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Abstract

The 5-year overall survival (OS) of pancreatic ductal adenocarcinoma (PDAC) is only 10%, partly owing to the lack of reliable diagnostic
and prognostic biomarkers. The raw gene-cell matrix for single-cell RNA-seq (scRNA-seq) analysis was downloaded from the GSA
database. We drew cell atlas for PDAC and normal pancreatic tissues. The inferCNV analysis was used to distinguish tumor cells from
normal ductal cells. We identified differential expression genes (DEGs) by comparing tumor cells and normal ductal cells. The common
DEGs were used to conduct prognostic and diagnostic model using univariate and multivariate Cox or logistic regression analysis. Four
genes, MET, KLK10, PSMB9 and ITGB6, were utilized to create risk score formula to predict OS and to establish diagnostic model for
PDAC. Finally, we drew an easy-to-use nomogram to predict 2-year and 3-year OSs. In conclusion, we developed and validated the
prognostic and diagnostic model for PDAC based on scRNA-seq and bulk-seq datasets.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a dismal
disease, and the prognosis of patients with PDAC has not
been significantly improved recently with 5-year overall
survival (OS) of 9–10% (1). The poor prognosis is mainly
attributed to low surgical resection rate, chemoradiother-
apy resistance and lack of reliable biomarkers for early
diagnosis. Most patients have vascular invasion and/or
distant metastasis at the time of diagnosis, missing the
possibility of radical resection (2,3). In addition, half of
patients with PDAC would have tumor recurrence or
distant metastasis 2 years after radical resection, with
5-year OS of 25–30% (4). Early diagnosis and radical
resection can significantly improve the prognosis of
patients, but current serum tumor markers, such as car-
bohydrate antigen 19-9 (CA19-9) and carcinoembryonic
antigen (CEA), have limited specificity and sensitivity to
screen patients with early PDAC (5). In addition, accurate
prognosis evaluation could provide appropriate clinical
decision support for patients. Therefore, it is vital to
develop valid prognostic and diagnostic models for PDAC.

Compared with traditional bulk-seq, single-cell RNA-
seq (scRNA-seq) could acquire transcriptome data of
each cell at unprecedented resolution (6). Recent stud-
ies revealed complex intra-tumor heterogeneity in PDAC
microenvironment and identified various new cell sub-
populations using scRNA-seq. Peng et al. (7) conducted

scRNA-seq for 24 PDAC and 11 normal pancreatic speci-
mens and found two ductal cell subpopulations in PDAC
with different malignancy and cell markers, indicating
ductal cell heterogeneity in PDAC. Elyada and colleagues
(8) drew cell atlas of human and mouse pancreas and
identified three types of cancer-associated fibroblasts
(CAFs): myofibroblastic CAFs, inflammatory CAFs and
antigen-presenting CAFs, suggesting intricate CAFs’ het-
erogeneity. However, gene expression characteristics of
tumor cells in PDAC remain to be further investigated.

The development of bioinformatics and multiomics
database makes it easier to explore the expression
pattern of malignancies and to construct prognostic
and diagnostic models. Various risk score formulas have
been proposed to predict the occurrence and prognosis
of PDAC based on differential expression genes (DEGs)
from bulk-seq datasets, such as The Cancer Genome
Atlas (TCGA) or Gene Expression Omnibus (GEO) (9–
12). However, bulk-seq only indicates average expression
level of the whole tissue, which might lead to the bias
for individual tumor cell. In contrast, scRNA-seq could
reveal DEGs between tumor cells and normal ductal cells
without the interference of stromal and immune cells in
pancreatic tissues.

In this study, we aimed to establish and validate prog-
nostic and diagnostic model for PDAC based on scRNA-
seq and bulk-seq datasets. We drew the cell atlas of
PDAC and normal pancreas using scRNA-seq dataset,
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distinguished tumor cells from normal ductal cells and
identified DEGs between them. Next, we combined DEGs
from scRNA-seq and DEGs from TCGA and GTEx to get
common DEGs and further selected DEGs by univariate
Cox proportional hazard regression (Unicox) analysis and
LASSO-penalized Cox regression analysis. Then, we per-
formed multivariate Cox proportional hazard regression
(Multicox) analysis to construct prognostic model in the
train set of TCGA_PAAD. Finally, we conducted inter-
nal and external validations for this prognostic model
using the validation set of TCGA_PAAD, PACA_AU and
GEO datasets, and we developed nomogram to predict 2-
year or 3-year OS for PDAC. In addition, we constructed
diagnostic model for prognosis related DEGs based on
univariate and multivariate logistic regressions.

