
RESEARCH ARTICLE

Overcoming the pitfalls of automatic

interpretation of whole genome sequencing

data by online tools for the prediction of

pyrazinamide resistance in Mycobacterium

tuberculosis

Tomotada IwamotoID
1☯*, Yoshiro Murase2☯, Shiomi YoshidaID

3, Akio Aono2,

Makoto Kuroda4, Tsuyoshi Sekizuka4, Akifumi Yamashita4, Kengo Kato4,

Takemasa Takii5, Kentaro Arikawa1, Seiya Kato6, Satoshi Mitarai2,7*

1 Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan, 2 Bacteriology Division,

Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-

Tuberculosis Association, Kiyose City, Tokyo, Japan, 3 Clinical Research Center, National Hospital

Organization Kinki-chuo Chest Medical Center, Sakai City, Osaka, Japan, 4 Pathogen Genomics Center,

National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan, 5 Molecular Epidemiology Division,

Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, Japan,

6 Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, Japan,

7 Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City,

Nagasaki, Japan

☯ These authors contributed equally to this work.

* tomotada_iwamoto@office.city.kobe.lg.jp (TI); mitarai@jata.or.jp (SM)

Abstract

Objectives

Automated online software tools that analyse whole genome sequencing (WGS) data with-

out the need for bioinformatics expertise can motivate the implementation of WGS-based

molecular drug susceptibility testing (DST) in routine diagnostic settings for tuberculosis

(TB). Pyrazinamide (PZA) is a key drug for current and future TB treatment regimens; how-

ever, it was reported that predictive power for PZA resistance by the available tools is low.

Therefore, this low predictive power may make users hesitant to use the tools. This study

aimed to elucidate why and to uncover the real performance of the tools when taking into

account their variation calling lists (manual inspection), not just their automated reporting

system (default setting) that was evaluated by previous studies.

Methods

WGS data from 191 datasets comprising 108 PZA-resistant and 83 susceptible strains were

used to evaluate the potential performance of the available online tools (TB Profiler, TGS-

TB, PhyResSE, and CASTB) for predicting phenotypic PZA resistance.

Results

When taking into consideration the variation calling lists, 73 variants in total (47 non-synony-

mous mutations and 26 indels) in pncA were detected by TGS-TB and PhyResSE, covering
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all mutations for the 108 PZA-resistant strains. The 73 variants were confirmed by Sanger

sequencing. TB Profiler also detected all but three complete loss, two large deletion at the

3’-end, and one relatively large insertion of pncA. On the other hand, many of the 73 variants

were lacking in the automated reporting systems except by TGS-TB; of these variants,

CASTB detected only 20. By applying the ‘non-wild type sequence’ approach for predicting

PZA resistance, accuracy of the results significantly improved compared with that of the

automated results obtained by each tool.

Conclusion

Users can obtain more accurate predictions for PZA resistance than previously reported by

manually checking the results and applying the ‘non-wild type sequence’ approach.

Introduction

Mycobacterium tuberculosis (MTB) is a slow-growing bacillus and thus requires several weeks

to months for phenotypic drug-susceptibility testing (DST). The essential role and ubiquitous

use of pyrazinamide (PZA) in tuberculosis (TB) therapy underlines the importance of DST

against PZA [1,2]. However, the test for PZA is more complicated and less reliable than those

for other anti-TB drugs due to the difficulty of growing TB under the acidic (pH < 6.0) con-

ditions required for the assay [3–5]. As the current phenotypic test is difficult and time con-

suming, clinical laboratories are eager for a more accurate and rapid assay to detect PZA

resistance. Genotypic DST is an ideal approach for bypassing the difficulty, inaccuracy, and

lengthy process of phenotypic DST, providing rapid results [6,7]. However, genotypic DST for

PZA is extremely challenging because the pncA mutations that induce loss of pyrazinamidase

(PZase) activity (the major mechanism leading to PZA resistance) are highly diverse and scat-

tered throughout the pncA gene [8,9].

