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Background & Summary

Primary production and aerobic respiration dominate metabolic energy flow and organic matter
processing in stream ecosystems"?. Stream metabolic responses to nutrient loading, anthropogenic
modification, and natural disturbance regimes are likely to result in changes to stream processing of
energy, carbon, and nutrients. Long-term time series (months to years) are particularly valuable because
of the variability in stream metabolism at multiple temporal scales. Studies using such data have revealed
the high sensitivity of annual in-stream production to the interaction of seasons and storms’, the
stimulation of ecosystem respiration by polluted waters®, the potential for floodplain restoration to
increase the resilience of stream metabolism to physical disturbance’, the correlation between winter
precipitation and and spring heterotrophy in alpine streams®, and the constraining effect of turbidity on
primary productivity in large rivers’. However, there is a pressing need to broaden our understanding of
the controls on stream metabolism using standardized modeling approaches across multiple watersheds,
ecoregions, climatic zones, and land use types®.

Daily estimates of reach-averaged gross primary production (GPP) and aerobic ecosystem respiration
(ER) can be made from subdaily observations of the dissolved oxygen concentration, water temperature,
average upstream depth, air pressure, and photosynthetically active radiation at a single location in the
channel’. Metabolism modeling methods have advanced in recent years, in part due to the increasing
speed and processing power of modern personal computers. Key advances have included estimation of
gas exchange simultaneously with metabolism'®, the use of Bayesian priors to incorporate field
measurements or other external sources of information in the estimation procedure'"'?, the use of state
space models to accommodate multiple error sources'>', and the use of Bayesian hierarchical modeling
to pool information about gas exchange rate coefficients across many days of time series data'*"'®. A
recently developed metabolism software package, streamMetabolizer'?, integrates all of these advances to
estimate metabolism.

Although metabolism has historically been studied at a small number of sites or using a small number
of days per study, large-scale monitoring and modeling programs have now made it possible to estimate
metabolism for a much larger number of sites. The U.S. Geological Survey’s (USGS) National Water
Information System (NWIS) is a national database of time series observations of water quality and
quantity for thousands of sites in the United States. NWIS contains several variables that are useful in
estimating metabolism by a single-station open-channel approach’®, including dissolved oxygen
concentration, water temperature, and discharge. Two other useful variables, air pressure and
downwelling shortwave radiation, are available through the National Aeronautics and Space
Administration’s (NASA) Land Data Assimilation System (North American: NLDAS; Global: GLDAS),
which synthesizes observations and model predictions into large-scale gridded datasets of climate and
hydrology. These national databases made our national-scale analysis feasible through their well-
documented data collection and modeling methods, consistent data formatting, and public accessibility.

In this data release we compile the data inputs and metabolism model outputs for 356 sites across the
United States, with the resulting estimates ranging from 61 days to 9 years per site. Our objectives in
creating this dataset are threefold: (1) to greatly expand the number of long-term metabolism time series
in the literature by providing estimates of metabolism for 356 federally monitored sites, (2) to provide a
data framework for experimentation with input datasets (several alternatives are provided for variables
including light, barometric pressure, and stream depth) and models (the prepared inputs in this release
may be passed to external metabolism models or to other model variants in the streamMetabolizer
software), and (3) to draw attention to the potential of existing public datasets such as NWIS, NLDAS,
and GLDAS for generating new information and insights.

Methods

The preparation of this data release (Data Citation 1 and Table 1) involved multiple data sources and
processing steps (Fig. 1): We identified sites amenable to the modeling approach, acquired site
information and time series data from outside databases, derived additional forcing variables, selected
those sites with all necessary data, configured and applied the metabolism estimation model, extracted
model estimates, and collected and computed diagnostic metrics of model performance. We describe all
these steps in detail below, beginning with an overview of the model.

Metabolism model

We estimated metabolism by an open channel approach based on Odum’s classic method’, which relies
on the fact that gross primary productivity (GPP), ecosystem respiration (ER), and physical air-water gas
exchange are the dominant controls on the sub-daily dynamics of dissolved oxygen concentrations
([O3]), and these three processes can be differentiated because they each affect [O,] in different directions
and with different timing. Our mass-balance-based approach fits modeled [O,] to observed [O,] to
estimate the parameters GPP, ER, and a standardized rate coefficient for gas exchange (K600) using
inverse modeling and Bayesian inference'’. We estimated daily mean rates of metabolism and gas
exchange for each site using the new streamMetabolizer software package'®'” in the R statistical
programming language'®. The streamMetabolizer package implements several model variants, so here we
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ID | Title

Description

Format

1 Site data

Site identifiers, details, and quality indicators

Table with 1 row per site (tab-delimited file)

2 Spatial data

Site coordinates (2a) and catchment boundaries (2b)

1 shapefile for all coordinates and 1 for all catchments (.shp, .shx, .dbf, and .prj files)

3 Timeseries data

Data on water quality and quantity, collected or computed from
outside sources

Tables with one row per time series observation (1 tab-delimited file per site-variable c
ombination, 1 zip file per site)

4 Model inputs

Data formatted for use in estimating metabolism

Tables of prepared time series inputs (1 tab-delimited file per site, in 1 zip file per site)