Results
scRNA-seq delineated cell atlas for PDAC
and normal pancreas
To uncover cellular components of tumor microenviron-
ment in PDAC and to discover gene expression profile
difference between tumor cells and normal ductal cells,
we downloaded single-cell transcriptome sequencing
dataset from Genome Sequence Archive (GSA). A total of
24 PDAC (38 201 cells) and 11 normal pancreatic (14 838
cells) specimens were included to construct gene-cell
expression matrix (Supplementary Material, Table S1).
After cells filtering, normalization, principal component
analysis (PCA) and t-distributed stochastic neighbor
embedding (t-SNE) dimensionality reduction, 26 original
clusters were identified (Fig. 2A). According to signature
genes of each cell type reported previously (7,8,13), these
clusters were classified into nine known cell types,
including stellate cells, macrophages, endothelial cells,
ductal cells, T cells, fibroblast cells, B cells, acinar cells
and endocrine cells (Fig. 2B and C and Supplementary
Material, Fig. S1A–C). Interestingly, cluster 25 (unknown)
expressed signature genes of macrophages (AIF1 and
CD68), stellate cells (RGS5) and fibroblast cells (COL1A1).
Next, we identified marker genes of each cell type using
FindMarkers algorithm (Fig. 2D and Supplementary
Material, Table S2).

We counted the proportion of various cell subpop-
ulations in normal pancreatic tissue (N1–N11) and
PDAC (T1–T24) and found that the cellular components
varied among distinct specimens, indicating inter-
patient heterogeneity (Fig. 3A and B). In particular, PDAC
had higher proportion of stellate cells, fibroblast cells
and immune cells (B cells, T cells and macrophages)
compared with normal pancreatic tissue, which was in
line with the abundant extracellular matrix and tumor
infiltrating immune cells—hallmark of PDAC (Fig. 3C).
Furthermore, we inferred cell-cycle state of cells among
different specimens using Seurat package. There were
marked difference among PDAC and normal pancreatic
specimens for cell-cycle state. The PDAC had higher
proportion of G2M phase, suggesting active proliferation
ability (Fig. 3D–F).

Copy number alteration analysis distinguished
tumor cells from normal ductal cells
Next, we isolated ductal cells to construct gene-cell
expression matrix and performed t-SNE analysis. A total
of 18 distinct ductal subpopulations were identified
(Fig. 3G and Supplementary Material, Fig. S1E and F).
We inferred somatic large-scale chromosomal CNVs
and calculated CNV scores based on a set of reference
normal cells (ductal cells in normal pancreatic speci-
mens, endothelial cells, stellate cells and macrophages)
through inferCNV package. The results showed that
cluster 4/5/6/8/14/16/17 exhibited significantly higher
CNV compared with reference cells and were therefore
identified as tumor cells (Supplementary Material,
Fig. S1G and H). The original ductal subclusters were
classified into Ductals 1–3 and Tumors 1–5 (Fig. 3H).
Ductal 1 and Ductal 3 were derived from normal
pancreatic specimens and PDAC, respectively, whereas
Ductal 2 was derived from both PDAC and normal
pancreatic specimens. Inter-patient heterogeneity was
detected in tumor cells again, with almost all patients
represented in distinct tumor subpopulations. All tumor
subpopulations (Tumors 1–5) had higher proportion
of G2M phase than Ductal 1, indicating proliferation
potential of tumor cells (Supplementary Material, Fig.
S1D). Ductal 1 had a high expression of FXYD2, which
encodes the sodium-/potassium-transporting ATPase
subunit gamma. FXYD2 is expressed in normal pancre-
atic ductal cells, which is consistent with our finding
(7,8). Multiple signature genes for PDAC were detected
in most of tumor subpopulations except for Tumor
2, such as CEACAM1, CEACAM5, CEACAM6, TFF1 and
TFF2 (P < 0.001) (15). All tumor subpopulations expressed
higher levels of LAMC2 and MSLN (P < 0.0001) (Fig. 3I). In
fact, LAMC2 was proposed as a diagnostic biomarker for
PDAC (14,15).

Epithelial mesenchymal transition and cancer
stem cell properties of tumor subpopulations
In addition, Cluster 4, Cluster 5, Cluster 6, Cluster 8
and Cluster 14 had significantly higher CNV compared
with reference cells, thus, they are named Tumors 1–
5, respectively (Supplementary Material, Fig. S1G and
H). We calculated the CNV scores of Tumors 1–5 again
and found that they had higher CNV compared with
reference cells, confirming their malignant cell identity
(Fig. 4A and B). Based on epithelial mesenchymal transi-
tion (EMT) and stem cell markers, we calculated E score,
M score and S score. The results indicated that Tumor
2 had the highest M score among ductal subpopula-
tions (Fig. 4C and D and Supplementary Material, Table
S3 and Supplementary Material, Fig. S1I). Tumor 2 had a
high expression of mesenchymal cell markers, including
ACTA2, COL1A1, COL1A2, COL3A1, FN1, MMP2 and MMP7
(Fig. 4E). GO analysis showed that marker genes of Tumor
2 were significantly enriched for extracellular structure
organization and constituent (Supplementary Material,
Table S4 and Supplementary Material, Fig. S1J and K).
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Table 1. Clinicopathological characteristics of patient cohorts for diagnostic and prognostic models

