
REVIEW

Cellular Immunotherapies for Multiple Myeloma:
Current Status, Challenges, and Future Directions

Zhi-Ling Yan . Yue-Wen Wang . Ying-Jun Chang

Received: December 4, 2021 /Accepted: January 20, 2022 / Published online: February 1, 2022
� The Author(s) 2022

ABSTRACT

Multiple myeloma (MM) remains incurable due
to relapse, although the use of proteasome
inhibitors, immunomodulatory drugs, CD38-
targeting antibodies, and autologous stem cell
transplantation (auto-SCT) significantly
improve the clinical outcomes of patients with
newly diagnosed MM. In recent years, the
introduction of chimeric antigen receptor T-cell

(CAR T-cell) therapy has brought hope to
patients with refractory and relapsed MM. The
graft-versus-myeloma effect of allogeneic SCT
provides the possibility for curing a subset of
MM patients. In this review, we summarize the
recent advances and challenges of cellular
immunotherapies for MM, focusing on auto-
SCT, allogeneic SCT, and CAR T-cell approa-
ches. We also discuss future directions, and
propose a specific algorithm for cellular thera-
pies for MM and probability of minimal residual
disease-directed therapy.
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Key Summary Points

Autologous stem cell transplantation
(auto-SCT) remains the standard of care
for transplant-eligible patients with newly
diagnosed multiple myeloma.

Chimeric antigen receptor T-cell (CAR
T-cell) therapy has been successfully used
for the treatment of refractory/relapsed
(R/R) Multiple myeloma (MM). The
preliminary results of CAR T-cell bridging
to SCT for patients with R/R MM are
promising.

Long-term follow-up suggests that
allogeneic SCT can provide an
opportunity for curing a subset of MM
patients.

In the era of new targeted therapies,
minimal residual disease-directed
treatment or intervention represents an
important step for realizing precision
medicine in patients with MM.

INTRODUCTION

Multiple myeloma (MM) is the second most
common hematologic malignancy, responsible
for 98,437 deaths globally in 2016 [1–5]. At
present, patients with MM cannot be cured
[2, 3, 5, 6], although the clinical use of
immunomodulatory drugs (IMiD), proteasome
inhibitors, cluster of differentiation 38 (CD38)-
targeting antibodies, and autologous stem cell
transplantation (auto-SCT) has significantly
extended survival time [1, 7–13]. In recent
years, the introduction of chimeric antigen
receptor T-cell (CAR T-cell) therapy has
improved the prognosis of refractory and
relapsing MM (R/R-MM) [6, 14–25]. Moreover,
long-term follow-up has offered preliminary
evidence that the existence of the graft-versus-
myeloma effect after allogeneic SCT (allo-SCT)
can improve outcomes and provide the

possibility for curing a subset of patients with
newly diagnosed MM (NDMM) [26–34]. Herein,
we discuss the recent advances and challenges
of cellular immunotherapies for MM, focusing
mainly on auto-SCT, allo-SCT, and CAR T-cell
approaches (Tables 1, 2, and 3). We provide an
outlook on future prospects and challenges in
cellular therapy and note that dealing with
relapse [35], minimal residual disease (MRD)-
directed therapy [7, 36–39], and combinations
of different cellular therapy methods are active
research areas in terms of improving prognosis
for MM patients. This article is based on previ-
ously conducted studies and does not contain
any new studies with human participants or
animals performed by any of the authors.

CURRENT STATUS

Auto-SCT

Auto-SCT for Patients with NDMM
In the era of targeted therapies such as BCMA-
CD3 bispecific antibody, CAR natural killer (NK)
cells, belantamab mafodotin, and venetoclax,
auto-SCT remains the standard of care for
transplant-eligible (TE) patients with NDMM
(Table 1) [4, 5, 9, 10, 12, 13, 40–62].

Induction Therapy Current guidelines [2–4]
recommend triplet regimens as induction ther-
apy (IT) for TE patients with the addition of an
IMiD, such as bortezomib, lenalidomide, and
dexamethasone (VRD), bortezomib, thalido-
mide, and dexamethasone (VTD), and carfil-
zomib, lenalidomide, and dexamethasone
(KRD), which are preferred to cyclophos-
phamide-containing regimens such as borte-
zomib, cyclophosphamide, and dexamethasone
(VCD), and carfilzomib, cyclophosphamide,
and dexamethasone (KCD).

