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Abstract

Clinical studies have suggested that the renin-angiotensin system (RAS) may be a promising 

therapeutic target in treating diabetic retinopathy (DR). While AT1 receptor blockade decreased 

the incidence of DR in the DIRECT trial, it did not reduce the DR progression. Lack of 

understanding of the molecular mechanism of retinal microvascular damage induced by RAS 

is a critical barrier to the use of RAS blockade in preventing or treating DR. The purpose of 

this study is to investigate the interaction between soluble epoxide hydrolase (sEH) and the 

AT1 receptor in Angiotensin II (Ang II)- and diabetes-induced retinal microvascular damage. 

We demonstrate that Ang II increases retinal sEH levels, which is blunted by an AT1 blocker; 

administration of 11,12-epoxyeicosatrienoic acid (EET) exacerbates intravitreal Ang II-induced 

retinal albumin leakage; while sEH knockout (KO) and blockade reduce Ang II-induced retinal 

vascular remodeling, sEH KO causes retinal vascular leakage in Ang II-sEH KO mice; and sEH 

KO potentiates diabetes-induced retinal damage via promoting retinal vascular endothelial growth 

factor (VEGF) but reducing expression of tight junction proteins (ZO-1 and occludin). Our studies 
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hold the promise of providing a new strategy, the use of combined EETs blockade with AT1 

blocker, to prevent or reduce DR.
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1. Introduction

Diabetic retinopathy (DR) is a common complication of diabetes that affects 7.7 million 

working-age adults in the U.S. It is predicted that approximately one-third of the total 

adult population in the U.S. will have diabetes by the year 2050. Increasing numbers of 

diabetic patients can lead to a significant increase in the number of patients with DR 

because nearly all patients with type 1 diabetes and 60 % of those with type 2 diabetes 

develop DR [1]. Thus, DR is a serious neurovascular complication of diabetic patients and 

is the leading cause of blindness in people of working age. Because of the pronounced 

socioeconomic burden resulting from these patients’ lack of productivity, high treatment 

costs, and diminished quality of life, it underscores the urgent need for an effective new 

therapy for DR.

There are several treatment strategies for DR, including laser photocoagulation, anti-vascular 

endothelial growth factor (VEGF), and corticosteroid therapy. Laser photocoagulation is 

a procedure to use the heat generated from a laser to seal or terminate abnormal and 

leaking blood vessels in proliferative DR (PDR)[2]. There are two approaches of laser 

photocoagulation, including focal and scatter photocoagulation. The focal approach is a 

treatment to identify the leaky retinal blood vessels in PDR patients and use a limited 

number of laser burns to seal them off. A scatter approach is a treatment to use hundreds 

of laser burns on the retina of PDR patients to halt the growth of blood vessels. Although 

laser photocoagulation is an effective strategy to restrict proliferative retinopathy changes in 

PDR patients, it causes damage to the neural retina [3]. Anti-VEGF therapy is a treatment to 

inhibit the angiogenesis of PDR patients by blocking the action of VEGF. VEGF is a growth 

factor that initiates the growth of retinal blood vessels in PDR patients. Despite the fact that 

anti-VEGF therapy provides substantial visual improvement in PDR patients, this strategy 

comes with adverse side effects, such as endophthalmitis and intraocular inflammation 

[3]. Since corticosteroids remain the mainstay of treatment for inflammatory diseases after 

their first clinical use, intravitreal administration of corticosteroids is a good approach to 

prevent progression to proliferative DR in diabetic patients [4]. However, some patients are 

resistant to this therapy and have significant adverse effects, including cataract and elevated 

intraocular pressure [4]. Thus, currently available treatment options for DR, including laser 

photocoagulation, anti-VEGF, and corticosteroid therapy, have improved care, but owing to 

side effects, they are not sufficient in eliminating blindness [5], and there is a crucial need 

for a new therapy to treat DR.

A robust body of literature has well-established the role of the renin-angiotensin system 

(RAS) in DR [6–13]. In RAS, prorenin is activated to form renin [6–10], which converts 
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angiotensinogen to Ang I [6,7,14]. Ang I is then hydrolyzed by angiotensin-converting 

enzyme (ACE) to produce Ang II [6,7]. Ang II is a major component of RAS, and the AT1 

receptor is the primary receptor to mediate retinal Ang II signaling and function [6–13]. The 

retina contains major components of the RAS, including ACE, renin, and Ang II receptors, 

and Ang II is an angiogenic growth factor in experimental research [8]. Several clinical 

studies have focused on determining the effects of RAS blockade in the development of DR 

because activation of RAS contributes to retinal microvascular damage [6–10]. Accordingly, 

in the EUCLID trial (530 participants), after two years of treatment, Lisinopril, an ACE 

inhibitor, reduced the progression of DR by 50 % and progress to proliferative DR by 80 

% [15]. These positive results led to the implementation of the DIRECT trial, the largest 

clinical trial in retinopathy [6,16]. Participants were divided into two groups: the DIRECT

Prevent group (n > 1400), which tested whether the AT1 blockade can prevent the onset of 

DR and the DIRECT-Protect group (n > 1900), which examined whether AT1 blockade can 

reduce DR progression [16]. While treatment with candesartan, an AT1 blocker, decreased 

the incidence of DR, AT1 blockade did not reduce the progression of established DR [16]. 