TCGA_PAAD
(n = 177)

PACA_AU
(n = 91)

GSE57495
(n = 63)

GSE71729
(n = 357)

GSE62452
(n = 130)

GSE15471
(n = 78)

GSE16515
(n = 52)

Platform HTSeq
(RNA-seq)

HiSeq
(RNA-seq)

GPL15048 (gene
chip)

GPL20769 (gene
chip)

GPL6244 (gene
chip)

GPL570 (gene
chip)

GPL570 (gene
chip)

Gender
Male 97 47 NA NA NA NA 34
Female 80 43 NA NA NA NA 18
Unknown 0 1 NA NA NA NA 0

Age (years)
Median (range) 65 (36–89) 67 (36–86) NA NA NA NA 68.5 (49–84)

Histological type
PDAC 164 72 63 145 69 39 36
IPMN NA 7 0 0 0 0 0
Neuroendocrine

carcinoma
6 0 0 0 0 0 0

Others 7 12 0 212 61 39 16
Location

Head 129 NA NA NA NA NA NA
Body 15 NA NA NA NA NA NA
Tail 14 NA NA NA NA NA NA
Others 19 NA NA NA NA NA NA

T stage
T1 7 NA NA NA NA NA NA
T2 24 NA NA NA NA NA NA
T3 141 NA NA NA NA NA NA
T4 3 NA NA NA NA NA NA
Others 2 NA NA NA NA NA NA

N stage
N0 49 NA NA NA NA NA NA
N1 119 NA NA NA NA NA NA
Others 9 NA NA NA NA NA NA

AJCC stage
I 21 NA 13 NA 7 NA NA
IIA 28 NA 17 NA 18 NA NA
IIB 118 NA 33 NA 66 NA NA
III 3 NA 0 NA 26 NA NA
IV 4 NA 0 NA 13 NA NA
Others 3 NA 0 NA 0 NA NA

Margin status
R0 83 NA NA NA NA NA NA
R1 41 NA NA NA NA NA NA
Others 53 NA NA NA NA NA NA

Construction and internal validation of
prognostic model based on TCGA database
To better understand gene expression pattern of tumor
cells in PDAC, we compared Ductal 1 with Tumors 1–
5, and found 604 DEGs using FindMarkers algorithm
(Fig. 5A). On the other hand, we found 2615 DEGs
between PDAC (TCGA) and normal pancreatic tissue
(matched GTEx). Then, 222 common DEGs were used
to construct gene expression matrix accompanied by
clinical follow-up data using TCGA_PAAD dataset (Fig. 5B
and Table 1). GO and GSEA analyses suggested that
DEGs were significantly related to immune response,
antigen processing and presentation and EMT (Sup-
plementary Material, Fig. S2A–F). We identified 68
genes related to OS by univariate regression analysis
(Supplementary Material, Table S5). To avoid overfit-
ting during the prognostic model construction, we

performed LASSO-penalized Cox regression analysis and
finally selected 10 genes from previous OS-related genes
(Fig. 5C and D).

Next, 177 subjects in TCGA_PAAD were randomly
divided into train set and validation set in 2:1. The Multi-
cox analysis was employed to construct final prognostic
model in train set. The risk score for each subject was
calculated as follows: risk score (t) = h0 (t) ∗ exp(MET ∗

0.3839 + ITGB6 ∗ 0.1881 + PSMB9 ∗0.3586 + KLK10 ∗0.0838).
Subjects were divided into low-risk group and high-
risk groups according to the median cutoff value. The
Kaplan–Meier curve (KM) showed that subjects in the
high-risk group had significantly shorter OS than those
in the low-risk group (P = 4.71e − 07) (Fig. 5E). Time-
dependent receiver operating characteristic curve (ROC)
was used to evaluate the accuracy of predicting 1-year,
1.5-year and 2-year OSs, and the area under curve (AUC)
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values were 0.777, 0.74 and 0.738, respectively (Fig. 5F).
The higher-risk score indicated the worse prognosis
(Fig. 5G and H). Then, we conducted internal validation
for prognostic model. Consistent with previous results
in train set, subjects with high-risk score had worse
prognosis in the validation set (P = 2.832e − 03, 1-/1.5-
/2-year AUC: 0.673/0.731/0.806) and all sets (P = 9.274e −
09, 1-/1.5-/2-year AUC: 0.749/0.738/0.741) (Fig. 5I–L and
Supplementary Material, Fig. S2G–J).