In a recent study, 270 TE patients with
NDMM were randomized 1:1 to daratumumab
(DARA) plus RVD (D-RVD) and RVD groups
[45]. The authors observed a higher stringent
complete response (sCR) rate for cases in the
D-RVD group than that for cases in the RVD
group (42.4% vs. 32.0%; one-sided P = 0.068) by
the end of post-auto-SCT consolidation. After a
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Table 1 Recent studies on the outcomes of MM patients who received autologous stem cell transplantation

Author, year, Ref No.
Pts.

Age
(M)

Diagnosis Treatment modality Maintenance after
transplant

PFS

Gay et al. 2021 [60] 158 57 NDMM KRD ? auto-SCT KR or R alone 4 years 69%

157 57 NDMM KRD12 KR or R alone 4 years 56%

159 57 NDMM KCD ? auto-SCT KR or R alone 4 years 51%

Moreau et al. 2021

[12]

543 59 NDMM D-VTD ? auto-SCT DARA or obser 1.5 years 93%

542 58 NDMM VTD ? auto-SCT DARA or obser 1.5 years 85%

Jackson et al. 2021

[53]

1021 61 NDMM CRD ? auto-SCT R or R and vorinostat

or obser

36.00 months

1021 61 NDMM CTD ? auto-SCT R or R and vorinostat

or obser

33.00 months

Usmani et al. 2021

[10]

52 66 HR-

NDMM

RVD ? auto-SCT RVD 33.64 months

48 62 HR-

NDMM

RVD-

elotuzumab ? auto-

SCT

RVD ? elotuzumab 31.47 months

Goldschmidt et al.

2021 [61]

139 61.3 R-MM RD ? auto-SCT R 20.70 months

138 61.2 R-MM RD RD 18.80 months

Mai et al. 2021 [55] 353 B 60

(S1)

NDMM Tandem auto-SCT R N/A

107 61–65

(S2)

NDMM Tandem auto-SCT R HR 1.28;

P = 0.11

141 66–70

(S3)

NDMM Tandem auto-SCT R HR 1.00;

P = 0.99

Baertsch et al. 2021

[46]

138 56 NDMM BTZ-based triplet

IT ? auto-SCT

BTZ N/A

183 57 NDMM BTZ-based triplet

IT ? auto-SCT

R HR 0.83;

P = 0.18

Gregersen et al. 2021

[51]

82 60 R-MM KCD ? auto-SCT KD 25.10 months

86 62 R-MM KCD ? auto-SCT Placebo 16.70 months

Jackson et al. 2021

[52, 53]

526 61 NDMM KRDc R or obser 3 years 81.8%

530 62 NDMM RDc/TDc R or obser 3 years 75.1%
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median follow-up of 22.1 months, the sCR rates
(62.6% vs. 45.4%; P = 0.0177) and MRD nega-
tivity (10–5 threshold) rates (51.0% vs. 20.4%;
P\ 0.0001) were further improved. Recent
updated data showed that the estimated
36-month progression-free survival (PFS) rate
was 88.9% and 81.2% for the D-RVD group and
RVD group, respectively. Subgroup analysis
showed the superiority of DARA and lenalido-
mide over placebo for maintenance. These
results support the use of D-RVD, DARA, and
lenalidomide in TE NDMM patients.

In the randomized, open-label, phase 3
CASSIOPEIA trial, Moreau et al. [63] first
demonstrated the clinical benefit of DARA plus
standard of care in TE patients with NDMM,
including a better sCR rate (D-VTD 29% vs. VTD
20%, P = 0.0010), a better MRD negativity rate
(D-VTD 64% vs. VTD 44%, P\0.0001), and a
longer median PFS from the first randomization
(hazard ratio 0.47, P\0.0001). Roussel et al. [8]
further reported the clinical benefits observed
with D-VTD versus VTD, both of which

supported the addition of DARA to standard
regimens in patients with NDMM. The benefits
of adding DARA to RD led to increased overall
survival (OS) and PFS in patients with NDMM
ineligible for auto-SCT [11]. In a phase III trial,
Goldschmidt et al. [64] for the first time
observed that, compared with RVd, RVd with
the anti-CD38 monoclonal antibody (CD38-
moAb) isatuximab was associated with higher
MRD negativity after IT in TE patients with
NDMM.