Whole-genome sequencing (WGS) can theoretically be used to rule in resistance to all drugs,

which would accelerate DST to design appropriate treatment regimens. To assist the interpreta-

tion of complex WGS data, several automated online software tools are available for TB DST,

including CASTB [10], PhyResSE [11], TB Profiler [12], Mykrobe predictor [13], and TGS-TB

[14]. These tools are expected to overcome the barrier of implementing WGS methodologies in

routine diagnostic settings, which usually lack bioinformatics expertise. However, it has been

reported that the sensitivity and specificity for predicting resistance varies significantly between

the different tools and antibiotics tested [15]. Moreover, previous studies that evaluated the pre-

dictive accuracy of these automated tools for drug resistance revealed that the accuracy for pre-

dicting PZA resistance is low [12,15–17]. This may make users hesitant to use the tools.

Herein, we wanted to emphasise that a lack of drug resistance-associated variants in the

automatically generated plain text report by the online tools does not necessarily mean the

tools did not detect mutations in the region of interest, which are possibly causing resistance.

Indeed, TB Profiler, TGS-TB, and PhyResSE provide variant calling lists in addition to the

plain text report of drug resistance prediction no matter if they are included or not in the pre-

defined mutation catalogue for automated reporting systems. Therefore, real performance

evaluation of the tools should be performed by two different aspects, one at the level of the

automated reporting system and the other at the full potential of its performance for the detec-

tion of mutations in a region of interest; all previous reports that evaluated online tool perfor-

mance analysed the former aspect but did not take into account the latter [15–17].

Increasing predictive power of online tools for pyrazinamide resistance
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To clarify the reasons for the reported low accuracy of PZA resistance prediction and to

reveal the real performance of the tools, we evaluated the tools using WGS data from 191 data-

sets on resistant and susceptible strains at the level of automated reporting and the full poten-

tial of the tools.

Materials and methods

Specimens

A total of 191 MTB isolates collected from two different isolate stocks were used in this study.

To avoid any unambiguous results by heteroresistance due to the existence of a mixed popula-

tion [18], single colony isolation from the stock culture was performed. Sample set 1 included

112 multidrug-resistant MTB (MDR-TB) isolates from 112 patients, collected through the

RYOKEN TB research consortium during 2012–2013 as part of a national drug resistance sur-

vey. Sample set 2 included 79 isolates obtained from Kinki-chuo Chest Medical Center located

in the western part of Japan between 2001 and 2015; of these, 53 strains were MDR-TB. The

isolates were obtained from 77 single patients including two cases where non-MDR-TB devel-

oped into MDR-TB in a single patient.

Ethics statement

All of the clinical isolates in this study were fully anonymized before we accessed them. Clinical

isolates of M. tuberculosis in set 2 were used with approval of the ethical committee of Kinki-

chuo Chest Medical Center (reference 2015/493). Clinical isolates in set 1 were obtained

through the survey followed Japanese national guidelines for epidemiological research and eth-

ical approval was not required for this laboratory study based on M. tuberculosis isolates.

Phenotypic DST of PZA

For all 191 strains, PZA susceptibility was measured using MGIT AST PZA (Becton Dickin-

son, Franklin Lakes, NJ) according to manufacturer’s instructions. The critical concentration

used in this study was 100 μg/mL. Extended analysis using the PZase assay by Wayne’s method

[19] was performed for the 16 strains that showed discrepant results between MGIT AST PZA

and mutations in pncA or rpsA to determine PZA susceptibility. This analysis was also per-

formed for all strains in sample set 1 (n = 112) to supplement MGIT AST PZA testing. Mini-

mum inhibitory concentration (MIC) measurement for PZA was performed for 7 of the 16

strains whose PZA susceptibility could not be determined even after the PZase assay. MIC was

determined [18] from PZA concentrations of 12.5, 25, 50, 100, 200, 300, 400, and 800 μg/mL

in MGIT culture media, using the MGIT EpiCenter system. The MIC for M. tuberculosis
H37Rv (control for PZA susceptibility) and M. bovis BCG Tokyo (control for PZA resistance)

was found to be 50 μg/mL and> 800 μg/mL, respectively. We considered MIC values� 100 as

PZA susceptible.