External validation of prognostic model
To further evaluate the reliability of prognostic model,
we downloaded the gene expression matrix and clin-
ical follow-up data of PDAC from ICGA and GEO
databases. Subjects in the high-risk group had signif-
icantly shorter OS than those in the low-risk group
based on four prognosis-related signatures in all exter-
nal validation sets for PACA_AU (P = 3.688e − 02),
GSE57495 (P = 1.919e − 03) and GSE71729 (P = 2.514e −
03) (Fig. 6A–C). Their 1-/1.5-/2-year AUC values were
0.714/0.629/0.532, 0.742/0.833/0.856 and 0.665/0.69/NA.

Nomogram for predicting the survival for PDAC
patients
We downloaded complete clinicopathological character-
istics of subjects in TCGA_PAAD and performed Unicox
and Multicox analyses. The Unicox results showed that
N stage [hazard ratio (HR): 1.95, 95% confidence interval
(CI): 1.03–3.67, P = 0.0398], margin status (HR: 1.72, 95%
CI: 1.02–2.92, P = 0.0431) and risk score (HR: 1.97, 95% CI:
1.42–2.75, P < 0.0001) were significantly correlated to the
OS of subjects (Fig. 6D). Moreover, N stage (HR: 1.78, 95%
CI: 1.01–3.15, P = 0.0486), margin status (HR: 1.73, 95%
CI: 1.06–2.83, P = 0.0281) and risk score (HR: 1.86, 95% CI:
1.37–2.53, P < 0.0001) were also independent prognostic
factors for PDAC (Fig. 6E).

Furthermore, we established an easy-to-use and clini-
cally adaptable prognostic nomogram. The subject with
higher total points was associated with worse 2-year and
3-year OSs (Fig. 6F). The calibration curve showed good
correlation between nomogram-predicted OS and actual
OS, indicating the accuracy of this nomogram (Fig. 6G).

The performance of prognostic model in different
age and N stage subgroups
To further evaluate the accuracy and reliability of prog-
nostic model in different ages and N stages, we classified
subjects in TCGA_PAAD into subgroups (age <= 65 and
age > 65; N0 and N1). For age subgroups, subjects with
high-risk score had significantly shorter OS compared
with those with low-risk score (age <= 65: P = 4.226e
− 06, 1-/1.5-/2-year AUC: 0.76/0.785/0.823; age > 65:
P = 1.869e − 03, 1-/1.5-/2-year AUC: 0.738/0.683/0.636)
(Supplementary Material, Fig. S2K–N). For N stage
subgroups, we got similar results (N0: P = 3.582e − 04,
1-/1.5-/2-year AUC: 0.729/0.806/0.87; N1: P = 2.56e − 03,
1-/1.5-/2-year AUC: 0.738/0.677/0.649) (Supplementary
Material, Fig. S2O–R).

Construction of diagnostic model based on GEO
database
In order to evaluate the diagnostic value of four
prognosis-related signatures in PDAC, we compared
the gene expressions of PDAC and normal pancreatic
tissue in GES62452. The primary PDAC had significantly
higher expression level of MET, KLK10, PSMB9 and ITGB6
than the normal pancreatic tissue (Fig. 7A). Univariate
analysis showed that the high expression of MET, KLK10,
PSMB9 and ITGB6 was significantly correlated with PDAC
(Fig. 7B). However, only PSMB9 (OR: 4.26, 95% CI: 1.56–
13.12, P-value = 7.03e − 03), ITGB6 (OR: 1.92, 95% CI:
1.37–2.81, P-value = 3.28e − 04) and KLK10 (OR: 7.99, 95%
CI: 2.24–33.33, P-value = 2.323e − 03) were independent
diagnostic factors for PDAC (Fig. 7C). The equation of
diagnostic model was logitP (Y = 1) = −24.05 + (PSMB9
∗1.4493 + ITGB6 ∗ 0.4263 + KLK10 ∗1.9274).

Similarly, we established diagnostic nomogram to
visualize the results of multivariate logistic regression.
The subjects with higher total points had higher
incidence of PDAC (Fig. 7D). The calibration curve
showed great agreement between nomogram-predicted
and actual PDAC probability, and C-index was 0.873
(Fig. 7E).

External validation of diagnostic model
We retrieved gene expression matrix from GSE71729,
GSE15471 and GSE16515 as an external validation
set for the diagnostic model. Consistent with the
previous result, primary PDAC had a significantly higher
expression of MET, KLK10, PSMB9 and ITGB6 compared
with the normal pancreatic tissue in GSE15471 and
GSE16515 (Supplementary Material, Fig. S3B and C). In
addition, both primary and metastatic PDAC had signif-
icantly higher expression of MET, KLK10 and ITGB6 in
GSE71729 (Supplementary Material, Fig. S3A). The diag-
nostic model performed well in external validation set
(GSE71729: C-index = 0.898; GSE15471: C-index = 0.948;
GSE16515: C-index = 0.938) (Supplementary Material, Fig.
S3D–F).