Overall, for TE patients with NDMM, the aim
of IT was to achieve maximal response with four
to six cycles of therapy before auto-SCT. The
European Medicines Agency has approved
D-VTD as a new standard of care for IT pre-auto-
SCT for patients with TE NDMM [2–4]. There-
fore, in the near future, quadruplet regimens
such as D-RVD and isatuximab ? VRD might be
accepted as novel standard approaches.

Conditioning Regimen In a recent study by
Bashir et al. [65], 205 patients were randomly

Table 1 continued

Author, year, Ref No.
Pts.

Age
(M)

Diagnosis Treatment modality Maintenance after
transplant

PFS

Voorhees et al. 2020

[45]

104 59 NDMM D-RVD ? auto-SCT R or R and DARA 2 years 95.8%

103 61 NDMM RVD ? auto-SCT R or R and DARA 2 years 89.8%

Tacchetti et al. 2020

[9]

241 56.3 NDMM VTD ? auto-SCT DEX 10 years 34%

239 55.9 NDMM TD ? auto-SCT DEX 10 years 17%

Dimopoulos et al.

2019 [66]

395 58 NDMM Auto-SCT Ixazomib 26.50 months

261 60 NDMM Auto-SCT Placebo 21.30 months

MM multiple myeloma, Ref reference, Pts. patients, No. number, M median, PFS progression-free survival, NDMM newly
diagnosed MM, R-MM relapsed MM, KRD carfilzomib, lenalidomide, dexamethasone, KR carfilzomib, lenalidomide,
R lenalidomide, auto-SCT autologous stem cell transplantation, KCD carfilzomib, cyclophosphamide, dexamethasone, D-
VTD daratumumab, bortezomib, thalidomide, dexamethasone, DARA daratumumab, CRD cyclophosphamide, lenalido-
mide, dexamethasone, CTD cyclophosphamide, thalidomide, dexamethasone, HR-NDMM high-risk NDMM, RVD (VRD)
bortezomib, lenalidomide, dexamethasone, RD lenalidomide, dexamethasone, BTZ bortezomib, IT induction therapy, obser
observation, KD carfilzomib, dexamethasone, KRDc carfilzomib, lenalidomide, dexamethasone, and cyclophosphamide, RDc
lenalidomide, dexamethasone, and cyclophosphamide, TDc thalidomide, dexamethasone, and cyclophosphamide, DEX
dexamethasone
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assigned to a group receiving melphalan alone
(MEL group, n = 98) and those receiving busul-
fan plus melphalan (BU/MEL group, n = 104).
The authors reported a median PFS of
43.5 months and 64.7 months for the MEL and
BU/MEL groups, respectively. Although several
researchers have demonstrated favorable sur-
vival outcomes with BU/MEL and carmustine/
MEL conditioning compared with those of
high-dose MEL (HDM), HDM (200 mg/m2) has
remained the recommended conditioning regi-
men for TE patients with NDMM [2–4, 41]. In
our opinion, new multicenter randomized
studies are needed to elucidate whether BU/
MEL and carmustine/MEL could become a new
standard of care in the future.

Consolidation and Maintenance Ther-
apy Consolidation or maintenance therapy
can maximize the benefit of auto-SCT by pro-
longing PFS from the initial diagnosis
[12, 43, 45]. The approaches for consolidation
include bortezomib alone or plus other agents
such as VTD and VRD, and for maintenance
include lenalidomide [44, 52], bortezomib
(especially for patients with high-risk cytoge-
netics), and ixazomib. However, thalidomide
was not recommended [2–4, 41].