5 Model configurations

Model specifications used to estimate metabolism

Table with 1 row per model (1 tab-delimited file, compressed into zip file)

6 Model outputs

Complete fits from metabolism estimation models

Text and 4 tables for each model (tab-delimited files, 1 zip file per model)

7 Model diagnostics

Key diagnostics and overall assessments of model performance

Table with 1 row per model (1 tab-delimited file, compressed into zip file)

8 Metabolism estimates and predictors

Daily metabolism estimates and potential predictor variables to
support further exploration

Table with 1 row per site-date combination (1 tab-delimited file, compressed into zip file)

Table 1. Data items included in Data Citation 1.
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Figure 1. Inputs and workflow to generate metabolism estimates and supporting datasets. Inputs are

either exogenous (dark orange plaque shapes) or encapsulate the authors’ configuration decisions (gray

trapezoids). Data processing steps leverage several R packages and other tools (blue rounded rectangles);

specifics of these steps are documented in the text. Data products included in this release (yellow rectangles) are

organized into 8 final items (superscripts, corresponding to IDs in Table 1).
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provide a brief overview of the specific variant named “b_Kb_oipi_tr_plrckm.stan”, which was the variant
used for this analysis. Details of the model structure and statistical fitting procedure for this variant are
in'%, as is a discussion of alternative modeling approaches.

The core equation of the model gives the change in oxygen concentration at each timestep as:

dOi4 _ (GPPg PPFDi4
dt  \ zZa4 PPFD,

) n (?R") +£,4(K600,4)(Osat; g — 0;,9) (1)

Zid

where O;, is the modeled oxygen concentration on day d at time index i, and dO,,/dt is a rate of
concentration change. GPP,, ER;, and K600, are the three daily parameters fitted by the model: GPP,; and
ER, are daily average rates of gross primary productivity and ecosystem respiration, respectively (g O,
m~* d™'), while K600, is a daily average value of the standardized gas exchange rate coefficient (d™',
scaled to a Schmidt number of 600). The other variables are model inputs: Z; 4 is the stream depth (m)
averaged over the width and length of the upstream reach; PPFD;, is the photosynthetic photon flux
density (ymol photons m2dY); PPFD, is the daily mean of observed PPFD; ;; f; 4(K600,) is a function
that converts daily mean K600, to an O,-specific, temperature-specific gas exchange coefficient
(KO2; 4 d™), and Osat; 4 is the theoretical saturation concentration of O, if the water and air were in
equilibrium.

Equation 1 is integrated using the trapezoid rule, as in'?, to produce a time series of modeled [O,] to
compare to the observed values. We chose a state space time series model so that we could incorporate
both observation and process errors (i.e., fitting to match both the O, concentrations and the stepwise
concentration changes between observations). This method provides more accurate estimates of
paranllfter values and parameter uncertainty than assuming either process error or observation error
alone ™.

We used a Bayesian Markov chain Monte Carlo (MCMC) fitting procedure to identify values of GPP,
ER, K600, and several hierarchical parameters that balanced the model requirements to (a) produce a
good match between observed and modeled [O,] and stepwise [O,] changes, and (b) stay consistent with
our understanding of stream biology and physics. Specifically, we used partial pooling'® of K600 across all
days in each site’s dataset, where daily values of K600, were Fooled toward a fitted, site-specific, piecewise
linear relationship relating K600 to daily mean discharge, Q'*. This relationship was built with many line
segments to capture the potentially complex, idiosyncratic relationship at each site (see Metabolism model
configuration and application). Each daily estimate K600, was drawn from a normal distribution around
the pooled prediction of K600 from the piecewise function of that day’s Q. The standard deviation of
that distribution was itself a fitted value drawn from a half-normal distribution. This partial pooling
approach for K600 has been shown to reduce the number of extremely inaccurate estimates of K600, GPP,
and ER, leading to greater accuracy overall'*.

Initial site selection

We based our initial site selection on the availability of dissolved oxygen, the central variable necessary to
model metabolism, in the USGS National Water Information System (NWIS, https://waterdata.usgs.gov/
nwis)*°. As such, the sites available in this dataset are limited to monitoring locations chosen for the
purposes of other projects, resulting in non-uniform spatial and hydrologic coverage. In January 2017 we
queried NWIS for stream and river monitoring sites with hourly or higher-frequency measurements of
dissolved oxygen. To access NWIS we used the dataRetrieval software package' in the R programing
languagels. We selected sites that were categorized as ST (stream), ST-CA (canal), ST-DCH (ditch), ST-
TS (tidal stream), or SP (spring) and had at least 100 dissolved oxygen observations. This site list (Fig. 2)
then formed the basis for acquisition of data from NWIS and other databases.

Acquisition of site information

Data about each site were acquired both to support metabolism estimation and to provide context for
interpreting the metabolism estimates; this information is included in “1. Site data” (Data Citation 1). We
used the dataRetrieval software package®' to pull site information from the USGS NWIS database*
including the USGS site ID, a full site name, geographic coordinates, altitude, and the NWIS site type
classification.

To facilitate cross-referencing this dataset with others, we associated each USGS site with a stream
reach from the National Hydrography Dataset (NHDPlusV2, http://www.horizon-systems.com/
NHDPlus, accessed April 2017)*2. We identified the NHDPlusV2 reach code (ComlID) for which the
centerpoint latitude and longitude of that reach was closest to the latitude and longitude of the USGS site.

