with Lachnospiraceae
NK4A136 group (R = [0.13;0.16], P< 0.01) and negatively correlated with Prevotella and Sutto-
nella (R = [-0.14;-0.16], P< 0.01). To a lesser extent, Christensenellaceae R-7 group and the

family Muribaculaceae showed positive and negative correlations with αs1-CN and κ-CN,

respectively (Fig 4). αs2-CN and β-CN exhibited the same trend as the other caseins but with

weaker correlations: negative correlations with Suttonella and Prevotella and positive correla-

tions with Lachnospiraceae NK4A136 group. α-Lactalbumin was clearly different from the

other protein since it was positively correlated with Prevotella and with an unknown genus of

the family Muribaculaceae (R = [0.15;0.18], P< 0.001), while the families Lachnospiraceae and

p-251-o5 showed negative correlations with this protein (R = -0.11, P< 0.01).

Fig 2. Sparse partial least squares discriminant analysis between divergent somatic cell score (SCS) lines. SCS+: ewes selected for high

somatic cell score i.e. susceptible to mastitis; SCS-: ewes selected for low somatic cell score i.e. resistant to mastitis.

https://doi.org/10.1371/journal.pone.0254874.g002
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The strongest correlations were observed with SFAs, which were negatively correlated with

all 4 Prevotella OTUs selected by sPLS analysis and with Suttonella, particularly for C10:0 and

C12:0 (R = -0.16, P< 0.001). Some genera of the phylum Firmicutes were correlated with SFAs.

For example, 2 OTUs belonging to Christensenellaceae R-7 group were positively correlated

with SFAs, and 2 OTUs belonging to Ruminococcus were negatively correlated with SFAs. An

unknown genus of the Muribaculaceae and the p-251-o5 family showed the maximum correla-

tions of 0.20 (P< 0.001) with C10:0.

Compared to SFAs, MUFAs had fewer significant correlations with OTUs. As presented in

Fig 4, the MUFA cis-9 C18:1 was negatively associated with Endomicrobium and Prevotella,

while the PUFA C18:3n-3 was positively associated with Christensenellaceae R-7 group and

Probable genus 10 and negatively associated with Prevotella and an unknown genus of Muriba-
culaceae. Finally, cis-9 trans-11 C18:2 was not correlated with any of the 17 OTUs selected by

sPLS analysis.

Discussion

Bacteroidetes, Firmicutes and Proteobacteria were the most dominant phyla in the rumen of

dairy ewes. The same phyla were reported by other authors studying sheep [11, 33] and dairy

cows [7–9, 34–37] with different rumen sampling methods and statistical analysis.

The analysis of microbiome abundance data with the commonly applied methodology [7–

9, 34, 37], i.e., data treatment with a normalization process, such as rarefaction, and using non-

metric distances (i.e., Bray Curtis), provides results that seem satisfactory, irrespective of the

compositional nature of the data. However, statistical knowledge since Pearson [38] has shown

that processing such data without considering them as compositional could lead to spurious

Table 1. Loading values per OTU with genus affiliation, associated genetic line and percentage of abundance, for the two first components from the somatic cell

score (SCS) line sparse partial least squares discriminant analysis.

Affiliated genus OTU PC1 Line Abundance (%) Affiliated genus OTU PC2 Line Abundance (%)

Prevotella 14 0.40 SCS+ 0.80 Prevotella 1064 0.35 SCS- 0.01

Ruminococcaceae/ unknown genus 501 0.34 SCS+ 0.04 Prevotella 1092 0.34 SCS- 0.05

Prevotella 819 0.27 SCS+ 0.01 Ruminococcus 657 0.32 SCS- 0.02

Prevotellaceae UCG-001 467 0.25 SCS+ 0.08 Prevotella 112 0.23 SCS+ 0.13

F082/unknown genus 3286 0.13 SCS+ 0.01 Lachnospiraceae NK4A136 group 2186 0.22 SCS- 0.01

Lachnospiraceae AC2044 group 230 0.08 SCS+ 0.08 Prevotellaceae YAB2003 group 517 0.17 SCS- 0.10