WGS data analysis

Genomic DNA of each isolate was prepared from MTB grown on Ogawa medium using an

Isoplant Kit (Wako Pure Chemical Industries Ltd, Tokyo, Japan). A DNA-seq library was pre-

pared with the QIAseq FX DNA library kit (Qiagen, Hilden, Germany) using 50 ng TB geno-

mic DNA, followed by paired-end sequencing using Illumina MiSeq (Illumina, San Diego,

CA) and the MiSeq Reagent Kit v3 (600 cycles) according to manufacturer’s instructions. The

read data were then analysed using TB Profiler (online version, September 2018) [12], TGS-TB

v2 [14], PhyResSE v1.0 [11], and CASTB v1.5 [10]. In addition to the text report obtained
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through automated interpretation (default result), we manually inspected the tool variation

calling lists for pncA, rpsA, panD, and their promoter regions (manual result); this was not per-

formed with CASTB as it does not provide a variation calling list. The synonymous pncA
Gln122Gln mutation and the known phylogenetic informative mutations [12] rpsA
Met432Thr (for LAM lineage) and rpsA Arg212Arg (for Beijing lineage) detected in this study

were excluded from further analysis. Phenotypic PZA susceptibility testing (MGIT testing)

complemented with the PZase assay and MIC measurement were used as the standard refer-

ence for evaluating the online tools’ prediction powers for PZA resistance.

Sanger sequencing for pncA
To validate the mutation call by online tools, we performed sanger sequencing for all mutation

variants of pncA detected in this study as previously described [20].

Statistical analysis

All statistical analyses were performed with EZR [21], a graphical user interface for R.

Read data deposit

Raw sequence reads of all 191 MTB strains subjected to WGS were deposited in the DDBJ

Sequence Read Archive (DRA; https://www.ddbj.nig.ac.jp/dra/index.html) under the study

accession number DRA006844 (S1 Table).

Results

Variation calling lists by online tools

Mutation variants detected in the 191 strains are summarised in Table 1.

All mutations in panA detected through automated interpretation and manual inspection

by three online tools (TB Profiler, TGS-TB, and PhyResSE) were validated by Sanger sequenc-

ing. Forty-seven single-nucleotide variants (SNVs) were detected by all three tools and were

consistent with Sanger sequencing results. Regarding the indels, TGS-TB and PhyResSE called

26 variations that were consistent with Sanger sequencing, whereas TB Profiler showed differ-

ent calls for 5 indel variants and no calls for 6 indels (three complete losses of pncA, two large

deletions at the 30-end of pncA, and one relatively large insertion in pncA); details of these dis-

crepancies are listed in S2 Table. Furthermore, eight SNVs and one indel in rpsA as well as one

SNV in the panD promoter were detected by all three tools; S1 Fig shows an image of the

Table 1. Mutation variants and detection by online tools.

Gene Mutation No. of variation TB Profiler TGS-TB PhyRes CASTB

Default Manual None Default Manual None Default Manual None Default None

pncA SNV 47 35 12 0 42 5 0 33 14 0 10 37

Indel� 26 0 20�� 6 26 0 0 0 26 0 10 16

rpsA SNV��� 8 0 8 0 1 7 0 1 7 0 0 8

Indel 1 0 1 0 0 1 0 0 1 0 0 1

panD promoter SNV 1 0 1 0 0 1 0 0 1 0 0 1

None, not detected by either default or mannual inspection.

�Variation of the three complete and two 3’ end deletions were discriminated based on their regions of deletion.