Hydraulic geometry coefficients were necessary to estimate depth and velocity at each site as functions
of the reported discharge. Coefficients were obtained from a hydraulic geometry analysis>’. The data used
in that analysis were measurements of instantaneous low-flow and bankfull depths and widths made b;l
the U.S. Environmental Protection Agency (EPA) at several thousand sites in the conterminous US***
Gomez-Velez et al.* associated each EPA measurement site with the closest NHDPlusV2 reach and then
correlated depths and widths with the cumulative drainage area reported in NHDPlusV2 to create
standard power law relationships describing downstream changes in hydraulic geometry. The
relationships were regionalized at the HUC2 (USGS Hydrologic Unit Code 2) level. Downstream
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Figure 2. Sites included in this data publication. Sites that met the initial site selection criteria but did not
have sufficient data to be modeled are gray triangles. Sites with sufficient data for modeling are filled circles,
colored according to the number of dates for which estimates were produced (3296 days is 9.02 years).

Description Reference Number of Basins
EPA BASINS o0 262

USGS StreamStats 20 54

USGS GAGES-II o 27

Falcone et al. 2017 o2 11

Wieczorek 2012 o 9

USGS National Map Viewer o 7

Nakagaki et al. 2016 o 1

Table 2. Data sources for boundaries of the catchments contributing to sites in this data release.

hydraulic geometry equations were then developed for two flow frequencies, baseflow and bankfull
conditions, which permitted at-a-station hydraulic geometry relationships to be developed by fitting
power laws to depth and velocity as functions of discharge. The coefficients from* were linked to the
USGS sites in this metabolism analysis by NHDPlusV2 ComlID.

For each site we collected two spatial features (2. Spatial data, Data Citation 1): the location of the site
and the boundary of the contributing catchment. The site coordinates from NWIS were packaged into a
single shapefile of site location points. Watershed boundaries were obtained from published sources or
were delineated for this project (Table 2). Delineation was performed using StreamStats v.4.1.2 (https://
streamstats.usgs.gov, accessed March 2017)*%, a map-based web application from the U.S. Geological
Survey that provides tools to delineate a drainage basin for a given latitude and longitude using stream
flowlines from the National Hydrography Dataset (https://nhd.usgs.gov)?’, the Watershed Boundary
Dataset (https://nhd.usgs.gov/wbd.html)*®, and elevation data from the USGS 3D Elevation Program
(https://nationalmap.gov/3DEP)***. A total of 371 catchment boundaries were successfully obtained,
describing all but 23 of the sites where metabolism was modeled and an additional 38 sites where
dissolved oxygen data were available but metabolism was not ultimately modeled.

Acquisition of timeseries observations
Several variables at hourly or finer temporal resolution are required to estimate metabolism. The direct
model inputs to streamMetabolizer models are dissolved oxygen concentration, theoretical oxygen
saturation concentration, stream depth averaged over the length and width of an upstream reach, water
temperature, photosynthetic photon flux density, and discharge. We downloaded some of these variables
directly from public databases (Table 3), while others were computed from variables in those databases
(next section). Data for all timeseries variables are provided in “3. Timeseries data” (Data Citation 1).
Continuous time series data for dissolved oxygen, water temperature, and discharge were extracted
from the USGS NWIS database® using the dataRetrieval R package®' (Table 3). Downloads were limited
to observations on or after October 1, 2007 for two main reasons: (a) high-frequency data from NWIS is
not available through the public web interface before this date, and (b) earlier models of oxygen sensors
were prone to lower precision and greater sensor drift because they relied on membrane rather than
optical technology’' ™. Temporal resolution of these timeseries data ranged from hourly to one
observation every 5 minutes.
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Variable Name Description (Units) Source Database Parameter Code
disch_nwis Discharge (f* s7h) 20 00060
doobs_nwis Dissolved oxygen concentration (mg O, L™") 2 00300

witr_nwis Water temperature (°C) 20 00010
baro_nldas Surface pressure (Pa) 3435 pressfc
baro_gldas Surface air pressure (Pa) 3 psurf_f_inst
sw_nldas Downwards shortwave radiation flux, surface (W m™) 3 dswrfsfc
sw_gldas Downward shortwave radiation flux, surface (W m™2) 36 SWdown_f_tavg

Table 3. Definitions and provenance of timeseries variables downloaded from external databases.