Model validation using patient cohort from our
department
To further validate the diagnostic and prognostic models,
we examined the expression levels of MET, KLK10, PSMB9
and ITGB6 in vitro. Compared with normal ductal cell
(HPNE), PDAC cells expressed higher levels of MET, KLK10,
PSMB9 and ITGB6, which further verified tumor cells
are abnormally enriched for genes mentioned before
(Fig. 8A–D). Subsequently, we retrieved PDAC specimens
from our department and found that PDAC had a sig-
nificantly higher expression of MET, KLK10, PSMB9 and
ITGB6 than matched adjacent normal pancreatic tissue
(Fig. 8E–H). Moreover, we found that the established diag-
nostic model could be validated with our data, and C-
index was 0.777 (Fig. 8I).

Next, we employed KM curve to evaluate the corre-
lation between OS and relapse-free survival (RFS) and
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Figure 1. Graphical scheme describing the study design. We first delineated cell atlas of PDAC and normal pancreas using scRNA-seq datasets, then
distinguished tumor cells from normal ductal cells by inferCNV analysis. The common DEGs of scRNA-seq and TCGA versus GTEx analyses were used
to construct prognostic and diagnostic models. We also conducted intern and external validations for them.

four prognosis-related signatures. Subjects with higher
expression of MET, KLK10 and ITGB6 had significantly
worse OS and RFS (P < 0.05). Subjects with higher expres-
sion of PSMB9 had shorter OS and RFS, but there was
no statistical significance (Supplementary Material, Fig.
S4A and B). In addition, we also compared the expression
of them in the protein level between PDAC and normal
pancreatic tissue by IHC using the Human Protein Atlas
(HPA) database. The results suggested that PDAC had sig-
nificantly enriched expression of MET, PSMB9 and ITGB6
(Supplementary Material, Fig. S4C).

Discussion
PDAC is characterized by intra-tumor and inter-patient
heterogeneities, which brings huge challenge for effec-
tive treatment of PDAC. Recently, a growing body of
researches based on scRNA-seq confirmed inter-patient
heterogeneity, indicating that tumor cells from different

patients had distinct gene expression profiles and malig-
nant behavior (16–18). Consistent with previous find-
ings, we identified multiple tumor cell subpopulations
(Tumors 1–5) belonging to different patients, respectively,
by scRNA-seq analysis, and these subpopulations had
different CNV profiles and EMT scores. Moreover, Tumor
2 had the highest M score and higher expression of
mesenchymal cell markers, suggesting EMT of tumor
cells. Tumor 2 subpopulation was derived from patient T9
(moderately poorly differentiated, 36 years old, CA19-9:
11.2, vascular invasion and perineural invasion). Previous
studies demonstrated EMT was significantly related to
tumorigenesis, chemoresistance and metastasis (19–21).
Thus, we speculated that the EMT might play a pivotal
role in tumorigenesis for patient T9 and cause highly
aggressive behavior.

Besides clinicopathological characteristics, risk score
based on gene expression pattern could be the prog-
nostic and diagnostic signatures for malignancies. With
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Figure 2. scRNA-seq delineates cell atlas of pancreas. (A, B) The t-SNE plot showing the original cluster (A) and named cell subpopulations (B). (C)
Violin plots showing the expression level of known cell-type-specific markers to demonstrate the identity of each cluster. (D) Bubble plot showing the
Top5 marker genes across all clusters. Size of dots represents the proportion of cells expressing a particular marker, and intensity of color indicates the
average expression level.

the development of sequencing technology, distinct
molecular subtypes related to diagnosis and progno-
sis of PDAC were reported (22–26). In this study, we
performed CNV analysis to identify tumor cells from
all ductal cells and compared the gene expression
profile between them. The composition of PDAC was
so complicated with 70% stromal constitutes that the

identification of many oncogenic drivers and prognosis-
related signatures were largely ignored owing to the
limitation of traditional bulk-seq. However, the scRNA-
seq approach could directly compare gene expres-
sion profile between tumor cells and normal cells
with single-cell resolution (6,27–29). Therefore, DEGs
from scRNA-seq are more reliable to further identify
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Figure 3. The different cellular constituents and cell-cycle status between PDAC and normal pancreatic specimens. (A–C) Proportion of various cell
subpopulations among normal pancreatic specimens (A), PDAC specimens (B) and PDAC versus normal pancreatic specimens (C). (D–F) Proportion of
G1/S/G2M phase among normal pancreatic specimens (D), PDAC specimens (E) and PDAC versus normal pancreatic specimens (F). (G, H) Subclustering
of the ductal cell subpopulations for original clusters (G) and named ductal cell subpopulations (H). (I) Violin plots showing the expression level of
selected ductal cell type markers among ductal cell subpopulations.

prognosis-related signatures when compared with bulk-
seq.

Reliable prognostic and diagnostic models must be val-
idated by various datasets. Multiple prognostic models
have been developed for PDAC based on TCGA or Inter-
national Cancer Genome Consortium (ICGC) database.