Prevotella 1486 0.08 SCS+ 0.01 Anaeroplasma 220 0.16 SCS- 0.06

Lachnospiraceae NK3A20 group 625 -0.06 SCS- 0.02 Prevotella 1145 0.11 SCS- 0.03

Clostridia UCG-014/ unknown genus 530 -0.09 SCS- 0.05 Christensenellaceae R-7 group 382 -0.02 SCS+ 0.19

Prevotella 1145 -0.12 SCS- 0.03 F082/unknown genus 2208 -0.03 SCS+ 0.01

Moryella 328 -0.15 SCS- 0.04 Pseudoramibacter 226 -0.08 SCS+ 0.04

Syntrophococcus 1739 -0.19 SCS- 0.01 Christensenellaceae R-7 group 285 -0.19 SCS+ 0.17

Fibrobacter 1640 -0.23 SCS- 0.02 Family XIII UCG-001 450 -0.24 SCS+ 0.04

F082/ unknown genus 175 -0.26 SCS- 0.08 Mogibacterium 79 -0.26 SCS- 0.17

Prevotella 367 -0.33 SCS- 0.05 Prevotella 443 -0.29 SCS+ 0.05

Prevotella 1842 -0.34 SCS- 0.01 Lachnospiraceae NK3A20 group 39 -0.31 SCS+ 0.27

Christensenellaceae R-7 group 2009 -0.36 SCS- 0.01 Oscillospiraceae/ unknown genus 538 -0.36 SCS+ 0.04

When the genus is unknown, the family affiliation is included before the backslash (/).

OTU, identification number of the operational taxonomic unit.

PC1, first principal component; PC2, second principal component.

Abundance (%), expressed as percentage of total sequences.

https://doi.org/10.1371/journal.pone.0254874.t001
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correlations. More recently, Gloor et al. [14] pointed out that the use of traditional methods to

analyse data without considering their compositional nature can lead to “misleading and

unpredictable” results [13, 14, 16].

Thus, this work aimed to apply compositional data analysis to the rumen bacterial metagen-

ome obtained by metabarcoding and to correct for technical and zootechnical effects in order

to obtain robust and reproducible results. The compositional workflow of the study consisted

of the following steps:

Fig 3. Sparse partial least squares discriminant analysis between divergent milk persistency (PERS) lines. PERS+: ewes selected for a

high milk persistence; PERS-: ewes selected for a low milk persistence.

https://doi.org/10.1371/journal.pone.0254874.g003

Table 2. Loading values per OTU with genus affiliation, associated genetic line and percentage of abundance, for the two first components from the milk persis-

tency (PERS) line sparse partial least squares discriminant analysis.

Affiliated genus OTU PC1 Line Abundance (%) Affiliated genus OTU PC2 Line Abundance (%)

Prevotella 1428 0.79 PERS- 0.01 [Eubacterium] coprostanoligenes group/ unknown
genus

1501 0.39 PERS+ 0.01

Clostridia UCG-014/ unknown
genus

411 -0.22 PERS- 0.04 Prevotella 1395 0.11 PERS- 0.01

Blautia 216 -0.29 PERS- 0.07 Streptococcus 634 -0.15 PERS- 0.04

Oscillospiraceae NK4A214 292 -0.34 PERS- 0.07 Anaerovoracaceae/ unknown genus 1131 -0.58 PERS+ 0.02

Ruminococcus 537 -0.36 PERS

+

0.05 Oscillospiraceae NK4A214 823 -0.69 PERS+ 0.02

When the genus is unknown, the family affiliation is included before the backslash (/).

OTU, identification number of the operational taxonomic unit.

PC1, first principal component; PC2, second principal component.

Abundance (%), expressed as percentage of total sequence.

https://doi.org/10.1371/journal.pone.0254874.t002
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1. Zero values were corrected with the GBM method [19]. Theoretically, this method is appro-

priate since it generates a minor distortion in the ratios between OTU abundances, based

on the correction of zero values and the multiplication of non-zero values. In addition, the

GBM method considers the multivariate nature of microbiome data through a Bayesian

model, where new values are generated on the basis of the posterior probabilities of zero

values in the raw data.