��Five deletions which showed discrepancy with TGS-TB and PhyRes were included (see S2 Table).

���Met432Thr is not included since it is a LAM defined SNP.

https://doi.org/10.1371/journal.pone.0212798.t001
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detection of these variants by TGS-TB. In total, 83 variants (47 SNVs and 26 indels in pncA, 8

SNVs and 1 indel in rpsA, and 1 SNV in the panD promoter) were detected in this study and

used for further analysis to evaluate the online tools’ prediction powers for PZA resistance. All

strains with variants and phenotypic PZA susceptibility informationare listed in S1 Table.

Determination of PZA susceptibility

Of the 191 strains analysed, 98 demonstrated resistance by the MGIT test with mutations in

pncA and its promoter (60 in set 1 and 38 in set 2) and were judged PZA resistant (Table 2).

The 77 strains that were deemed susceptible by MGIT and without mutations (40 in set 1 and

37 in set 2) were judged PZA susceptible. These classifications correspond with PZase analysis

results (S1 Table).

Meanwhile, 16 strains of 191 showed discrepant results between genotypic and phenotypic

results (Table 2); nine strains were found negative by PZase analysis (the major mechanism

leading to PZA resistance) with mutations in the pncA gene and were thus characterised as

PZA resistant (Table 3).

Of the remaining seven strains that were further analysed by MICs, six were deemed PZA

susceptible and one was PZA resistant (Table 3). None of the 191 tested isolates possessed

Table 2. Association between PZA resistant conferring mutations and MGIT PZA susceptibility testing.

MGIT (set 1, n = 112) MGIT (set 2, n = 79)

R S R S

Default mutations by TB-Profiler 35 5 21 4

Mutations other than default by TB Profiler 25 7 17 0

No mutations 0 40 0 37

PZA, pyrazinamide; R, resistant; S, sensitive

https://doi.org/10.1371/journal.pone.0212798.t002

Table 3. Extended analysis of the 16 M. tuberculosis strains for determining PZA susceptibility.

Strain

ID

Source Default mutations by TB

Profiler

Mutations other than default by TB Profiler in candidate genes MGIT

PZA

PZase MIC

(μg/mL)

Conclusion

126 set 2 pncA (Lys96Gln) none S neg. N/A R

135 set 2 pncA (Asp63Gly) none S neg. N/A R

131 set 2 pncA (Gly78Ser) none S neg. N/A R

020 set 1 pncA (Leu182Ser) none S neg. N/A R

011 set 1 pncA (T-11C promoter) none S neg. N/A R

018 set 1 pncA (Lys96Asn) none S neg. N/A R

017 set 1 pncA (Met175Ile) none S ± 200 R

019 set 1 pncA (Leu4Ser) rpsA (Asp15Ala) S neg. N/A R

129 set 2 pncA (Gly97Asp) rpsA (1834845: TCGCCGCCGCCG /TCGCCGCCG), panD promoter
(A-13G)

S neg. N/A R

052 set 1 none pncA (Ser67Stop) S neg. N/A R

049 set 1 none pncA (Val44Ala) S ± 100 S

048 set 1 none rpsA (1834845: TCGCCGCCGCCG /TCGCCGCCG) S pos. 50 S

047 set 1 none rpsA (Asp123Ala) S pos. 50 S

042 set 1 none rpsA (Thr42Ala) S pos. 100 S

043 set 1 none rpsA (Asp27Asn) S pos. 100 S

041 set 1 none rpsA (Tyr109His), pncA (Stop187Gly) S ± 50 S

R, resistant; S, sensitive; N/A., not applicable; neg., negative; pos., positive; ±, indeterminant

https://doi.org/10.1371/journal.pone.0212798.t003
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mutations in the panD gene. Overall, the tested isolates were phenotypically classified into 108

PZA-resistant and 83 PZA-susceptible isolates.