Recent advances in consolidation and
maintenance therapy have mainly focused on
DARA and ixazomib. Voorhees et al. [45]
showed that the depth of response in patients
with TE NDMM could be improved by D-RVD
consolidation, with no new safety concerns.
Moreau et al. [12] found that the risk of disease
progression or death was significantly reduced
after DARA maintenance every 8 weeks for
2 years compared with observation only. Data
obtained from the oral ixazomib maintenance
following autologous stem cell transplantation-
MM3 study demonstrate a significantly higher
rate of deepening responses with ixazomib ver-
sus placebo maintenance as well as a correlation
of deepening response with prolonged PFS [43].
Therefore, DARA or ixazomib maintenance
could prolong PFS and represent a new option
for maintenance therapy after auto-SCT in
patients with NDMM [66].
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Salvage Auto-SCT
According to the current literature [2–4, 41],
salvage auto-SCT is recommended for patients
whose disease was controlled by the first auto-
SCT for 18 months or longer. In addition, sal-
vage or delayed auto-SCT could also be used as
consolidation in first relapse for those choosing
not to proceed to auto-SCT initially. For
patients with DARA-refractory MM, one study
reported median PFS and OS of 7.2 and
19.3 months, respectively, for an entire patient
cohort receiving salvage auto-SCT [67]. The
authors showed that factors including younger
age, better performance status, low-risk GEP70
gene expression profile, and longer time inter-
val from initial MM diagnosis/initial auto-SCT
to salvage auto-SCT were associated with
improved survival. In the era of novel agent
therapy, the benefit of salvage auto-SCT was
further confirmed in the German randomized

myeloma multicenter group phase III ReLApsE
trial [61].

More recently, data from the Center for
International Blood and Marrow Transplant
Research registry suggested that patients who
received maintenance regimens, including
lenalidomide (42%), pomalidomide (13%), and
bortezomib (13%), after salvage auto-SCT
showed superior outcomes, including non-re-
lapse mortality (NRM; 2% vs. 9.9%, P\0.01),
relapse (70.2% vs. 80.3%, P\0.01), PFS (27.8%
vs. 9.8%, P\ 0.01), and OS (54% vs. 30.9%,
P\ 0.01), at 5 years compared to the no-main-
tenance group [56]. Available data supported
the notion that maintenance was also recom-
mended for patients receiving salvage auto-SCT
[2–4, 41].

In summary, auto-SCT remains an important
part of therapy for patients with NDMM and
relapsing MM (Table 1). The available novel

Fig. 1 Proposed algorithm for cellular therapies to treat
MM and probability of MRD-directed therapy. MM
multiple myeloma, MRD minimal residual disease, IT
induction therapy, KRD carfilzomib, lenalidomide, dex-
amethasone, VTD bortezomib, thalidomide, and dexam-
ethasone, VCD bortezomib, cyclophosphamide, and
dexamethasone, D-VTD daratumumab plus VTD, KRD
carfilzomib, lenalidomide, and dexamethasone, D-KRD

daratumumab plus KRD, allo-SCT allogeneic stem cell
transplantation, auto-SCT autologous stem cell transplan-
tation, MRDneg negative MRD, NDMM newly diagnosed
MM, HR-MM high-risk MM, BiTEs bispecific T-cell
engagers, Dara daratumumab. �Indicates that patients with
standard-risk MM at diagnosis should not be treated
according to MRD status
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agents have been incorporated into induction,
conditioning, consolidation, and maintenance
regimens in relation to auto-SCT, which offered
both PFS and OS benefits, even in patients with
high-risk disease [38, 45, 60, 68–70]. The role,
timing, and outcomes of auto-SCT will continue
to be updated and improved as next-generation
novel therapies continue to be developed and as
our ability to detect MRD continues to improve.

CAR T-Cell Therapy

CAR T-cell therapy has achieved significant
success in the treatment of R/R MM both in
China and in other countries of the world
(Table 2) [6, 14–25, 71–73]. At present, at least
600 patients with R/R MM who received CAR
T-cell therapy have been reported
[6, 14–25, 71–73]. The targeted antigens inclu-
ded B-cell maturation antigen (BCMA), CD38,
and CD19, although preclinical and clinical
trials on other antigens such as CD138, CD56,
signaling lymphocyte activation molecule F7