This may explain why the FDA still does not approve the use of RAS blockade to treat DR 

[17].

Long-term efforts by several investigators have shed invaluable insight into the role of 

lipoxygenase-derived [18–21] and cyclooxygenase-derived eicosanoids [1,22,23] in DR. 

CYP enzymes constitute a major metabolic pathway for arachidonic acid (AA). In the 

presence of NADPH and oxygen, AA is epoxidated by the CYP enzyme system in four 

epoxyeicosatrienoic acids (EETs), 5, 6-EET, 8, 9-EET, 11, 12-EET, and 14, 15-EET. EETs, 

which are synthesized by CYP2C and CYP2J enzymes [24,25], are generated predominantly 

in the blood micro-vessels, and soluble epoxide hydrolase (sEH) converts EETs to inactive 

dihydroxyeicosatrienoic acids (DHETs) [25–30]. It is well known that sEH blockade or 

sEH KO increases EETs levels [30–36]. Studies have established that sEH blockade has 

protective effects in renal disorders and cardiovascular diseases [37,38], yet, the role of sEH 

in retinal damage and DR remains unclear. The present study was designed to determine 

the interaction between sEH and the AT1 receptor in Ang II-induced retinal microvascular 

damage because Ang II is the central effector molecule of RAS. We then assessed the impact 

of sEH KO on diabetes-induced retinal microvascular damage. This study provides valuable 

information regarding the interaction between sEH/EETs and RAS in Ang II-induced and 

diabetes-induced retinal microvascular damage.

2. Materials and methods

2.1. Animal preparation and experimental design

sEH KO (B6.129X-Ephx2tm1gonz/J) mice and male C57BL/6 J mice were 

obtained from Jackson Laboratory (Bar Harbor, ME) as described previously [39]. 

We obtained tail snips from litters at weaning (about three weeks of age). 

The DNA from tail snips was used to identify murine genotype by PCR. 

Routine genotyping of sEH (+/+), sEH (+/−), and sEH (−/−) mice was done 

using the following primers: F1, 5′-CTTGGCAGGGTTTCTAGTCCTTAG-3′; R1, 5′
CACGCTGGCATTTTAACACCAG-3′; F2, 5′-CGCTTCCTCGTGCTTTACGGTATC-3′; 
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and R2, GTCAAGGTCGAACGCGGCTACAC-3′. Primer F1/R1 predicts a 510-base pair 

amplicon for the sEH (+/+) allele. For the sEH (−/−) allele, primer F2/R2 predicts a 160

base pair product of a neomycin-resistance sequence as described previously [39]. These 

primers were designed by Lasergene 7 software (DNAstar, Madison, WI). The genotypic 

analysis was examined using 3% Nusieve GTG agarose gel (Lonza, Rockland, ME). All 

mice were maintained on a 12:12-h light-dark cycle and were housed five mice to a cage. 

All animal protocols were approved by the Augusta University Institutional Animal Care 

and Use Committee. Also, these protocols were in accord with the requirements stated 

in the National Institute of Health Guide for the Care and Use of Laboratory Animals 

(NIH Publications No. 8023, revised 1978) and following ARVO Statement for the Use of 

Animals in Ophthalmic and Vision Research.

To determine the role of sEH blockade in Ang II-induced retinal microvascular damage, 

we treated 8-week-old male C57BL/6 J mice with Ang II (3 mg/kg/day, s.c.; Alzet) + 

trans-4-[4-(3-adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid (t-AUCB; Cayman) (40 

mg/L in drinking water), Ang II, or vehicle (a hydroxypropyl-β-cyclodextran solution) as 

described previously [40] for 4 weeks. We administered t-AUCB after mice recovered 

from Ang II surgery. For the Ang II infusion procedure, mice were anesthetized with 

2% isoflurane, and an ALZET osmotic pump (Durect Corp., Cupertino, CA, USA) was 

subcutaneously implanted into each mouse. t-AUCB is a highly selective sEH inhibitor 

[39,41], and the Ang II infusion is a well-established model for hypertension [42,43]. To 

determine the role of sEH KO in Ang II-induced retinal microvascular damage, we divided 

8-week-old male sEH (−/−) and sEH (+/+) mice into: sEH (−/−) + Ang II (3 mg/kg/day, 

s.c.; Alzet), sEH (+/+) + Ang II, and sEH (+/+) + vehicle for four weeks. At four weeks 

post-Ang II, systolic arterial pressure was measured by a tail-cuff method using CODA® 

non-invasive blood pressure system (Kent Scientific). To determine the role of the AT1 

receptor on retinal, heart, and renal sEH expression in Ang II-infusion model, we treated 