Mutations in PZA resistance-conferring genes

All 108 PZA-resistant strains possessed mutations in the pncA gene which consists of 44 differ-

ent non-synonymous mutations, 26 different indels, and one mutation in the promoter region

(S3 Table). None of the 71 mutations were found in the 83 PZA-susceptible strains. Among

these mutations, 61 genetic variants had single pncA mutations per strain, one variant showed

double pncA mutations, nine variants exhibited double mutations in both pncA and rpsA
genes, and one variant had triple mutations in pncA, rpsA, and the panD promoter. All 26

indels in the pncA-containing region detected in this study led to PZA resistance, whereas two

non-synonymous mutations in pncA (Stop187Gly, Val44Ala) did not confer PZA resistance.

None of the 108 PZA-resistant strains possessed mutations in either rpsA or panD alone,

which are putative PZA resistance-conferring genes. Among the 83 PZA-susceptible isolates,

one possessed a pncA Val44Ala mutation, four exhibited single mutations in rpsA (Thr42Ala,

Asp27Asn, Asp123Ala, or deletion at 1824845), and one showed double mutations in pncA
Stop187Gly and rpsA Tyr109His (Table 2).

pncA mutations in this study were found distributed across the entire gene (Table 4), as pre-

viously reported [7,22,23].

All 45 non-synonymous mutations in pncA—except for three mutations (Gly78Ser,

Thr103Ser, Val163Gly)—detected in this study from 108 PZA-resistant strains were included

in either of five comprehensively validated mutation lists as high confidence mutations [22–

26] (Table 4). Although these three mutations were not on the list, the strains carrying these

mutations showed negative results by PZase analysis and resistance via the MGIT test (S1

Table). Two strains harbouring the Stop187Gly and Val44Ala mutations in pncA were deter-

mined as PZA-susceptible by the MGIT test and neither mutation was listed in the five pub-

lished lists (Table 4). The MIC values for these strains were not greater than 100 μg/mL,

whereas M. tuberculosis H37Rv and M. bovis BCG Tokyo showed MICs of 50 μg/mL

and> 800 μg/mL, respectively.

Sensitivity and specificity of PZA resistance prediction by online tools

Using WGS data from 191 strains, we analysed the sensitivity and specificity of PZA resistance

predictions by different tools available online (TB profiler, TGS-TB, PhyResSE, and CASTB).

To evaluate tool performance at the automated reporting system level and at their full potential

for mutation detection, we categorised the mutations detected by TB profiler, TGS-TB, and

PhyResSE as either default or manual (S3 Table and Table 1); default indicates the automated

interpretation report and manual indicates all mutations detected by the tools other than

default.

Remarkable differences between the tools were found in their detection of indels. TGS-TB

returned all 26 indel variants in the pncA gene through default settings, whereas the other two

tools did not (Table 1). The default detection rate of SNVs in pncA varied among the tools;

TGS-TB exhibited the best detection rate (42/47), followed by TB Profiler (35/47), PhyResSE

(33/47), and CASTB which detected only 10 SNVs and 10 indels (Table 1). As a result, the

default sensitivity of the tools was low (60.1%, 49.1%, and 31.5% for TB Profiler, PhyResSE,

and CASTB, respectively), except for TGS-TB (97.2%; Table 5) which is consistent with previ-

ous studies [12,15–17].

This drastically changed when we evaluated the detection rate with manual settings. PhyR-

esSE detected all 26 indels while TB Profiler missed 6 indels (Table 1); of these 6 indels, two
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Table 4. Non-synonymous mutations in pncA and their presence in the published lists.