Variable Name

Description (Units)

Sources

) . Metaholi £

baro_calcElev

Surface pressure (Pa)

altitude

calc_air_pressure()

depth_calcDischHarvey

Stream depth (m)

cand f?°, disch_nwis

¢x disch_nwis’

depth_calcDischRaymond

Stream depth (m)

cand f %6 disch_nwis

cx disch_nwis’b

dischdaily_calcDMean

Daily average discharge (m’ s™")

disch_nwis

Daily mean (4am-3:59am)

doamp_calcDAmp

Daily amplitude in percent O, saturation (%)

dopsat_calcObsSat

Daily range (4am-3:59am)

dopsat_calcObsSat

Percent O, saturation (%)

doobs_nwis, dosat_calcGGbts

100 x doobs_nwis/dosat_calcGGbts

dosat_calcGGbconst

[0 at saturation (mgO, L)
g

baro_calcElev

calc_DO_sat()

dosat_calcGGbts

[0,] at saturation (mgO, L")

baro_nldas or baro_gldas

calc_DO_sat()

par_calcLat

Photosynthetic photon flux density, PPED (¢ mol m>s™")

suntime_calcLon, latitude

calc_light()

par_calcLatSw

PPFD (4 mol m?Zsh)

par_calcLat, par_calcSw

calc_light_merged()

par_calcSw

PPFD (4 mol m™s7")

sw_nldas or sw_gldas

convert_PAR_to_SW()

sitedate_calcLon

Solar noon of the date (unitless)

DateTime

convert_UTC_to-_solartime()

sitetime_calcLon

Mean solar time (unitless)

DateTime, longitude

convert_UTC_to-_solartime()

suntime_calcLon

Apparent solar time (unitless)

DateTime, coordinates

convert_UTC_to-_solartime()

swdaily_calcDMean

Daily average downwards shortwave radiation flux (W m™2)

sw_nldas or sw_gldas

Daily mean (4am-3:59am)

veloc_calcDischHarvey

Stream velocity (m s

k and m*, disch_nwis

k x disch_nwis™

veloc_calcDischRaymond

Stream velocity (m s

k and m®®, disch_nwis

k x disch_nwis™

velocdaily_calcDMean

Daily average velocity (m s™')

veloc_calcDischHarvey or veloc_calcDischRaymond

Daily mean (4am-3:59am)

Table 4. Definitions and provenance of calculated timeseries variables. Sources include other variables
from this table, DateTimes of the [O,] data, hydraulic geometry coefficients from the cited sources, and

site data (altitude, latitude, longitude). Where Sources are “X or Y”, the source ending in _nldas was preferred
over _gldas, and _calcDischHarvey over _calcDischRaymond, whenever available.

Data for atmospheric pressure and downward shortwave radiation flux were obtained for each site
from NASA’s North American Land Data Assimilation System (NLDAS; http://ldas.gsfc.nasa.gov/
nldas)>***> and Global Land Data Assimilation System (GLDAS; https:/ldas.gsfc.nasa.gov/gldas)’®
(Table 3). These variables are available from NLDAS at hourly intervals and a 0.125° spatial resolution
across continental North America from 25° to 53° North and —125° to —67° West, and from GLDAS at
coarser temporal & spatial resolutions (3-hourly and 0.25°) but global spatial extent (thus including
USGS sites in Alaska and Puerto Rico). Data were extracted from NLDAS and GLDAS at the selected
USGS site locations using the geoknife R package’’. GLDAS data were collected and are reported for all
sites, but the higher-resolution NLDAS data were available and used in modeling all 356 sites that
ultimately had the complete set of inputs necessary to estimate metabolism.

Data from both USGS NWIS and NASA NLDAS/GLDAS were pulled from those databases with
timestamps already in UTC, thus avoiding the need to deal with variations in daylight savings time.

Derivation of additional timeseries values
In addition to the 7 timeseries variables that could be downloaded directly from public databases
(previous section), 18 additional variables were computed from those downloaded variables and other site
information, both to directly support metabolism estimation and to provide context for interpreting
metabolism estimates (Table 4).

Calculations relating to air pressure and saturation oxygen concentrations were implemented as
functions within the streamMetabolizer package”. The calc_air_pressure() function was used to estimate
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the air pressure based on site elevation alone; the resulting variable, baro_calcElev, serves as a simpler
alternative to baro_nldas and baro_gldas as downloaded from the NLDAS and GLDAS databases. The
calc_DO_sat() function computes the theoretical concentration of oxygen if the air and water were at
equilibrium, based on a function of water temperature, atmospheric pressure, and published
coefficients®®>’,

Calculations relating to time and light were also implemented in the streamMetabolizer package'”. The
convert_UTC_to_solartime() function converts clock times to solar times describing the position of the
sun over a site. Solar time can take two forms, which are both included in this dataset and used for
different purposes. Mean solar time (sitetime_calcLon and sitedate_calcLon), for which every day is
exactly 24 hours but noon matches the sun’s zenith only approximately, is passed to the metabolism
model and used only to determine the timestep length and assign each observation to a set of daily values
of GPP, ER, and K600. Apparent solar time (suntime_calcLat), for which days are not exactly 24 hours
but noon exactly corresponds to the sun’s zenith, is passed to the calc_light() function to model
photosynthetic photon flux density above clouds (par_calcLat) based on the sun’s angle at a given latitude
and apparent solar time. LDAS estimates of shortwave radiation are converted to photosynthetic photon
flux density (par_calcSw) with a simple multiplier4° in the convert_SW_to_PAR() function. The
calc_light_merged() function merges the modeled light from calc_light() with shortwave radiation data
by multiplying modeled light by the linearly interpolated ratio of observed to modeled light, yielding a
smooth interpolation from the hourly NLDAS or 3-hourly GLDAS data down to the finer temporal
resolution of the [O,] data (usually at 5- to 30-minute intervals) (par_calcLatSw).