2. OTU abundance was CLR transformed. This transformation allows a simple interpretation of

the biological results, since each OTU in each sample is compared with the geometric mean of

the sample. The limit of CLR transformation is that OTUs remain dependent because of the use

of the geometric mean. Therefore, CLR transformation partially solves the problem identified

by Pearson in 1897 [38]. However, the statistically correct alternative to CLR transformation

proposed by Egozcue et al. [17], i.e., the ILR transformation, does not allow easy interpretation

of the results [39]. Indeed, ILR transformation works with balances (linear combinations of

OTUs) to achieve total independence among the OTUs, and it is currently not possible to back-

transform the results after multivariate analyses. Further work is needed in this sense.

3. The microbiome and phenotypic data were adjusted through linear models. These models

must include in their definition batch effects [20] which are any unwanted source of

Fig 4. A correlation matrix heatmap between bacterial taxa and milk traits. OTUs selected by the 2 first components of the sparse

least squares analysis; daily milk production (MP), somatic cell score (SCS), daily milk protein contents (PC), daily milk fat content

(FC), milk fatty acids (butyric acid (C4:0), caproic acid (C6:0), caprylic acid (C8:0), capric acid (C10:0), lauric acid (C12:0), palmitic

acid (C16:0), oleic acid (cis-9 C18:1), conjugated linoleic acid (cis-9 trans-11 C18:2) and α-linoleic acid (C18:3n-3), expressed as % of

total fatty acids) and milk proteins, as casein (CN) (αs1-CN, αs2-CN, β-CN, κ-CN, expressed as % of total proteins), and soluble

proteins (α-lactalbumin and β-lactoglobulin, expressed as % of total proteins).

https://doi.org/10.1371/journal.pone.0254874.g004

PLOS ONE Compositional analysis of ruminal bacteria from dairy sheep

PLOS ONE | https://doi.org/10.1371/journal.pone.0254874 July 26, 2021 11 / 16

https://doi.org/10.1371/journal.pone.0254874.g004
https://doi.org/10.1371/journal.pone.0254874


variation representing biological and technical effects. When the effects are balanced in the

experiment, linear models are an interesting method to correct for batch effects [20]. From

these models, the residual values (variation not explained by the included effects), which

are ultimately the input values for multivariate analyses, are obtained. However, the conse-

quence of using residual values for sPLS-DA and sPLS analyses is that the remaining varia-

tion in the residuals exploited by these regression models is reduced, as shown below.

In this way, we considered not only the nature of the available microbiome data to work in

the appropriate geometric space (Euclidean) but also the residuals to allow a more correct

analysis of the effect under study, i.e., the genetic lines based on SCS and PERS.

Discriminant analysis

Discriminant analysis for both the SCS and PERS lines showed low explained variance (Figs 2

and 3) for the first two principal components. Using residuals leads to a smaller variance of the

values and therefore affects the variance explained by the discriminant effect for the first com-

ponents. As a result, it is necessary to include a large number of components in the analysis.

Variable selection was performed through the CLR-lasso method and allowed some OTUs

with low abundance that carried irrelevant information to be excluded.

Since all ewes were Lacaune breed receiving the same diet and batch effects (except that of

line) were corrected for by the linear model, the remaining variation in the rumen bacteria

may be explained by the genetic lines. In spite of this, the variance among the genetic lines was

not explained by the composition of the host animal’s microbiome for PERS, and only slightly

for SCS. This is demonstrated by the BER obtained for the sPLS-DA analyses of 0.50 for SCS

and 0.71 for PERS. Nevertheless, Fig 2 shows a slight difference between the SCS+ and SCS-

lines, despite only 4% of the total variance being explained (for both components). Some

OTUs assigned to Prevotella, Christensenellaceae R-7 group and unknown genus of the family

Ruminococcaceae were the main discriminants for the first component (Table 1). Zhong et al.

[36] did not report differences in these three genera between the rumens of cows with pheno-

typically high and low SCCs; in this comparison, the authors noticed only enrichment of Pro-
teobacteria (especially an unclassified Succinivibrionaceae) in the ruminal microbiota of cows

with low SCCs. In our study, these OTUs were not significantly different according to SCS.