Mutation PZA senositivity pncA mutations in the published lists

no. of R no. of S Miotto [22] Yadon [23] Manson [24] Miotto [25] Farhat [26]

pncA (Met1Leu) 1 0 no yes no no no
pncA (Ala3Glu) 6 0 yes yes no yes no
pncA (Leu4Ser) 1 0 no yes no yes yes
pncA (Gln10Arg) 1 0 yes yes no yes yes
pncA (Asp12Ala) 3 0 yes no no yes yes
pncA (Asp12Glu) 1 0 yes yes no no yes
pncA (Cys14Stop) 1 0 yes yes no yes no
pncA (Cys14Tyr) 1 0 no yes no no no
pncA (Tyr34Asp) 8 0 no no no yes yes
pncA (Tyr34Stop) 1 0 yes no yes yes no
pncA (His51Gln) 1 0 yes no yes yes no
pncA (Pro54Leu) 3 0 yes yes no yes yes
pncA (His57Gln) 1 0 yes yes no no no
pncA (Leu159Pro) 1 0 no yes no no no
pncA (Asp63Gly) 1 0 yes yes no yes yes
pncA (Ser67Stop) 1 0 no yes no no yes
pncA (Trp68Arg) 1 0 yes yes no yes yes
pncA (Thr76Pro) 1 0 yes no no yes yes
pncA (Gly78Ser) 3 0 no no no no no
pncA (Lys96Asn) 2 0 yes yes no yes no
pncA (Lys96Gln) 1 0 yes yes no no no
pncA (Gly97Asp) 3 0 yes yes no yes yes
pncA (Thr100Pro) 1 0 yes no no no yes
pncA (Tyr103Ser) 1 0 no no no no no
pncA (Tyr103Stop) 1 0 yes yes yes yes yes
pncA (Ser104Ile) 2 0 yes no no no no
pncA (Leu116Arg) 1 0 yes yes no yes no
pncA (Trp119Cys) 1 0 yes no no no no
pncA (Val125Gly) 1 0 yes no no no no
pncA (Val128Gly) 1 0 yes no no yes yes
pncA (Gly132Ala) 1 0 yes yes no yes no
pncA (Asp136Gly) 1 0 no no no no yes
pncA (Cys138Arg) 1 0 yes yes no no no
pncA (Val139Ala) 2 0 no yes no yes yes
pncA (Val139Met) 1 0 no yes no no yes
pncA (Gln141Pro) 3 0 yes no no yes yes
pncA (Ala146Thr) 1 0 no yes no no no
pncA (Val155Met) 1 0 yes yes no no no
pncA (Val163Gly) 1 0 no no no no no
pncA (Ser164Pro) 1 0 yes yes no no no
pncA (Leu172Pro) 1 0 yes yes no yes yes
pncA (Met175Ile) 2 0 yes yes no yes no
pncA (Val180Phe) 1 0 yes yes no yes yes
pncA (Leu182Ser) 2 0 yes yes no no yes
pncA (Stop187Gly) 0 1 no no no no no

(Continued)
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were large deletions at the 30 region of pncA, three were complete losses of pncA, and one was a

large fragment insertion at 2288788 (S3 Table). Five indels that were miscalled by TB Profiler

(S2 Table) were treated as the call for PZA resistance prediction by TB Profiler. All mutations

in rpsA and the panD promoter in our sample set were detected by the three tools through

searches beyond the default report (Table 1). When we deemed the strains with these indels

and non-synonymous mutations as PZA resistant (interpret ‘non-wild type sequence’ as PZA

resistant), the three online tools demonstrated remarkably high sensitivity and specificity in

predicting PZA resistance (Table 5). Specificity slightly decreased when manual results were

compared with those of default (Table 5). This is due to the inclusion of mutations in rpsA
whose association with PZA resistance is debatable [27,28].

Discussion

Our analysis of online tool performance in detecting PZA resistance demonstrated that the

tools can predict resistance with more sensitivity than previously reported when all detected

variants (non-synonymous mutations and indels) are taken into account (Table 5). In fact, all

or most mutations in the pncA gene of 108 PZA-resistant strains were detected by TB Profiler,

TGS-TB, and PhyResSE but many variants were missing in the automated interpretation for

plain text report. As a result, the accuracy of PZA resistance prediction by online tools differed

Table 4. (Continued)

Mutation PZA senositivity pncA mutations in the published lists

no. of R no. of S Miotto [22] Yadon [23] Manson [24] Miotto [25] Farhat [26]

pncA (Val44Ala) 0 1 no no no no no

R, resistant; S, sensitive

https://doi.org/10.1371/journal.pone.0212798.t004

Table 5. Sensitivity and specificity of the online tools in predicting PZA resistance.