(SLAMF7), natural killer group 2 member D
(NKG2D) [74], and orphan G protein-coupled
receptor class C group 5 member D (GPRC5D)
were ongoing. A fludarabine and cyclophos-
phamide regimen was routinely used for lym-
phodepletion in nearly all publications. The
overall response (OR) and CR rates after CAR
T-cell therapy ranged from 73% to 100% and
from 33% to 72%, respectively. The cytokine
release syndrome (CRS) rate ranged from 71% to
100%, and 1-year PFS ranged from 50% to 77%.
Overall, current CAR T-cell therapy for patients
with R/R MM showed a remarkably high OR
rate, but durable response has not yet been
observed [6, 14–25, 71–73]. Therefore, some
questions still remain in this field: first, the
specific mechanisms underlying relapse and
immune escape; second, how to decrease the
incidence of CAR T-cell toxicity and determine
the best treatment; and third, how to deal with
the issue on CAR T-cell access and cost. Apart
from CAR T-cell therapy for BCMA, both
belantamab mafodotin, an immunoconjugate
targeting BCMA, and bispecific T-cell engager, a

Fig. 2 Underlying mechanisms of CAR T-cell therapy
resistance or relapse after transplantation. � BCMA could
be actively cleaved from the tumor cell surface by the
ubiquitous multi-subunit c-secretase complex; ` reversible
antigen loss could be provoked by CAR T-cell trogocytosis;
´ inhibition of CAR T-cell function by macrophages; ˆ
MDSC and MSC as well as ˜ IL-10 and IL-18 in bone

marrow microenvironment could induce T-cell or CAR
T-cell exhaustion; Þ loss of HMGA and PA2G4 could
promote proliferation, migration, and adhesion abilities of
MM cells. CAR T-cell chimeric antigen receptor T cell, Mø
macrophage, MDSC myeloid-derived suppressor cells,
MSC mesenchymal stem cells, DC dendritic cells, IL-10
interleukin-10
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BiTE� molecule binding BCMA on MM cells and
CD3 on T cells, represent novel strategies for
R/R MM [75, 76].

Allo-SCT

Allo-SCT remains a curative treatment for
patients with hematological disease, particu-
larly in the era where everyone has a transplant
donor because of the wide application of hap-
loidentical allograft [77, 78]. Progress has been
made in recent years (Table 3)
[26–34, 58, 79–85]; although allo-SCT for MM
has not been routinely recommended, it might
be considered in select high-risk patients or in
the context of a clinical trial [2–4]. In a phase 3
trial, Knop et al. [32] compared the outcomes of
patients with NDMM with del(13q )who
received either tandem auto-SCT (n = 199) or
auto-SCT followed by reduced-intensity condi-
tioning allo-SCT (auto-/allo-SCT, n = 126). After
a median follow-up of 91 months, patients in
the auto-/allo-SCT group experienced longer
PFS (34.5 vs. 21.8 months, P = 0.003) but higher
2-year NRM (14.3% vs. 4.1%, P = 0.008) com-
pared to those in the auto-SCT group. Subgroup
analysis showed that treating patients harbor-
ing both del(13q) and del(17p) with auto-/allo-
SCT (n = 19) achieved longer median PFS (37.5
vs. 6.1 months, P = 0.0002) and OS (61.5 vs.
23.4 months, P = 0.032) compared to treatment
with tandem auto-SCT (n = 6). These findings
suggested that auto-/allo-SCT significantly
extended PFS versus tandem auto-SCT in
del(13q) MM, and indicate some survival bene-
fit for first-line allo-SCT in high-risk MM.

More recently, Costa et al. [30] performed a
pooled analysis to compare the outcomes
between tandem auto-SCT (n = 899) and auto-/
allo-SCT (n = 439) after IT based on individual
patient data from four clinical trials. After a
median follow-up of 118.5 months for sur-
vivors, the authors observed that patients who
underwent auto-/allo-SCT had lower 10-year
NRM (8.3% vs. 19.7%, P\0.001) and risk of
relapse (61.6% vs. 77.2%, P\0.001) and better
PFS (HR 0.84, P = 0.004) and OS (HR 0.84,
P = 0.02). This study suggested that the exis-
tence of graft-versus-myeloma after allograft

could improve outcomes and cure a subset of
patients.

Currently, the choice of indications for allo-
SCT in patients with high-risk MM or R/R MM is
fairly significant [26–28, 32, 34, 79]. It was
expected that the discovery of new biomarkers
that could be used to identify patients who
would benefit from allograft would lead to a
greater number of cases that would be cured,
not just those cases with high-risk MM, such as
del(17p) patients and those who experienced
early relapse after drug treatment with or with-
out auto-SCT (Fig. 1).