8-week-old male C57BL/6 J mice with Ang II (3 mg/kg/day, s.c.; Alzet) + telmisartan (2.5 

mg/kg/day; Cayman), Ang II, or vehicle for four weeks. We treated mice with 11, 12-EET 

(15 μg/kg/day, s.c.; Alzet; Cayman), 1415-EET (15 μg/kg/day, s.c.; Alzet; Cayman), or 

vehicle. We used this protocol as described previously [31,35]. We used 11,12-EET and 

14,15-EET because they are the major products of CYP epoxygenases [31,44–46]. On day 

3 after treatment, we intravitreally injected these mice with Ang II (5 μg/1 μL). Intravitreal 

injection was performed as previously described [47]. Briefly, Ang II (Sigma-Aldrich, Louis, 

MO) was dissolved in water, and a working solution of 10x was prepared to achieve 1x 

vitreal concentration by administrating 1 μL of this working solution into the mouse eye, 

assuming the volume of the mouse vitreous is ~10 μL [48].

To determine the role of sEH KO in diabetes-induced retinal microvascular damage, diabetes 

was induced in male sEH (+/+) and sEH (−/−) mice by injection of streptozotocin (STZ) 

as previously described [49]. Weekly blood glucose levels of mice were determined after 

overnight fasting. The blood glucose levels were determined by a One Touch blood glucose 

monitoring system, and blood glucose exceeded 300 mg/dL was used as an index of 

diabetes. We will use males only because females have been shown to have little or no 

response to STZ-induced diabetes [50–52] and females may have reduced reproducibility 

in becoming diabetes with STZ induction [50]. After different treatments, we perfused the 
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mice with phosphate-buffered saline (PBS) and collected retinas to measure albumin leakage 

(permeability) by Western blot [19]. We also determined VEGF levels in the serum and 

retinal samples isolated from sEH (+/+), sEH (+/+) + STZ, and sEH (−/−) + STZ mice by 

ELISA (Mouse VEGF ELISA, R & D Systems, SMMV00).

2.2. Measurement of fluorescein angiography

The anesthetized mice were placed on the imaging platform of the Phoenix Micron III 

retinal imaging microscope, and Genteal gel was applied liberally to keep the eye moist 

during imaging. Mice were administered 10–20 μL 10 % fluorescein sodium and rapid 

acquisition of fluorescent images was ensued for 5 min, as previously described [20].

2.3. Western blot analysis

Retinal lysates were subjected to Western blot analysis. Identical amounts of protein samples 

were separated by NuPAGE 4 %–12 % Bis-Tris gel (Invitrogen, Carlsbad, CA) at 125 V 

for three h. We have previously described the detailed procedures for transfer, blocking, 

and washing the samples [39]. The membranes were incubated with antibody against 

Albumin (Abcam, ab106582), CYP2C (Detroit R & D, P2C23DR), (CYP2J (Santa Cruz, 

sc-67,275), GADPH (Abcam, ab8245), Occludin (Thermo Fisher, 711,500), sEH (Santa 

Cruz, Sc-166,961), or ZO-1 (Abcam, ab96587). The membranes were incubated with 

secondary antibody for Albumin, GADPH, Occludin, sEH, or ZO-1. We developed the 

immunoblots using an ECL detection kit (GE Healthcare, Little Chalfont, Buckinghamshire, 

UK).

2.4. Immunofluorescence

We isolated retinal samples from mice given different treatments. We precooled a specimen 

cup containing 2-methyl butane for 45 min in a styrofoam cooler containing dry ice and 

ethanol. After embedding retinal samples in a specimen mold containing OCT compound 

(Miles Scientific, Naperville), we placed the specimen mold in the specimen cup for 2 min. 

We then kept the samples frozen at −80°C until cutting. The samples were cut on a cryostat 

at a thickness of 10 μm and thawed onto glass slides. Sections were treated with proteinase 

K for 10 min and washed twice in PBS followed by blocking with 10 % normal goat serum 

and then incubated with CYP2C or sEH antibody overnight in a humidified container at 4 

°C. The next day the sections were incubated in Texas Red labeled anti-mouse antibody. 

Sections were also incubated with Isolectin-IB4-Alexa Fluro 488 (a marker of the retinal 

blood vessels), and images were obtained with confocal microscopy (LSM 510; Carl Zeiss).