PZA susceptibility Sensitivity

(95% CI)

Specificity

(95% CI)

PPV

(95% CI)

NPV

(95% CI)R

(n = 108)

S

(n = 83)

Defalt setting TGS-TB R 105 1 0.972

(0.921–0.991)

0.988

(0.935–0.998)

0.991

(0.949–1.00)

0.965

(0.900–0.993)S 3 82

TB Profiler R 65 0 0.601

(0.510–0.694)

1

(0.935–1.000)

1.000

(0.918–1.000)

0.659

(0.569–0.741)S 43 83

PhyResSE R 53 1 0.491

(0.396–0.585)

0.988

(0.935–0.998)

0.981

(0.901–1.000)

0.599

(0.511–0.681)S 55 82

CASTB R 34 1 0.315

(0.227–0.402)

0.988

(0.935–0.998)

0.971

(0.851–0.999)

0.526

(0.444–0.606)S 74 82

Manual setting TGS-TB R 108 6 1

(0.950–1.000)

0.928

(0.872–0.983)

0.947

(0.889–0.980)

1.000

(0.931–1.000)S 0 77

TB Profiler R 102 6 0.944

(0.883–0.979)

0.928

(0.849–0.973)

0.944

(0.883–0.979)

0.928

(0.849–0.973)S 6 77

PhyResSE R 108 6 1

(0.950–1.000)

0.928

(0.872–0.983)

0.947

(0.889–0.980)

1.000

(0.931–1.000)S 0 77

R, resistance; S, Sensitive; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value

All strains with indels or mutations detected by manual setting are classified as PZA resistance.

https://doi.org/10.1371/journal.pone.0212798.t005
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substantially between the default report and manual inspection (Table 5). Thus, the fundamen-

tal cause for the reported low sensitivity of PZA resistance prediction is the tool interpretation

pipeline, which is built upon pre-defined mutation catalogues and not due to the inability of

software algorithms in detecting genetic variants.

The main aim of the online tools is to make complex WGS data analysis accessible for rou-

tine use in clinical settings where there is usually a lack in bioinformatics expertise. The advan-

tage of these tools is automated interpretation for drug resistance upon pre-defined mutation

catalogues. However, this study emphasised that proper knowledge of drug resistance-confer-

ring mutations with some background in bioinformatics is still needed to avoid misinterpreta-

tions, i.e., a lack of drug resistance-associated variants in the automated report does not

necessarily mean that there are no mutations in the region of interest causing resistance. Users

should be aware that three online tools (TB Profiler, TGS-TB, PhyResSE) used in this study

provide variant calling lists in addition to the plain text report of drug resistance prediction no

matter if they are included or not in the pre-defined mutation catalogue for automated report-

ing systems. The previously reported low accuracy of PZA resistance prediction can be

improved by a manual inspection of the list (Table 5). Although the tools do not guide users

for this adequately, the variation calling list provided by the tools is a straightforward

approach.

A recent genome-wide association study (GWAS) indicated that PZA resistance prediction

can be enhanced by the inclusion of insertions and deletions [29], which was also confirmed

by our data. It is clear that the superiority of TGS-TB over the other tools regarding the default

setting was mainly due to the inclusion of indels for reporting PZA resistance. Our data

showed a higher ratio of strains with structural variants by indels in PZA resistance (29.6%)

compared with that of the previously reported values (16%, 19.6%, and 22.7%) for global sam-

ples [7], the Chinese province Zhejian [20], and the Chinese city Hanzhou [30], respectively.