CHALLENGES WITH CELLULAR
IMMUNOTHERAPIES

How to Cope with Relapse After Auto-SCT
or CAR T-Cell Resistance

Understanding the mechanisms of relapse after
either transplantation or CAR T-cell therapy
might provide novel insight into the prevention
of recurrence [35, 86–90]. Available reports in
the literature suggest several mechanisms
[22, 88, 91, 92]: First, CARs could provoke
reversible antigen loss through trogocytosis,
which leads to decreased target density on
tumor cells and abated T-cell activity by pro-
moting fratricide T-cell killing and T-cell
exhaustion [93]. Second, CAR T-cell therapy
could induce the phenotype switch of the
macrophages by upregulating the expression of
programmed death ligand 1 and indoleamine
2,3-dioxygenase, consequently inhibiting the
cytotoxicity of CAR T cells and proliferation of
activated T cells [94]. Other mechanisms for
CAR T resistance included CAR T-cell exhaus-
tion, release of interleukin-10 (IL-10) and IL-18
by MM cells, and clone selection of MM cells
(Fig. 2). Strategies for CAR T-cell therapy resis-
tance included the following [89, 90, 95, 96]:
(i) cooperative killing and combinatorial tar-
geting to augment tumor responses to
immunotherapy; (ii) enhanced antitumor
effects of CAR-T therapy by combination with
blockade of the AIM2 inflammasome and a1-
AR; (iii) simultaneous application of anti-BCMA
CAR-T with lenalidomide; (iv) treating R/R MM
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patients with CAR-T-cell plus immune check-
points inhibitors; (vi) novel CAR-T design
[89, 90, 96, 97], including SLAMF7 CAR T cells,
CD126 CAR T cells, dual-specific, trimeric
APRIL-based CAR T cells [98], and CD229-
specific CAR T cells, as well as the engineering
of BCMA/CS1 OR-gate CAR T-cells; (vii) the
possibility that CAR natural killer cells might be
less toxic and present better anti-MM effects
[74].

Could MRD-Directed Therapy be
Successfully Used for MM Patients?

Currently, MRD has been routinely used for
response evaluation and prediction of disease
progression in patients with MM [7, 36–39].
Recent advances provided promising results
showed that MRD-directed therapy could fur-
ther improve the survival of patients with MM.
For example, in a multicenter, multinational,
retrospective study enrolling 400 patients with
MRD monitoring during front-line therapy,
Martinez-Lopez et al. [99] reported median PFS
of 104 and 45 months for patients achieving
MRD negativity at any point and those with
persistent MRD positivity, respectively
(P\0.0001). The authors also observed that a
treatment change based on MRD significantly
prolonged PFS in comparison with cases in
which MRD results were not acted upon (mPFS
104 vs. 62 months, P = 0.005). During mainte-
nance, stopping therapy in patients with MRD
negativity on at least one occasion did not alter
PFS. Impressively, intensification or change of
therapy for patients with a positive MRD
(n = 43) resulted in better PFS compared to
those in whom no adjustment was made
(n = 171) (mPFS NA vs. 39 months, P = 0.02).
These data suggest that MRD is useful in guiding
clinical decisions during initial therapy and has
a positive impact on PFS in MM patients, similar
to MRD-directed therapy in patients with acute
leukemia [100].

Although the available preliminary data
remain to be confirmed in prospective ran-
domized clinical trials, these studies have
opened a new dimension for the use of MRD in
MM [100–103]. Therefore, we propose an

algorithm for MRD-directed therapy of patients
with MM, which might be helpful for outcome
improvement (Fig. 1).

How Cellular Immunotherapies Should be
Combined with Other Methods for MM

Over the past few years, a number of novel
methods have been developed, such as CC-
93269, a bispecific antibody that recognizes
both BCMA and CD3e, allogeneic CAR T cells
[104]. More recently, an open-label, single-arm,
phase 1 study enrolled patients (n = 157) with
MM who were relapsed, refractory, or intolerant
to established therapies. Teclistamab (a bis-
pecific antibody that binds BCMA and CD3 to
redirect T cells to MM cells) was administered
with step-up dosing for 38.4 lg/kg or higher
doses. Among response-evaluable patients trea-
ted at the recommended phase 2 dose (n = 40),
the OR was 65%, and 58% achieved a very good
partial response or better [105]. These data
suggest that teclistamab is a novel treatment
approach for R/R MM with durable responses
and is well tolerated.