Nevertheless, some of them did not conduct the neces-
sary external validation of developed models, reducing
the reliability of models (9–11,30). Some of them incor-
porated all patients with different pathologic types of
pancreatic cancer, including PDAC, intraductal papillary
mucinous neoplasm (IPMN), neuroendocrine carcinoma
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Figure 4. The CNV profile analysis distinguishes tumor cells. (A) Heatmap showing large-scale CNV profile of each ducal cell and reference cell
subpopulation; the red and blue colors represent high and low CNV level, respectively. (B) Boxplot showing the CNV score of each subpopulation; white
boxes represent reference cells. (C, D) Boxplot showing the E score and M score of each ductal subpopulation. (E) Violin plot showing the expression level
of mesenchymal cell markers among ductal subpopulations.

or others (12,31,32). Patients with different pathologic
subtypes who had totally different prognosis should not
be mixed together. In our study, we only incorporated
patients with PDAC into model construction and vali-
dation. The whole TCGA_PAAD dataset was divided into
train set and validation set randomly to avoid potential

bias. We constructed prognostic model in train set, then
performed both internal validation and external valida-
tion. Furthermore, we developed an easy-to-use prognos-
tic nomogram combining clinicopathological character-
istics and risk score to predict 2-year and 3-year OSs.
In addition, we also constructed diagnostic model for
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1 year = 0.777

1.5 year = 0.74

2 year = 0.738

1 year = 0.673

1.5 year = 0.731

2 year = 0.806

Figure 5. Construction and validation of prognostic model in TCGA_PAAD dataset. (A) DEGs between tumor cell and normal ductal cell subpopulations
are shown in Upsetplot. (B) The overlapping area showing the common DEGs of scRNA-seq and GEPIA2 analyses in Vennplot. (C, D) Variable selection
using LASSO regression, the correlation between coefficients and the number of variable (C), and the first dashed line showing the cutoff value we
selected, indicating minimal deviance (D). (E–H) Construction of prognostic model in train set in TCGA_PAAD, KM curve showing different OSs between
high and low-risk group (E), ROC curve was used to evaluate the accuracy of prognostic model for 1-/1.5-/2-year OS (F), risk score distribution of subjects
in train set (G) and survival status scatter plot (H). (I–L) Internal validation of prognostic model in validation set in TCGA_PAAD.

prognosis-related genes by univariate and multivariate
logistic regression analysis, and conducted external vali-
dation using GSE71729, GSE15471 and GSE16515 datasets
and our data.

Overall, we developed the relatively reliable prognostic
and diagnostic models for PDAC. However, there are

several limitations in this study: (1) These models
were constructed based on bulk-seq datasets instead
of scRNA-seq dataset because of limited sample size,
although we utilized scRNA-seq analysis to identify
DEGs for model construction. With the popularity of
scRNA-seq technology and decrease of sequencing cost,
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Figure 6. Construction of nomogram for predicting OS in PDAC. (A–C) External validation of prognostic model in PACA_AU, GSE57495 and GSE71729. (D,
E) Unicox and Multicox analyses were performed to find the risk factors of OS in PDAC; red boxes represent P < 0.05 in the forestplot. (F) The prognosis-
nomogram was drawn to predict 2-year and 3-year OSs for PDAC. (G) Calibration curve showing the agreement between actual and nomogram-predicted
OS; the gray diagonal line is reference line.

large-scale scRNA for patients with PDAC are required
to identify novel tumor subtypes and construct precise
prognostic and diagnostic model. (2) Both bulk-seq and
scRNA-seq could be completed only when resection
specimens are retrieved after operation. These kinds
of prognostic models are eligible for improving the
strategies of adjunctive therapy; patients with high
risk might need to receive other targeted therapy or

immunotherapy other than regular chemotherapy. It
is better to conduct a prognostic model according
to signatures that could be tested before operation
indeed. Liquid biopsy, such as circulating tumor cells
(CTCs) and exosomal miRNAs could be the most
promising alternatives (33–35). (3) The functions of
prognosis-related genes in PDAC, including MET, KLK10,
PSMB9 and ITGB6, remain to be elucidated. (4) LASSO
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Figure 7. Construction of diagnostic model. (A) Boxplot showing the expression level of four prognosis-related genes among normal pancreas and PDAC
in GSE62452. (B, C) Univariate and multivariate logistic regression analyses were used to select risk factors of the occurrence of PDAC; red boxes represent
P < 0.05 in the forestplot. (D) The diagnosis-nomogram was drawn to predict the occurrence PDAC. (E) Calibration curve showing the agreement between
actual and nomogram-predicted PDAC; the gray diagonal line is reference line.

conducted after Unicox analysis will cause model
overfitting.