2.5. Statistical analysis

All values are expressed as means ± SE. All data were analyzed by GraphPad Instat 

Software (LaJolla, CA). Differences among three or more groups were analyzed using a one

way ANOVA, followed by Tukey’s post-test. Student’s t-test was used for the comparisons 

of two groups. For all comparisons, P < 0.05 was considered statistically significant.
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3. Results

3.1. Expression of CYP2C and sEH in mouse retinas

Previous studies have established that EETs are CYP2C- and CYP2J-derived eicosanoids 

[25,26]. However, what major CYP enzymes are responsible for their synthesis in retinas 

is unclear. We isolated retinal samples from wild type mouse eyes and then determined 

the expression of CYP2C, CYP2J, and sEH by Western blot analysis in comparison with 

renal tissues as a positive control. Intriguingly, while Fig. 1A showed the absence of CYP2J 

expression, it showed the presence of CYP2C enzymes as the major epoxygenases in the 

retina. Fig. 1A also showed that sEH is expressed in the retina as well. Likewise, using 

Isolectin-IB4 as a marker of the retinal blood vessels, we found that both CYP2C and sEH 

are expressed in the retinal blood vessels (Fig. 1B–C).

3.2. Effects of sEH blocker and AT1 blocker on retinal sEH expression in the Ang II 
infusion model

We investigated whether sEH blockade affects Ang II-induced retinal microvascular damage. 

To achieve this, we treated male mice with Ang II + t-AUCB, Ang II, or vehicle for four 

weeks. We used t-AUCB because t-AUCB is a highly selective sEH inhibitor (Ki = 8 nM 

to mouse sEH [53]) with excellent bioavailability, and we have used it successfully in our 

previous studies [39,41].

As shown in Fig. 2A, at 4 weeks post-Ang II, Ang II raised systolic blood pressure (BP), 

which was attenuated by t-AUCB, suggesting that sEH blockade has an antihypertensive 

effect. Notably, sEH blockade enhanced Ang II-induced retinal albumin leakage (an index 

of blood-retinal barrier (BRB) injury) (Fig. 2C). Remarkably, Ang II augmented retinal sEH 

levels by twofold as compared with control, whereas t-AUCB treatment had no significant 

effect on retinal sEH expression (Fig. 2B). We next determined whether Ang II induces 

retinal sEH levels through the AT1 receptor because it is the primary receptor to mediate 

retinal Ang II signaling and function [46–49]. Strikingly, at 4 weeks post-Ang II, Ang II 

augmented retinal sEH expression, which was reversed by the AT1 blockade (Fig. 3A). 

Likewise, telmisartan attenuated Ang II-induced sEH expression in the kidney and heart 

(Fig. 3A and B). Collectively, these data demonstrate that Ang II augments retinal sEH 

levels through the AT1 receptor.

3.3. Effects of sEH KO in Ang II-induced retinal microvascular damage

Given that sEH blockade potentiates Ang II-induced retinal damage, we asked whether 

sEH KO affects Ang II-induced retinal permeability. We used global sEH KO mice, which 

accumulate EETs [31,35], to evaluate the consequence of elevated EETs on the retinal 

damage. First, we confirmed the absence of sEH protein in retinas of sEH KO mice (Fig. 

4A). Second, we divided sEH (−/−) and sEH (+/+) mice into: sEH (−/−) + Ang II, sEH (+/+) 

+ Ang II, and sEH (+/+) + vehicle. Similar to sEH blockade, at 4 weeks post-Ang II, sEH 

KO reduced BP of Ang II-treated mice (Fig. 4B). Strikingly, sEH KO resulted in a three-fold 

increase in retinal albumin content as compared with control mice at 4 weeks post-Ang II 

(Fig. 4C), suggesting that sEH KO leads to retinal hyperpermeability in Ang II-treated mice.
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We tested the hypothesis that sEH blockade and KO attenuate Ang II-induced retinal 

vascular remodeling. The rationale for this hypothesis is that it is well established that rising 

EETs levels by sEH blockade stimulates vasodilation [54,55], decreases blood pressure 

[56,57], and reduces vascular remodeling [58]. The signs of retinal vascular remodeling, 

including right-angle crossing and increased vascular tortuosity, were found in the Ang II 

group at 4 weeks post-Ang II. The tortuosity and right-angle crossing were much less in 

the Ang II-t-AUCB group or Ang II-sEH-KO group. Remarkably, there was an increase in 

retinal hyperfluorescence in the Ang II-sEH-KO group at 4 weeks post-Ang II, suggesting 

retinal vascular leakage (Fig. 5D). These results (Fig. 5A–D) indicate that while both sEH 

blockade and KO attenuate Ang II-induced vascular remodeling, sEH KO causes retinal 

vascular leakage in the Ang II-sEH-KO group.

3.4. Effects of EETs in ang II-induced retinal microvascular damage

We reasoned that exogenous EETs might affect Ang II-induced retinal damage because 

sEH blockade or sEH KO increases endogenous EETs [31–36]. We observed significant 

retinal albumin leakage after intravitreal injection with Ang II (5 μg/1 μL). Next, we 

treated mice with 11, 12-EET (15 μg/kg/day, s.c.; Alzet; Cayman) + intravitreal Ang II, 

1415-EET (15 μg/kg/day, s.c.; Alzet; Cayman) + intravitreal Ang II, or vehicle + intravitreal 

Ang II. We used this protocol as previously described [31,35]. We used 11,12-EET and 

14,15-EET because they are the predominant isomers in the vasculature [31,44–46,59]. 