With regard to the combination of CAR
T-cell therapy and allo-SCT, Qian et al. [73]
presented the case of a heavily pretreated young
patient with relapsed extramedullary MM
(EMM) and refractoriness to bortezomib, ixa-
zomib, lenalidomide, auto-SCT, and DARA, and
indicated that myeloablative haploidentical-
SCT as salvage treatment for relapse after CAR
T-cell therapy targeting BCMA was feasible. The
feasibility of combining CAR T cells with auto-
SCT for MM has also been reported by other
researchers [106, 107].

Considering the contemporary literature
collectively [73, 106, 107], the promising results
regarding the effects of anti-BCMA CAR T-cell
therapy and allo-SCT may provide a proof of
principle for patients with EMM [73]. Therefore,
for patients with MM, particular R/R MM,
prospective multicenter studies are needed to
address the potential for combining CAR-T-cell
therapy, auto-SCT, or allo-SCT with novel
methods to improve outcomes.
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Key Points
• Auto-SCT remains the standard of care for TE

patients with NDMM. The application of
novel targeted therapies, such as DARA and
ixazomib, in IT and consolidation as well as
maintenance therapy further improves
transplant outcomes.

• CAR T-cell therapy has been successfully
used for the treatment of R/R MM. The
preliminary results of CAR T-cell bridging to
SCT for patients with R/R MM are promising.

• Long-term follow-up suggests that allo-SCT
can provide an opportunity for curing a
subset of MM patients.

• In the era of new targeted therapies, MRD-
directed treatment or intervention repre-
sents an important step for realizing preci-
sion medicine in patients with MM.

Questions Remaining to be Answered
• The best regimen for induction therapy or

consolidation therapy or maintenance
• The best conditioning regimen for auto-SCT
• The indications for allo-SCT in patients with

NDMM or R/R MM
• How to define the cases that will be cured by

allo-SCT
• How to further elucidate the underlying

mechanisms of CAR T-cell therapy resistance
or relapse after transplantation

• How to enhance the anti-myeloma activity
of CAR T-cell therapy

• Whether multicenter prospective studies are
needed to confirm the feasibility and effi-
ciency of CAR T-cell therapy bridging to SCT
for patients with R/R MM

• Whether haploidentical allograft can be
successfully used for MM treatment

• Whether prospective, randomized studies
are needed to confirm MRD-directed therapy
in the field of MM

• Other issues, such as how to find novel
targets for treatment of MM.

FUTURE DIRECTIONS

Recent advances in cellular immunotherapies
[14–25] such as auto-SCT, allo-SCT, and CAR T-

cell therapy [26–34] have to a certain extent
changed their position in MM treatment as well
as the landscape of MM, especially R/R MM. In
the future, we will see the following advances.
First, the combination of auto-SCT, allo-SCT,
and CAR T-cell therapy as well as the combi-
nation of these approaches with other methods,
including DARA and ixazomib, could enable the
possibility of long-term PFS for a greater num-
ber of R/R patients with MM who previously
experienced poor outcomes. Second, the
improvement in allo-SCT, especially haplo-SCT,
could offer the possibility of a curative clinical
outcome for a small number of patients with
NDMM. Third, multicenter randomized clinical
trials are needed to compare the outcomes of
R/R MM cases treated with either CAR T-cell
therapy or other targeted therapies, such as
belantamab mafodotin and bispecific T-cell
engager. Overall, further elucidation of the
mechanisms of relapse and resistance to CAR T
cells and auto-SCT/allo-SCT, the discovery of
new biomarkers to direct therapy, and the
design of new approaches for MM treatment,
such as NKG2D-CAR-transduced natural killer
cells [74, 90] and a novel CD38/CD3 bispecific
T-cell engager [108], would help us improve
outcomes through the realization of precision
medicine for treating patients with MM.
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