In conclusion, we constructed and validated the prog-
nostic and diagnostic models for PDAC based on scRNA-
seq and bulk-seq datasets. In addition, we established an
easy-to-use nomogram combining risk score, N stage and
margin status, which will help identify high-risk PDAC
patients.

Materials and Methods
Patient cohorts and study design
The raw gene-cell matrix for scRNA-seq analysis was
downloaded from GSA database (https://bigd.big.ac.

cn/gsa) (access number: CRA00116) (36). A total of
24 PDAC and 11 normal pancreatic specimens were
included in the scRNA-seq analysis. None of the patients
received radiotherapy or chemotherapy before operation
(clinicopathological characteristics are shown in Sup-
plementary Material, Table S1). RNA-seq and clinical
data of TCGA_PAAD and PACA_AU were downloaded
from TCGA and ICGC, respectively, updated to April
20, 2021. We only focused on subjects diagnosed with
PDAC and excluded subjects with neuroendocrine or
acinar cell carcinoma. The gene microarray data were
downloaded from GEO database under access numbers
GSE57495, GSE71729, GSE62452, GSE15471 and GSE16515
using GEOquery package (37–41). The clinicopathological

https://bigd.big.ac.cn/gsa
https://bigd.big.ac.cn/gsa
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab343#supplementary-data
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Figure 8. Validation of diagnostic model using our data. (A–D) RT-qPCR was performed to show the expression levels of MET, KLK10, PSMB9 and ITGB
among pancreatic cell lines. (E–H) The relative expression levels of MET, KLK10, PSMB9, and ITGB6 between tumor and tumor-adjacent tissues were
shown. (I) Calibration curve showing the performance of diagnostic model in our dataset.

characteristics of patients for prognostic and diagnostic
model development are shown in Table 1. A total of 37
postoperative PDAC and matched adjacent normal pan-
creatic specimens were retrieved from the Department
of General Surgery of Peking University First Hospital
for validation test. This study was approved by Ethics
Committee of Peking University First Hospital (Approval
No. 2019-147) and was conducted in accordance with
ethical guidelines (Declaration of Helsinki). Written
informed consent was obtained from all participants.

This study employed a three-phase design: in the
initial scRNA-seq analysis phase, we identified the cell
atlas for PDAC and normal pancreas and identified DEGs
between tumor cells and normal ductal cells. In the

second phase, we developed and validated a prognostic
and diagnostic model using TCGA_PAAD, PACA_AU and
gene microarray data from the GEO datasets. In the third
phase, we evaluated the reliability of the model by real-
time quantitative PCR (RT-qPCR) assays using our data
and IHC data from HPA. The flow chart of this study has
been depicted in Fig. 1.

Cell culture
Human ductal cell line (hTERT-HPNE) and pancreatic
cancer cell lines, MIA PaCa-2, AsPC-1, BxPC-3, PANC-1
and T3M4, were bought from ATCC. Pancreatic cancer
lines PaTu 8988 was provided from PharmLab (China). All
cell lines were authentic by short tandem repeats profile.
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The hTERT-HPNE, MIA PaCa-2 and PANC-1 (DMEM, Gibco,
USA) and AsPC-1, BxPC-3 and T3M4 (RPMI 1640, Gibco)
were cultured in cell culture dishes (NEST Biotechnology,
China) in humidified incubator at 37◦C with 5% CO2.

scRNA-seq analysis
All specimens were merged as an original seurat object
using Seurat (v3.2.3) R toolkit (42). This object was fil-
tered to remove unqualified cells (<200 genes/cell, >10%
mitochondrial genes, transcripts/cell <1000 or >20 000)
and genes (<10 cells/gene) and was normalized (LogNor-
malize). The percentage of mitochondria genes and total
counts were used to scale data. Next, 2000 highly variable
genes were selected for PCA. The ‘harmony’ method was
used to integrate the dataset from different specimens.
Significant principle components were identified by Jack-
Straw analysis. Cell atlas was visualized using t-SNE
analysis.

Cluster marker genes were found through one-vs-
rest binary classification metrics. The cell type of each
cluster was identified by aligning marker genes to
known signature genes reported in previous studies
and CellMarker database (http://biocc.hrbmu.edu.cn/
CellMarker/) (43). The known signature genes were AMBP,
CFTR, FXYD2, KRT18 and KRT8 (ductal cells); CD68 and
AIF1 (macrophages); MS4A1, CD79A, CD79B and VPREB3
(B cells); CDH5, RAMP2, PLVAP and VWF (endothelial
cells); RGS5, NDUFA4L2, ADIRF and TAGLN (stellate
cells); CD3D, CD3E and CD2 (T cells); LUM, COL1A1 and
DCN (fibroblast cells); PRSS1 and REG1A (acinar cells);
PCSK1N, INS, PPY and SST (endocrine cells).