Indeed, both 11,12-EET and 14,15-EET promoted Ang II-induced retinal albumin leakage, 

only 11,12-EET reached significance (Fig. 6). These results establish that 11, 12-EET is 

more potent than 14,15-EET in potentiating Ang II-induced retinal microvascular damage. 

In complementary experiments, we determined whether 11,12-EET and 14,15-EET affect 

retinal albumin leakage in mice without Ang II treatment. We found that neither 11,12-EET 

nor 14,15-EET affected retinal albumin leakage in mice without Ang II treatment (Fig. 6C).

3.5. Effects of sEH KO in diabetes-induced retinal microvascular damage

We tested the hypothesis that sEH KO potentiates diabetes-retinal microvascular damage. 

The rationale for this hypothesis is that sEH KO increases Ang II-induced retinal albumin 

leakage (Fig. 5). Diabetes was induced in sEH (+/+) and sEH (−/−) mice by injection of 

STZ as previously described [49]. Weekly blood glucose levels were measured in mice 

given different treatments. After administration of STZ, sEH (+/+) mice showed significant 

hyperglycemia during week 1 to week 6, and sEH KO did not affect hyperglycemia in STZ 

mice (Fig. 7A). At 11 weeks post-STZ, we isolated retinal samples from sEH (+/+) and 

diabetic sEH (+/+). We found that diabetes caused elevated expression of angiotensinogen 

and AT1 receptor, which supports the notion [60,61] that RAS is activated in the diabetic 

retinas. Strikingly, RAS activation is associated with a significant increase of retinal sEH 

levels (Fig. 7B). Moreover, sEH KO caused a detrimental effect on retinal albumin in 

diabetic mice (Fig. 8A), which correlated with a reduction of retinal occludin and ZO-1 

expression (Fig. 8B). Furthermore, sEH KO augmented retinal and serum VEGF levels 

(Fig. 8C), which is consistent with previous studies [31,35,44,62] along with caused retinal 

vascular leakage in diabetic mice (Fig. 9C). Notably, we did not find that significant retinal 

vascular remodeling in either sEH-KO-STZ or sEH (+/+)-STZ group at 11 weeks post-STZ 

(Fig. 9C). Taken together, these findings suggest a molecular mechanism that sEH KO 
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potentiates diabetes-induced retinal damage via promoting VEGF but reducing occludin and 

ZO-1 expression.

4. Discussion

DR is a serious neurovascular complication of both type 1 and type 2 diabetic patients, 

and this disease is the leading cause of blindness in people of working age [63]. It is well 

established that RAS plays a central role in the pathophysiology of DR [6–13]. Ang II 

is the central effector molecule of RAS, and the AT1 receptor is the primary receptor to 

mediate the major pathogenic signaling of Ang II [64–67]. While AT1 receptor blockade 

(candesartan) decreased the incidence of DR in the DIRECT trial, the largest clinical trial 

in retinopathy, it did not reduce the progression of DR [16]. Because of these disappointing 

results [16], the FDA still does not approve the use of RAS blockade to treat DR [17]. 

Thus, a critical barrier to treat DR or reduce its progression by RAS blockade is the lack 

of knowledge regarding the molecular mechanism of RAS-induced retinal microvascular 

damage. In the present study, we focused on the interaction between the AT1 receptor and 

sEH in Ang II- and diabetes-induced retinal microvascular damage.

EETs biosynthesis can be carried out by several isoforms, including the CYP1A, CYP2B, 

CYP2C, and CYP2J families [27]. Although many CYP enzymes can epoxidize AA, it 

is well established that CYP2C and CYP2J are the primary enzymes responsible for EET 

synthesis [27,41,68]. Mouse CYP2C and CYP2J isoforms are highly expressed in different 

tissues, including the liver, kidneys, and brain [41]. However, the expression pattern of 

these CYP epoxygenases in mouse retinas is still not clear. In this study, we used CYP2C 

and CYP2J antibodies to determine the expression levels of these enzymes in kidneys and 

retinas. We found that the expression of CYP2J is absent in the retina, and CYP2C proteins 

are the major epoxygenases in the retina (Fig. 1). Since mouse CYP2C isoforms are highly 

active epoxygenases [41], these results suggest that mouse CYP2C enzymes, rather than 

CYP2J enzymes, are responsible for EET synthesis in retina. We also found that CYP2C 

and sEH are expressed in the retinal blood vessels (Fig. 1), suggesting that CYP2C/sEH are 

responsible for EETs production/degradation in the retinal blood vessels. These results are 

consistent with previous findings that a significant amount of EETs/DHETs are generated in 

the retinas [69,70] and retinal endothelial cells [45]. However, future investigation is needed 

to establish which mRNA expression of the CYP2C family is the major epoxygenase in the 

mouse retina.