Calculations for other variables were implemented as simple function calls or equations in R;
equations for these output variables are given directly in Table 4. Daily means and ranges were computed
for the 24-hour windows from 4 a.m. to 3:59 a.m. to match the time windows used in estimating
metabolism.

Preparation of model inputs

The timeseries variables passed to the metabolism model were mean solar time (sitetime_calcLon),
dissolved oxygen concentrations (doobs_nwis), saturation oxygen concentrations (dosat_calcGGbts),
water temperature (wtr_nwis), PPFD (par_calcLatSw), discharge (disch_nwis), and stream depth as either
depth_calcDischHarvey (347 sites) or depth_calcDischRaymond (9 sites) (Tables 3, 4). The data sources
for each site are documented in “5. Model configurations” (Data Citation 1), and the resulting prepared
model inputs are in “4. Model inputs” (Data Citation 1).

streamMetabolizer requires a single input table for each site, with one row per timestep and one
column per timeseries variable. To create this merged table, we interpolated all non-[O,] variables to
match the date-time values of the [O,] data, including filling any data gaps <3h in length. If any
variables had gaps >3 h, the entire 24-h period was excluded and no metabolism estimates were produced
for that date. We used linear interpolation for most variables because linear interpolation of inputs
generally yields similar metabolism estimates to interpolation by smoothing splines or other more
complex methods*'. However, we did use a more complex interpolation for light (PPFD), described
above and yielding the calculated variable par_calcLatSw, to capture irregular fluctuations in light
availability due to changing cloud cover.

Each metabolism model application could only accept a single temporal resolution of the input data,
but some sites have varying temporal resolution of O, observations over the course of the monitoring
period (e.g., from hourly for several years to every 15 minutes for the remaining years). For such sites, we
split the input data into one chunk for each temporal resolution. This led to 433 input datasets, and thus
433 model applications, for the 356 modeled sites.

Site filtering
Only those sites with all necessary model inputs available concurrently could be modeled. 356 sites were
retained in this filtering step.

Metabolism model configuration and application

All model parameters are specified in the model configuration file in the data release (5. Model
configurations, Data Citation 1). As in'*, we used priors for GPP and ER based on the literature ranges
described by Hall et al.**: normal priors were 3.1 (SD 6.0) g O, m~2 d™ for GPP and -7.1 (SD 7.1) g0,
m > d! for ER.

We fitted the pooled relationship between K600 and Q as a series of N linearly connected nodes at
fixed intervals of 0.2 natural log units along the range of observed Q, at each site. We used priors that
encouraged the fitted K600,, value at each node # to be similar to those of adjacent nodes: the prior for log
(K600,,) was a normal distribution with standard deviation of 0.1 and mean equal to the value of the node
to its left, log (K600,,_;).

The prior on each daily K600, value was a normal distribution centered on the corresponding
prediction from the pooled K600~ Q relationship. The standard deviation of that normal distribution
was itself a fitted value, shared across days and drawn from a half-normal prior distribution with mean 0
and standard deviation equal to 2% of of the median K600, from a preliminary run of a model without
pooling (streamMetabolizer model name “m_np_oi_tr_plrckm.stan”).
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The model was applied using streamMetabolizer version 0.10.1 and R version 3.3.0 on Linux nodes in
the HTCondor® computing cluster at the USGS Wisconsin Water Science Center. Each model was
initially run as four MCMC chains with 1000 warmup steps and 500 saved steps on each chain. Models
that failed to converge with this number of iterations were re-run with 2000 warmup steps and 2000
saved steps. Individual models were run on 4 cores in parallel and required a median of 9.5 h and mean of
12.8 h per site-year of data, for a total of 17,168 h (715 d) of processing time. Because model runs were
distributed over up to 300 cores at a time on the HTCondor cluster, the final batch run required roughly
3 wall-clock weeks.

Preparation of model outputs

Internally, streamMetabolizer fits Bayesian models using the Stan software package and the rstan R
interface to Stan*’. Stan, and therefore streamMetabolizer, returns the following posterior distribution
measures for every fitted parameter: mean, standard error, standard deviation, and the 2.5%, 25%, 50%,
75%, and 97.5% percentiles of the MCMC samples. For streamMetabolizer metabolism models, the fitted
parameters include daily GPP; ER; and K600, the K600, values at nodes defining the K600~ Q
relationship for each site, and overall model parameters including the standard deviations of [O,]
observation error, process error, and deviations of daily K600, from the pooled K600~ Q relationship. All
distribution measures are reported for all parameters in “6. Model outputs” (Data Citation 1). In our
streamlined table of daily GPP, ER, and K600 estimates for all sites (8. Metabolism estimates and
predictors, Data Citation 1), we single out the 50% percentile value as the central estimate, and we report
the 2.5% and 97.5% percentiles as bounds of the 95% credible interval.

Stan and streamMetabolizer also return two Bayesian model diagnostics for each parameter. The split
R-hat statistic (Rhat, also known as the Gelman-Rubin convergence statistic), measures the consistency of
the suite of the Markov chains with respect to a parameter’”. The number of effective samples
(n_eff) quantifies the estimation power of the Markov chains in terms of their equivalence to a number of
independent samples, recognizing that each Markov chain sample is correlated with others and thus
provides less new information than an independent sample**.