Therefore, the hypothesis of a link between selection on SCS and modifications in the rumen

microbial population was not rejected, but its validity remains unclear in terms of the bacteria

involved. The PERS line analysis revealed a complete absence of differences between PERS

+ and PERS- ewes, as shown in Fig 3. However, three OTUs presented loading values greater

than 0.5 (Table 2) along PC1 and PC2, and they belonged to Prevotella, Oscillospiraceae
NK4A214 and an unknown genus of Anaerovoracaceae. Nevertheless, there was no hypothesis

of a correlated response of ruminal microbiome abundance to PERS selection.

The results for both divergent lines suggest that genetic selection for zootechnical traits,

such as udder health and milk production curves, did not modify the abundance of rumen

bacteria and therefore the animals’ ability to digest their feed.

Links between ruminal bacteria and milk traits

Daily milk production was positively associated with a Prevotella OTU, similar to the results

reported by Huang et al. [40]. This genus is known to have major metabolic activity in the pro-

duction of propionate [41], which is the main precursor for gluconeogenesis in the liver [1]

leading to lactose production. Some authors [9, 35] reported that some genera of the Lachnos-
piraceae family were positively correlated with daily milk yield, while we found that two OTUs
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affiliated with this family were weakly but negatively associated with daily milk production, as

reported by Huang et al. [40]. The results obtained in dairy cows can be considered as refer-

ences for dairy sheep, since as shown [42] the differences in terms of rumen microbiota

among species are smaller when the diet is based on a mixture of forage and concentrates.

The SCS was correlated with a Prevotella OTU, but a possible association between this

genus and the SCC in milk has not been reported, and these results are in line with the diffi-

culty of differentiating the genetic lines selected for SCS. As expressed by Zhong et al. [36], the

bacterial communities in the rumen are stable in animals with different SCCs, and this is prob-

ably true of ewes, where mastitis is overwhelmingly sub-clinical. However, the main hypothesis

is a link between the intestinal microbiota and intramammary infection (i.e., clinical mastitis)

[43].

Concerning milk composition, we identified two groups of OTUs (Fig 4): group 1, with

negatively linked OTUs belonging to Prevotella, Suttonella, Ruminococcus and Endomicro-
bium, and group 2, with positively linked OTUs belonging Lachnospiraceae NKA136, probable
genus 10, Rikenellaceae RC9, Ruminococcaceae, Christensenellaceae and p-251-o5. Muribacula-

ceae was represented by one OTU in the two groups, and for α-lactalbumin and daily milk

production, the relation was reversed. Group 1 was represented mostly by propionic acid and

proteolytic bacteria such as Prevotella [41], Suttonella [44] and some Ruminococcus [45], char-

acterized by increasing milk production with a possible dilution of milk components. In con-

trast, group 2, with mostly butyric and acetic acid-producing bacteria such as Lachnospiraceae
[46], had less proteolytic activity [47, 48], leading to the opposite effect for the concentration

of milk components. These results are in accordance with other studies in dairy cows that also

found Prevotellaceae family negatively correlated with milk fat, and Lachnospiraceae positively

correlated with milk fat and protein contents [8, 37, 49].

In sheep [33] as well as in cows [50] a close relationship between the rumen microbiota

composition and short-chain fatty acids in rumen was reported that could influence the syn-

thesis of milk components. Therefore, the most likely hypothesis is that bacteria of group 2,

through butyric and acetic acid, promote the production of short- and medium-chain SFAs.

In conclusion, this study applying the compositional data approach to a significant sample

size of Lacaune dairy ewes revealed that rumen bacteria belonging to Prevotella, Suttonella,

Ruminococcaceae and Lachnospiraceae are associated with milk production traits such as milk

fatty acids and proteins. However, despite the large genetic differences between lines, ruminal

bacteria were able to only weakly discriminate between SCS lines and unable to discriminate

between PERS lines. Although dilution of the ruminal samples by saliva could be expected,

correction of the rumen microbiota for the number of sequences per sample could have

reduced this effect.

Since some abundant OTUs were correlated with milk composition traits, it would be inter-

esting to further investigate the mechanism by which rumen bacterial metabolites affect milk

composition traits in order to understand the relationships detected in this work.
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