We first determined the effects of sEH blockade on retinal sEH expression in the Ang 

II-infusion model because Ang II is the central effector molecule of RAS and Ang II is a 

well-established mouse model to cause retinal microvascular damage [71,72]. Importantly, 

we found that chronic Ang II infusion induces retinal sEH levels by twofold, whereas sEH 

blockade does not affect retinal sEH expression (Fig. 2B). These results are in agreement 

with the results by Imig et al. [73] that Ang II infusion causes increased expression of sEH 

in the kidneys. In this previous study [73], the authors hypothesized that increased renal 

sEH leads to increased renal EET degradation in Ang II hypertension. They also suggested 

that blockade of sEH could be a target for therapeutic intervention of hypertension because 

EETs have antihypertensive properties and play an essential role in the maintenance of renal 
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microvascular function. Next, we tested the hypothesis that the up-regulation of retinal sEH 

by Ang II is mediated by the AT1 receptor because AT1 is the primary receptor to mediate 

retinal Ang II signaling and function [64–67]. Consistent with the results that Ang II induces 

heart sEH levels via the AT1 receptor [35], we found that Ang II augments retinal sEH 

expression, which is reversed by AT1 blockade (Fig. 3). These results provide intriguing 

evidence that Ang II induces retinal sEH via the AT1 receptor. However, the molecular 

mechanisms on how Ang II induces retinal sEH levels are still not clear. It could be due to 

the induction of mRNA levels of sEH in the retina because it has been shown that Ang II 

promotes sEH levels by the binding of c-Jun to SP-1 sites of the sEH promoter region [34], 

and this requires further investigation.

We next determined the impact of sEH inhibition and sEH KO on Ang II-induced 

hypertension and retinal microvascular damage. We found that both sEH blockade (Fig. 2A) 

and sEH KO (Fig. 4B) attenuated Ang II-induced hypertension in male mice. Importantly, it 

should be noted that an interesting study [74] has demonstrated that there are sex differences 

in the control of blood pressure of sEH KO mice, whereby female mice (female-WT 

and female-sEHKO) had significantly lower blood pressure than their male (male-WT and 

male-sEHKO) counterparts. Surprisingly, despite the fact that sEH blockade reduces Ang 

II-induced hypertension (Fig. 2A) and attenuates Ang II-induced retinal vascular remodeling 

(Fig. 5), we found that its blockade (t-AUCB) enhances Ang II-induced retinal albumin 

leakage, but its blockade does not cause retinal hyperpermeability in Ang II-treated mice 

(Fig. 5C). Moreover, similar to the effects of sEH blockade on blood pressure and retinal 

vascular remodeling, we showed that sEH KO not only promotes Ang II-induced retinal 

albumin leakage but also leads to retinal hyperpermeability in Ang II-treated mice (Fig. 

5D). The reasons that sEH KO rather than t-AUCB causes detrimental effects in retinal 

microvessels (Fig. 5) are still not clear. It could be due to that while sEH KO deletes 
the functions of both epoxide hydrolase (the C-terminal domain) and phosphatase (the N
terminal domain) activity, t-AUCB only affects epoxide hydrolase activity [75]. It would be 

interested to determine the effects of sEH phosphatase blocker [76] on retinal damage in the 

Ang II model in the future studies. These results suggest the notion that EETs, the upstream 

product of sEH, have detrimental effects in the retina. Indeed, we showed that exogenous 

11, 12-EET potentiates Ang II-induced retinal damage (Fig. 6), and these results support 

this notion. Thus, our results support the hypothesis that AT1 blockade inhibits retinal sEH 

leading to the accumulation of EETs, which have detrimental effects in the retina, and 

rising EETs might attenuate the protective effects of AT1 blockers on retinal microvascular 

damage. Our hypothesis is based on previous studies [25–30] that sEH converts EETs to 

DHETs, which is biologically inactive metabolites. Nevertheless, we cannot rule out the 

possibility that DHETs might affect retinal microvascular function, which requires further 

investigation in the future studies.

To determine the interaction between RAS and EETs/sEH in diabetes-induced retinal 

microvascular damage, we addressed the following questions. Does RAS activation increase 

retinal sEH levels? If yes, what is the impact of sEH KO in diabetes-induced retinal 

microvascular damage? In addressing these questions, we found a significant elevation of the 

expression of angiotensinogen and AT1 receptor in diabetic retinas, which is in agreement 

with the concept that RAS is activated in the diabetic retinas [55,56]. Importantly, activation 
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of RAS is associated with increased expression of retinal sEH levels without affecting retinal 

CYP2C expression levels (Fig. 7B), which is consistent with a previous report [69] that a 

time-dependent increased expression of retinal sEH levels in Akita mice, a mouse model of 