Cellular components and cell-cycle analysis
We exported the meta.data from the seurat object and
counted the proportion of cell subpopulations in PDAC
and normal pancreatic specimens. The cell-cycle score
of each cell was calculated using CellCycleScoring algo-
rithm in the Seurat package, then each cell was classified
into three statuses, including G1, S and G2M. We counted
the proportion of cell-cycle statuses in PDAC and normal
pancreatic specimens and compared it between tumor
cells and normal ductal cells.

The identification and annotation of DEGs
FindMarker algorithm was utilized to identify DEGs
between groups in scRNA-seq analysis (logfc.threshold
= 0.5, q-value < 0.05). In addition, DEGs between PDAC
and normal pancreatic tissues were identified based on
TCGA and GTEx database using GEPIA2 online tools (44).
The common DEGs were shown by the Upset plot and
Venn plot. We performed DEGs’ annotation by GO, KEGG
(‘clusterProfiler’ R package, v3.18.0) and GSEA (GSEA tool,
v4.0.1) analyses by running default parameters.

CNV inferring
Somatic large-scale chromosomal CNV score was calcu-
lated using ‘inferCNV’ R package. A raw counts matrix
of scRNA-seq, annotation file and gene/chromosome

position file were prepared according to data require-
ments (https://github.com/broadinstitute/inferCNV). We
selected normal ductal cells, endothelial cells, stellate
cells and macrophages as reference normal cells. The
CNV score was calculated as quadratic sum of CNV
region.

Construction and validation of prognostic model
To construct the prognostic model, we imported TCGA
_PAAD datasets into R tool and classified it into train
set and validation set randomly in 2:1. The common
DEGs identified by both scRNA-seq and GEPIA2 analyses
were used for Unicox analysis for OS. Significant OS-
related genes were selected (P < 0.001) to further perform
variable selection using LASSO-penalized Cox regression
analysis. Then, LASSO-selected genes were subjected to
Multicox analysis using ‘survival’ R package (v3.2.7).
Risk score = h0∗ e∧∑

i = 0
nexp(). Patients were classified

into high-risk group and low-risk group based on the
median risk score. KM curve was used to compare
the OS between two groups. Time-dependent ROC was
used to evaluate the accuracy of prognostic model by
‘survivalROC’ R package (v1.0.3). Then, TCGA_PAAD
validation set and PACA_AU, GSE57495, GSE71729 were
employed for the internal and external validations of
the prognostic model. Finally, Unicox and Multicox
analyses were performed to test the correlation between
risk score, clinicopathological characteristics and OS. A
nomogram was developed using ‘rms’ R package (v6.2.0)
to predict 2-year and 3-year OSs in TCGA_PAAD, and the
calibration curve was used to evaluate the accuracy of
nomogram-predicted OS.

Construction and validation of diagnostic model
In order to test the diagnostic value of prognosis-related
genes, univariate and multivariate logistic regression
were performed to construct the diagnostic model
using GSE62452 dataset. Similarly, a nomogram was
developed to visualize the results of multivariate logistic
regression, and calibration curve was used to evaluate
the accuracy of nomogram-predicted PDAC. In addition,
GSE71729, GSE15471, GSE16515 and patient cohort from
our department were used to validate the reliability of
this diagnostic model. We drew box plot to compare the
gene expression difference between PDAC and normal
pancreatic tissue.

RNA extraction and RT-qPCR
Total RNA from human PDAC and adjacent normal
tissue were extracted by standard TRIzol/chloroform
extraction method (Invitrogen, USA). First-strand of
cDNAs were synthesized from the 2 μg total RNA with
ReverTra Ace qPCR RT kit (TOYOBO, Japan) according to
the manufacturer’s instructions. RT-qPCR was performed
by SYBR Green Realtime PCR Master Mix (TOYOBO)
using AB7500 machine. The following primers were
used: MET (forward primer: CCCGAAGTGTAAGCCCAACT,
reverse primer: AGGATACTGCACTTGTCGGC); PSMB9

http://biocc.hrbmu.edu.cn/CellMarker/
http://biocc.hrbmu.edu.cn/CellMarker/
https://github.com/broadinstitute/inferCNV
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(forward primer: CCATCGAGTCATCTTGGGCA, reverse
primer: ACCATACCAGGTTTTGGCCC); KLK10 (forward
primer: TCGAGTAGGGGATGACCACC, reverse primer:
ATGGACAACAGAGCGAGTGG); ITGB6 (forward primer:
TGCGTCTCTGAAGATGGAGTG, reverse primer: GGGT-
CACCACAGGTAGGACA).

Statistical analysis
All statistical analyses were performed in R tool (v.4.0.3).
RT-qPCR assays were performed in three replicates and
repeated three times independently. The KM method
and the corresponding log-rank test were performed to
identify the prognostic value of marker genes. Statisti-
cal significance was defined as ∗P < 0.05, ∗∗P < 0.01 and
∗∗∗

P < 0.001.

Supplementary Material
Supplementary material is available at HMG online.
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