In addition to the above posterior distribution measures and model diagnostics, we also computed the
following metrics for each model: the median K600, the range of K600, estimates between the 10% and
90% percentiles (to screen for physically unlikely variation in K600), the percent of GPP estimates < -0.5
and the percent of ER estimates > 0.5 (both are biologically unrealistic outcomes), and the number of
hours that the model ran.

44,45

Code Availability

For modeling we used version 0. 10 1 of the streamMetabolizer package'®. A snapshot of the package
exactly as used for this analysis is at*®. The development version of the package is at https://github.com/
USGS-R/streamMetabolizer.

To support the activities of data acquisition, data preparation before modeling, preparation of the data
release, and posting of data release files to the ScienceBase repository, we developed R scripts in the form
of a project-specific package, mda.streams. A snapshot of the package as used for this analysis is at*’. The
development version of the package is at https://github.com/USGS-R/mda.streams.

Our complete workflow is documented as a collection of R scripts in a third repository, named
stream_metab_usa, which makes use of the mda. streams and streamMetabolizer packages. This
repository also makes heavy use of the remake R package®, which we used to orchestrate the flow of data
and files through the many processing scripts. A snapshot of the scripts as used for this analysis is at”"
The development version of the package is at https://github.com/USGS-CIDA/stream_metab_usa.

Data Records
The data are stored in the USGS ScienceBase online data repository (Data Citation 1) and are organized
into data items with titles “1. Site data” through “8. Metabolism estimates and predictors” (Table 1).

“1. Site data” provides USGS site information including the site ID, site name, coordinates and the
coordinate datum, site altitude and the altitude datum, NWIS site type classification, and an associated
NHDPlusV2 ComlID. Six additional columns, prefixed by “dvqcoefs”, contain coefficients ¢, f, a, b, k, and
m from the hydraulic geometry analysis®. Three final columns, prefixed by “struct”, provide site-level
indicators of possible interference to metabolism estimation by infrastructure (canals, dams, and
permitted waste discharge locations). This table combines information described in “Methods:
Acquisition of site information” and “Technical Validation: Site suitability”.

“2a. Site coordinates” and “2b. Catchment boundaries” are two shapefiles containing site point
locations and catchment boundary polygons, respectively. Each shapefile includes attributes for the NWIS
site ID and the data source for spatial information. These files were prepared as described in “Methods:
Acquisition of site information”.

“3. Timeseries data” provides timeseries data in separate files for each site and each variable listed in
Tables 3 and 4 (i.e., both downloaded and computed variables). See “Methods: Acquisition of timeseries
observations” and “Methods: Derivation of additional timeseries values”.

“4. Model inputs” also provides timeseries data, but in this case for a subset of variables as merged into one
file per site and formatted for use in streamMetabolism models. See “Methods: Preparation of model inputs”.
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Figure 3. Temporal distribution of metabolism estimates at each site. Each site forms a row, and horizontal
line segments represent periods of continuous daily metabolism estimates. Colors give density of estimates,
ranging from 17 to 365 daily estimates per year. For the purpose of this figure, sites were considered “seasonal”
if the number of metabolism estimates in January was fewer than 1/24 the total number of estimates at a site
(112 of 356 sites meet this criterion).

“5. Model configurations” describes the configuration of each model application, including the
provenance of the input data, the temporal resolution expected for the input data, and model priors and
other specifications. This file was produced by a combination of scripted algorithms and human input,
and it was directly ingested by the config to_metab() function in our project-specific R package (mda.
streams) to fit the metabolism models.

“6. Model outputs” reports the streamMetabolizer model outputs in detail at three levels per model:
daily estimates of GPP,, ER;, and K600, nodes defining the K600~ Q relationship, and overall model
parameters. At each level we report all posterior distribution measures and model diagnostics produced
by streamMetabolizer, for all parameters tracked by the model. Results are bundled into one zip file per
model application. Daily estimates are indexed by date; nodes in the K600 ~ Q relationship are indexed by
integers (4 to 75 nodes per model, median of 28), and overall model parameters only have one instance
per model. See “Methods: Preparation of model outputs”.

“7. Model diagnostics” combines all high-level diagnostics into a single table with one row per model,
including the model-level diagnostics reported by streamMetabolizer and the additional diagnostics
computed as in “Methods: Preparation of model outputs”. This table also includes the results of our
algorithm-based model assessment described below in “Technical Validation: Model performance”.

“8. Metabolism estimates and predictors” combines daily metabolism estimates into a single table for
all sites, with one row per site-date combination. Values are reported for GPP, ER, and K600, and are
limited for simplicity to the 2.5%, 50%, and 97.5% percentiles, Rhat, and n_eff for each parameter (see
“Methods: Preparation of model outputs”). In addition to model outputs, this table includes 11 potential
predictors of metabolic rates to facilitate further analyses of this dataset. These predictors are also
included in “3. Timeseries data” (Tables 3 and 4) or are easily computed from those timeseries. Predictors
include daily means of [O,], saturation oxygen concentrations, water temperature, shortwave radiation,
stream depth, discharge, and velocity; the daily [O,] amplitude, the number of hours of daylight
(PPFD > 0), and the 80% oxygen turnover distance. Sources for the first 10 predictors are as in Tables 3
and 4, while the turnover distance equation is in “Technical Validation: Site suitability”.