DR. Moreover, in our earlier study [19], we determined the lipidomic profiles (LC/MS/MS) 

of various polyunsaturated fatty acids (linoleic acid (LA), AA, eicosapentaenoic acid, and 

docosahexaenoic acid) by 12/15-LO, COX, CYP, and sEH in STZ-induced diabetic and 

nondiabetic mice. At six months post-STZ, a clustered heat map of circulating bioactive 

lipid metabolites of these mice was generated. Intriguingly, of the 107 bioactive lipids 

screened, only a few lipids were significantly increased in diabetic mice. Notably, we 

found that the levels of 5,6-DHET, 11,12-DHET, and,14,15-DHET are significantly elevated 

in diabetic mice [19], which supports our results that retinal sEH levels (Fig. 7B) are 

elevated in STZ-induced diabetic mice. We then determined the impact of sEH KO on 

diabetes-induced retinal microvascular damage, and we found that sEH KO causes not 

only a detrimental effect on retinal albumin leakage but also retinal vascular leakage in 

diabetic mice (Fig. 9) at 11 weeks post-STZ. These results demonstrated that RAS activation 

induces sEH levels in diabetic retinas, and sEH KO potentiates diabetes-induced retinal 

microvascular damage.

Although the present study provided new information that sEH KO exacerbates retinal 

microvascular damage, the exact mechanisms whereby it causes diabetes-induced retinal 

damage are still not clear. One possibility could be due to the effects of EETs on 

VEGF levels. Accumulating evidence has demonstrated that EETs promote VEGF levels 

in vascular endothelial cells. For example, Suzuki et al. [77] showed that the addition 

of 11,12-EET increases VEGF expression in human umbilical artery endothelial cells 

(HUAECs) under hypoxia and its effects on VEGF expression in HUAECs are blocked 

by sulfaphenazole (an inhibitor of CYP2C). Similarly, Cheranov et al. [78] reported 

that 14,15-EET induces VEGF levels in human dermal microvascular endothelial cells 

(HDMVECs), and the effects of 14,15-EET on VEGF expression in HDMVECs have been 

attributed to STAT-3 [78]. Interestingly, we found that sEH KO induces serum and retinal 

VEGF levels (Fig. 8C), which can contribute to the detrimental effects of diabetes-induced 

retinal damage. It is well established that VEGF increased retinal vascular permeability 

via reduction of expression of tight junction proteins, ZO-1 and occludin, and with their 

redistribution within the retinal vascular endothelium [79,80]. We found that sEH KO 

causes reduced expression of retinal occludin and ZO-1 in diabetic retinas (Fig. 8B), which 

supports the notion that sEH KO exacerbates diabetes-induced retinal microvascular damage 

via promoting VEGF but reducing expression of tight junction proteins.

To the best of our knowledge, the present study is the first to show that Ang II increases 

retinal sEH through the AT1, and sEH KO exacerbates Ang II- and diabetes-induced retinal 

damage. This is significant because it has been demonstrated that EETs, lipid mediators 

produced by the retinal microvasculature, have detrimental effects in the retina. For example, 

Michaelis et al. [45] showed that retinal endothelial cells express CYP2C protein in 

culture and generate significant levels of EETs. Also, this previous study [45] showed 

that CYP2C-derived EETs produced in retinal endothelial cells promote angiogenesis, 

especially under hypoxic conditions. Similarly, Capozzi et al. [44] showed that CYP-derived 

11,12-EET exhibits a proangiogenic biological function in the retina following stimulation 

Wang et al. Page 10

Prostaglandins Other Lipid Mediat. Author manuscript; available in PMC 2020 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by hypoxia, and they [44] suggested that EETs blockade may provide a rational therapy 

against retinal neovascularization. Studies have also shown [81] that EETs promote retinal 

neovascularization in oxygen-induced retinopathy (OIR), and CYP2C blockade provides the 

protective effects on pathological retinal neovascularization in OIR [82]. Thus, the results 

of the present study support the hypothesis that during diabetes, RAS activation augments 

retinal levels of sEH, via AT1, which degrades EETs (pro-permeability and pro-angiogenic 

factors) to compensate for RAS-induced retinal microvascular damage. Although this 

hypothesis is attractive, further investigation is needed to determine whether this hypothesis 

can be applied to experimental and clinical studies.

5. Conclusions

We have made the novel findings that Ang II induced retinal sEH levels via the AT1 

receptor. To determine the effects of the up-regulation of retinal sEH by Ang II, we 

investigated whether sEH blockade and sEH KO affect Ang II-induced retinal damage. We 

found both sEH blockade and sEH KO promote Ang II-induced retinal albumin leakage. 

Likewise, sEH KO exacerbates diabetes-induced retinal microvascular damage, which 

supports the notion that EETs, lipid mediators produced by the retinal microvasculature 

[83], have detrimental effects in the retina. While we propose that EETs, the substrates of 

sEH, have detrimental effects in the retina, an interesting study by Fleming and colleagues 

[69] has demonstrated that the accumulation of 19,20-dihydroxydocosapentaenoic acid (19, 

20-DHDP) and overexpression of sEH in the retinal Müller glial cells causes retinopathy. 