This higher ratio was observed for both sample set 1 (28.3%) and set 2 (30.0%) in our study,

thereby reflecting the situation in Japan. These data imply that the impact of structural variants

on PZA resistance is more significant in Japan where the ancient Beijing genotype is predomi-

nant compared with that of other regions [31,32]. Further studies are needed to clarify this

distribution.

In this study, we interpreted strains with any non-synonymous mutations or indels in pncA
as genotypic PZA-resistant strains; this ‘non-wild type sequence’ approach was implemented

in the Genoscholar PZA-TB II line probe assay (PZA-LPA2; NIPRO Corporation, Osaka,

Japan) [28]. One concern with this approach is the overestimation of resistant strains caused

by non-resistance-associated mutations, including synonymous and lineage-specific muta-

tions. Unlike the line probe assay, WGS-based DST can exempt them from mutations confer-

ring PZA resistance, but with a lack of reliable lists as a drawback. Yadon et al. [23] identified

many non-synonymous amino acid substitutions that do not confer PZA resistance by using a

comprehensive library of pncA mutations in M. tuberculosis created by random PCR mutagen-

esis. Although these mutations were created in vitro, such a list would be helpful in identifying

exemptions from the ‘non-wild type sequence’ approach. To evaluate the impact of non-resis-

tance-associated mutations on this approach in clinical settings, we examined recent studies

performed in clinical settings under well-controlled conditions. The degree of adverse effects

by non-resistance-associated mutations varied but was low, i.e., one mutation out of 400 PZA-

susceptible isolates (1/400) [3], 5/156 [20], 0/57 [28], and 2/83 in this study. This implies that

the occurrence of such mutations inside a patient’s body is rare. Although the overestimation

of resistant strains is unavoidable by the ‘non-wild type sequence’ approach, it can effectively

screen PZA-susceptible strains and help reduce the need for culture-based DST, which is

labour-intensive, requires facilities with biosafety measures, and is usually less reliable for PZA
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than other key drugs [33]. Inclusion of other PZA resistance-associated genes such as panD
[34] may improve the accuracy of screening for PZA-susceptible strains, although it was not

detected in this study. In our sample set, inclusion of mutations in rpsA as PZA resistance-con-

ferring mutations decreased specificity but did not increase sensitivity of WGS-based tools for

PZA resistance prediction (Table 5). It remains debatable if rpsA is associated with PZA resis-

tance [27,28]. Moreover, to draw conclusions on its use for the prediction of PZA resistance,

MIC measurement for a large number of strains with mutations in rpsA should be performed.

It is of note that detection of a complete region of interest deletion, such as for pncA in this

study and katG for isoniazid resistance [35], is troublesome. TGS-TB and PhyResSE can detect

complete deletions; however, we had to check the mapping status of PhyResSE results, which

is not straightforward from the variation calling list and would likely be missed. TGS-TB was

much more user friendly in this regard. TB profiler did not report the deletion as the tool has

no function to visualise mapping status. To make the tools more user friendly, the developers

should consider reporting the intactness of the region of interest as ‘intact and wild-type’ and

including it in the automated reporting system, especially for pncA and possibly katG as well.

The study limitation is that we did not evaluate heteroresistant strains of mixed populations

that appear in clinical settings [18]. How to deal with phenotype/genotype discrepant results,

mutations conferring low levels of resistance, and heteroresistance are the practical questions

that need to be addressed by WGS data analysis [36,37]. In conclusion, our findings demon-

strated that users can obtain more accurate predictions for PZA resistance than previously

reported by carefully checking the results manually and applying the ‘non-wild type sequence’

approach. It would be worthwhile for developers to include all pncA mutations without synon-

ymous and lineage-specific mutations into their automated reporting system for PZA resis-

tance prediction as already implemented by TGS-TB for indels. This makes online PZA

resistance prediction tools more suitable for clinical setting where there is usually a lack in bio-

informatics expertise.
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