Metabolism estimates and predictors are available for 356 sites (Fig. 2). Each site has between 61 and
3296 daily metabolism estimates, where 3296 dates is equivalent to just over 9 years (Fig. 3). The median
density of these observations is 266 dates per year (range of 17 to 365 dates per year), with only 18 sites
having fewer than 90 dates per year.
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Technical Validation

Model requirements

All single-station metabolism models, including those used for this analysis, make inferences about
metabolic activity in a stream reach extending upstream from the monitoring site. That upstream reach
must meet several model assumptions to ensure accurate metabolism estimates'>*>%; (a) The reach must
be well mixed in all dimensions, such that sensor observations describe the full stream reach accurately.
(b) Rates of metabolism and gas exchange must be homogeneous throughout the reach. (c) Sources of
oxygen to the reach must be limited to photosynthesis, gas exchange with the atmosphere, and water
flowing from upstream. Sites are more likely to meet assumptions a and b when flow is unidirectional
(not tidal or intermittent). Rapid variations in discharge and water sources, such as those occurring
during storm onset, may violate assumptions b and c. To meet assumption c, the reach should also be free
of groundwater inputs, hydrology-altering structures such as dams and canals, and [O,]-altering inputs
such as wastewater.

Additionally, the accuracy of metabolism estimates depends on the presence of an [O,] signal that is
strong enough to enable the model to distinguish among the [O,]-altering processes of photosynthesis,
respiration, and gas exchange; these conditions are best met when GPP is high and K600 is low”'**,

We evaluated compliance with model requirements in three ways: we screened each day’s input data
for evidence of violated assumptions, we looked for observable structural interferences, and we assessed
the model output for signs of unrealistic predictions. Such assessments are especially important to this
analysis because none of the input data were originally collected, nor site locations selected, for the
express purpose of modeling metabolism.

Despite our substantial efforts to screen for unmet model requirements, these technical validation
measures are neither exhaustive nor foolproof. Users should handle the model outputs with some
skepticism and understanding that these estimates are only the best available, and likely imperfect, even
for those dates, sites, and models for which no specific problems have been identified.

Defining reach length

The length of the relevant upstream reach varies by site and over time because it is the distance over
which the dissolved O, pool undergoes near-complete turnover>>. For the purposes of this data release,
we defined the reach length on each day (L, m) as the distance required for 80% gas renewal in the
stream channel:

Li=-In(1-0.8)x v/KO24 (2)

where v is the daily average stream velocity (m d ™', computed as in “Derivation of additional timeseries
values”) and KO2, is the oxygen-specific gas exchange rate coefficient (d™*). KO2, can be calculated from
K600, as

K024 = K600, (Sco, /600) %7 (3)

where Sco, is the temperature-dependent Schmidt number™.

Input data quality

We restricted our modeling to only those days with entirely positive flow, avoiding days of intermittent
flow or tidal variation. Dates that did not meet this criterion are included in the prepared input data (4.
Model inputs, Data Citation 1) but are excluded from the daily model estimates (8. Metabolism estimates
and predictors, Data Citation 1). The tables of daily values in the detailed model output (6. Model
outputs, Data Citation 1) contain messages explaining the exclusion of any dates that had some data but
did not lead to a daily estimate.

We considered also excluding days with storm-driven discharge peaks, but preliminary inspection
suggested that storm peaks do not always lead to unrealistic metabolism estimates. We have therefore left
these dates in the dataset; however, we encourage users to detect and remove such days if the storm-day
metabolism estimates appear to be unrealistic for the user’s target sites or if higher uncertainty about the
accuracy of storm-day estimates cannot be tolerated.

Another aspect of input data quality that we cannot thoroughly assess is the accuracy of estimates of
mean depth in the upstream reach. Mean depth is a direct scaling factor in the estimation of GPP and ER
(Equation 1), such that metabolism estimates are sensitive to the depth value used. While we consider our
approach for estimating mean depth to be highly data-rich and the best currently available at this
national scale, we lack uncertainty information about these depths. As new datasets of stream depth
become available in the future, we encourage users of our dataset to consider re-estimating metabolism
with those new depth estimates and any accompanying uncertainty information, combined with the other
input data already reported in our dataset. Improved characterization of reach depths should be an
effective, if costly, next step in refining the metabolism estimates reported here.

Site suitability

Our initial assessment of site suitability included visual inspection of discharge records for large diel
variation in flow owing to tides, reservoir management, wastewater discharge, water withdrawal. We also
inspected publicly available aerial imagery (https://www.google.com/maps) to identify impoundments
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Structure P, Ps5y Pgo Pys
Canal/ditch 61 13 13 246
Dam 169 29 30 105
NPDES 130 38 27 138
Any 210 32 27 64

Table 5. Counts of sites by distance to nearest structure, for the 333 modeled sites with catchment

information. Column names give the lower bound on the distance, as a percentile of each site’s daily reach
lengths, to the nearest structure of each type. For example, the nearest canal or ditch is located between the Oth
and 50th percentile of reach lengths at 61 modeled sites; the nearest canal or ditch is beyond the 95th percentile
at 246 sites; and 64 sites have no known structure closer than the 95th percentile of their reach lengths.

and other structures. In the interests of transparency and reproducibility, we ultimately declined to
exclude or flag sites on the basis of these assessments. However, we encourage users of this data to
conduct similar qualitative assessments to ensure that sites meet the needs of their analyses.