While these findings support the importance of sEH and 19, 20-DHDP in the Müller 

glial cells, Fleming and colleagues [45,84] have also demonstrated that rising EETs in the 

retinal endothelial cells causes retinopathy; and these previous studies [45,84] support the 

hypothesis of our current research. Therefore, this study provides a novel strategy that EETs 

blockade combined with AT1 blocker is an appropriate approach to prevent or reduce the 

progression of DR.
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Fig. 1. 
(A) The major CYP epoxygenases in the mouse retina are CYP2C rather than CYP2J 

isoforms. (B) CYP2C (red; red arrow) and Isolectin B4 (IB4, green; a marker of the 

retinal blood vessel) expression in the retina of sEH (+/+) mice. (C) sEH (red) and IB4 

(green) in the retina of sEH (+/+) mice. Retinal samples from sEH (−/−) mice were used to 

demonstrate the specificity of the sEH antibody.
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Fig. 2. 
(A) Systolic blood pressure of mice treated with Ang II + t-AUCB, Ang II, and vehicle. We 

treated these mice given different treatments for four weeks. (B) Ang II up-regulated retinal 

sEH levels. (C) sEH blockade significantly increased retinal albumin leakage in the Ang II + 

t-AUCB group. n = 8. *P < 0.05 vs. vehicle. C = vehicle and Ang = Ang II.

Wang et al. Page 18

Prostaglandins Other Lipid Mediat. Author manuscript; available in PMC 2020 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Representative Western blot of sEH in the retina, kidney, and heart of mice treated with Ang 

II + telmisartan (an AT1 blocker, 2.5 mg/kg/day), Ang II, or a vehicle. We treated mice given 

different treatments for four weeks (A). AT1 blocker attenuated the up-regulation of sEH 

expression by Ang II in the retina, kidney, and heart (B). n = 6. *P < 0.05 vs. vehicle; #P < 

0.05 vs. Ang. C = vehicle and Ang = Ang II.

Wang et al. Page 19

Prostaglandins Other Lipid Mediat. Author manuscript; available in PMC 2020 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
(A) There is an absence of sEH expression in the kidney and retina of sEH (−/−) mice. 

(B) Systolic blood pressure of sEH (−/−) + Ang II, sEH (+/+) + Ang II, and sEH (+/+) + 

vehicle mice. We treated these mice given different treatments for four weeks. (C) sEH KO 

increased retinal albumin leakage in the resulted in sEH (−/−) + Ang II group. n = 8. *P < 

0.05 vs. vehicle. #P < 0.05 vs. Ang II. Ang = Ang II.
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Fig. 5. 
Fluorescein angiograms (FA) of the retina in (A) sEH (+/+) + vehicle, (B) sEH (+/+) + 

Ang II, (C) sEH (+/+) + Ang II + t-AUCB, and (D) sEH (−/−) + Ang II mice. We treated 

mice given different treatments for four weeks. There were some signs of hypertensive 

retinal vascular remodeling, such as right-angle crossing (blue arrow) and increased vascular 

tortuosity (yellow arrow) in the Ang II group. There was marked hyperfluorescence (red 

arrow) in the sEH (−/−) + Ang II group, suggesting retinal vascular leakage (D).
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Fig. 6. 
(A) Injection with 5 μg of Ang II caused significant retinal damage. (B) 1112-EET 

significantly promoted intravitreal Ang II-induced retinal albumin leakage. n = 6. (C) 
Neither 11,12-EET nor 14,15-EET affected retinal albumin leakage in mice without Ang 
II treatment. n = 4. * P < 0.05 vs. Ang II. V = vehicle.
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Fig. 7. 
(A) Fasting blood glucose levels were determined at weekly intervals. (B) Up-regulation of 

angiotensinogen and AT1 (RAS activation) by diabetes at 11 weeks post-STZ is associated 

with increased retinal sEH expression, whereas diabetes did not affect retinal CYP2C 

expression. n = 6. *P < 0.05 vs. control.
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Fig. 8. 
(A) sEH KO resulted in a significant increase of albumin leakage in STZ mice. (B) sEH 

KO caused reduced expression of occludin and ZO-1 in diabetic mice. (C) sEH KO resulted 

in a significant increase of retinal and serum VEGF levels in STZ mice. An ELISA kit 

determined VEGF levels (R& D systems). All experiments were done in diabetic mice at 11 

weeks post-STZ. n = 8. *P < 0.05 vs. control; #P < 0.05 vs. sEH (+/+) + STZ.
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Fig. 9. 
Fluorescein angiograms (FA) of the retina in control, sEH (+/+) + STZ, and sEH (−/−) + 

STZ mice at 4 weeks post-STZ (A), 7 weeks post-STZ (B), and 11 weeks post-STZ (C). 

There was marked hyperfluorescence (red arrow) in sEH (−/−) + STZ mice at 11 weeks 

post-STZ, suggesting retinal vascular leakage.
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