We translated our visual inspection into a reproducible assessment with respect to the presence of
dams, canals, and pollutant discharge points. Because the effects of such structures on metabolism
estimates are variable and difficult to predict, we retained sites near such structures but provide indicators
of the proximity of each site to those structures.

We gathered location data for structures of each type: dams in the National Inventory of Dams”’;
canals and ditches in the National Hydrography Database, Version 2 (NHDPlusV2, http://www.horizon-
systems.com/NHDPlus, accessed November 16, 2015)*% and permitted point sources in the National
Pollution Discharge Elimination System®®. Spatial data layers for these features were clipped to
watersheds upstream of the sites in our dataset. The geodetic distance between the site location and the
nearest upstream feature of each type was then calculated using the function GenerateNearTable in the
arcpy library in Python 3.6

The distances between sites and structural features were compared with the distributions of calculated
reach lengths (80% O, turnover distances, Equation 2). The structure indicators in “1. Site data” (Data
Citation 1) specify whether a structure was located beyond the 0th, 50th, 80th, or 95th percentile of daily
reach lengths at a site. These correspond to fewer than 0%, 50%, 20%, and 5% of the modeled days having
< 80% gas turnover between the upstream feature and the probe, respectively (Table 5).

A high value of a structural interference metric on a site or date is no guarantee that all model
requirements have been met. In particular, site metrics are unavailable where catchment shapefiles were
unavailable (23 sites), and we lack data on all possible interferences; others could include dams too small
to be documented in the National Inventory of Dams, heterogeneity in stream habitat or riparian shading
within the upstream reach, or natural inputs of O,-depleted groundwater.

Model performance

To summarize numerous metrics of model performance, we developed an algorithm to label each model
as likely deserving of Low, Medium, or High confidence. This model assessment is based only on readily
computable information and is intended only as guidance, not an incontrovertible evaluation, such that
an expert familiar with a site or its oxygen patterns could reasonably override the assessment given here.
To support customized assessments, we also provide site information (1. Site data, Data Citation 1), raw
data for [O,] and other variables (“3. Timeseries data” and “4. Model inputs”, Data Citation 1), and Rhat
and n_eff values for all fitted parameters (6. Model outputs, Data Citation 1).

Our summary model assessment was based on model convergence, variation in predicted K600, and
presence of biologically unrealistic GPP and ER values (Table 6). We inferred problems with overall
convergence when Rhat >1.2 for either of two key parameters: the standard deviation of K600, deviations
from the pooled K600~ Q relationship (fQSD(KﬁOO)) and the standard deviation of process error (ﬁSD(SP)).
We also considered the difference in K600, estimates between the 10th and 90th quantiles (Pgo—Pj,),
which we interpreted as unrealistic when >50 because K600 is constrained by channel shape so should
not vary dramatically within a site; we gave the highest ratings to models for which Pgy—P;o < 15. Finally,
because it is biologically unrealistic for GPP to be negative or ER positive, we computed the percentages of
GPP, estimates below —0.5 and ER, values above 0.5, assuming values between -0.5 and 0.5 are difficult to
distinguish from 0. We assigned Low confidence when >50% of GPP, values were < —0.5 or >50% of
ER, values were >0.5, Medium confidence when 25%-50% were beyond these thresholds, and High
when < 25% were beyond these thresholds. Although we treated GPP,; and ER; similarly, note that when
models are classified as Medium or Low confidence only because of positive ER;, the GPP,; estimates are
often still reliable: positive ER; often reflects a miscalibrated oxygen sensor, which does not affect GPP,
estimates because those are based on [O,] changes rather than absolute values.
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Measure Low Medium High
max(Rspke00)» Rso(s,,)) >1.2 (49) na. < 1.2 (384)
K600 range (Poy — Pyo, d') >50 (7) 15-50 (52) <15 (374)
Negative GPP (%) >50 (5) 25-50 (4) <25 (424)
Positive ER (%) >50 (17) 25-50 (35) <25 (381)
Overall confidence 71 63 299

Table 6. Model output assessment criteria and counts of models meeting each criterion. Meeting any
of the criteria in the Low column earns a model Low confidence, and meeting all criteria in the High column is
required to earn High confidence. Parentheses in the table body contain the number of models meeting each
criterion.

Assessments of each model were summarized at the site level (recall that some sites had multiple
models) in the form of (a) a minimum site confidence and (b) a comma-separated list of all model
confidence values that were assigned to models for that site (7. Model diagnostics, Data Citation 1).

Usage Notes

The approach taken in this modeling effort emphasizes breadth over precision, in that modeling was
attempted for the largest feasible number of sites and days. Some sites and days for which model
estimates are reported likely have inaccurate estimates. Analyses using these model estimates will vary in
their requirements for the accuracy of metabolism estimates, so we report the largest possible number of
estimates with the expectation that most data users will filter this complete dataset down to the estimates
that are appropriate for their analysis. For example, analyses of seasonal patterns or annual averages
across many sites may be more forgiving than comparisons of a specific pair of sites on individual days.
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