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Ocular coloboma is a congenital disorder that involves 
different components of the eye, including the iris, ciliary 
body, choroid, retina, and optic nerve [1]. It arises from the 
failed closure of an embryonic fissure during eye develop-
ment. The incidence of ocular coloboma ranges from 0.5 to 
7.5 per 10,000 births [2], and ocular coloboma accounts for up 
to 10% of blindness cases among children [3] and 0.7%–1.9% 
of blindness cases among adults [4]. The occurrence of ocular 
coloboma can be isolated, but it is frequently accompanied 
by other developmental abnormalities of the eye, such as 
microphthalmos, anophthalmia, and microcornea [5]. In 

rare cases, axial elongation associated with myopia is also 
present in patients with coloboma [6]. Genetic defects play an 
important role in the development of coloboma. Thus far, at 
least 78 genes and six loci have been reported to be associated 
with coloboma, as well as related syndromes [7]. However, 
in most cases of isolated coloboma, only a few pathogenic 
variants of genes could be confirmed in a small portion of 
families [7-10].

The frizzled class receptor 5 (FZD5, OMIM 601723), 
which is mapped to human chromosome 2q33.3 and consists 
of two exons, is a recently identified gene responsible for 
coloboma. FZD5 encodes a receptor of the Wnt signaling 
pathway, which plays a specific role in early eye development 
in mice, zebrafish, and Xenopus [11-15]. A frameshift variant 
in FZD5 was initially reported to result in uveal coloboma in 
a large family with incomplete penetrance [15]. Recently, one 
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frameshift and two indel variants in FZD5 were identified in 
a small family and in two isolated cases [16].

In this study, variants in FZD5 were collected from 
exome sequencing data from 5,845 probands with different 
eye conditions. Multistep bioinformatics and genotype-
phenotype analysis classified eight potential pathogenic vari-
ants (PPVs). Overlapping related phenotypes were observed in 
different eyes of the same patients or in different individuals 
within and among families, including uveal coloboma, infe-
rior chorioretinal hypoplasia (ICH) or optic disc hypoplasia 
(ODH), and high myopia. This study not only confirmed the 
association of FZD5 variants with uveal coloboma but also 
expanded the mutation spectrum and associated phenotypes.

METHODS

Probands and family members: Probands with various eye 
conditions and their available family members were recruited 
from the Pediatric and Genetic Eye Clinic, Zhongshan 
Ophthalmic Center, Guangzhou, China. Written informed 
consent adhering to the tenets of the Declaration of Helsinki 
and conforming to the Guidance for Sample Collection for 
Human Genetic Diseases (863-Plan) of the Ministry of Public 
Health of China was obtained from participating individuals 
or their guardians. Peripheral venous blood and clinical data 
were collected from the participants, and genomic DNA 
was prepared from peripheral venous blood as previously 
described [17]. This study was approved by the Institutional 
Review Board of Zhongshan Ophthalmic Center.

Mutation detection: Exome sequencing was performed on 
genomic DNA samples from the participants, including 
whole exome sequencing (WES) on 5,307 probands and 
target exome sequencing (TES) on 538 probands. The proce-
dures for WES and TES have been described in our previous 
studies [18,19]. Rare variants in FZD5 were collected from the 
exome data of 5,845 probands with different eye conditions. 
Bioinformatic analysis was performed to evaluate the patho-
genicity of FZD5 as follows [20]: (1) variants in noncoding 
regions, synonymous variants without effects on the splicing 
site according to the Berkeley Drosophila Genome Project 
(BDGP), and variants in the patients with pathogenic vari-
ants in other genes were considered to be benign variants; (2) 
all missense variants were predicted by five computational 
tools, namely, Combined Annotation Dependent Depletion 
(CADD), Rare Exome Variant Ensemble Learner (REVEL), 
Sorting Intolerant From Tolerant (SIFT), Polymorphism 
Phenotyping version 2 (PolyPhen-2), and Protein Variation 
Effect Analyzer (PROVEAN); and (3) pathogenic evidence 
for each potentially pathogenic variant was defined according 
to the standards and guidelines of the American College of 

Medical Genetics and Genomics and the Association for 
Molecular Pathology (ACMG/AMP) [21].

Validation of potentially pathogenic variants, as well 
as available segregation analysis were conducted by Sanger 
sequencing. Eight pairs of primers were designed to amplify 
the fragments covering the variant positions using primer3.0. 
The amplificons were sequenced using the BigDye Termi-
nator cycle sequencing kit v3.1 on a 3500xL Dx Genetic 
Analyzer [22].

Phenotypic characterization: Routine clinical data, including 
visual acuity, refraction and axial length (AL), slit-lamp 
examination, ultrasound biomicroscopy (UBM), fundus 
photographs, optical coherent tomography (OCT), and 
ultrasonography, were obtained from probands and available 
family members with FZD5 variants.

RESULTS

Variants detected in FZD5 from 5,845 probands: Four 
polymorphisms in FZD5 were initially excluded from 
further analysis, including chr2: g.208633627C>T in the 
5′-untranslated region (5′-UTR), c.51A>G (p. Leu17Leu), 
c.647C>T (p.Pro216Leu), and c.1371C>T (p.Tyr457Tyr). 
In total, 63 rare variants in FZD5, all heterozygous, were 
detected in our in-house exome data from 5,845 probands 
with different eye conditions, including 20 missense, 20 in 
3′-UTR, 13 synonymous, seven in 5′-UTR, and three frame-
shift variants. Synonymous variants and variants in the 
untranslated region were excluded for further analysis based 
on bioinformatics and previous evidence. For the remaining 
23 variants affecting amino acid sequence, bioinformatics 
analysis, phenotype analysis, and segregation analysis 
suggested that eight of the 23 variants were PPVs (Table 1) 
and the other 15 were likely benign (Appendix 2). All the 
eight PPVs were novel and presented in nine families (Figure 
1). Of the eight PPVs, four variants were identified in four 
probands with coloboma, including two frameshift variants 
(c.1428delG/p.Ser477Alafs*130 and c.1403_1406dupACCT/p.
Tyr470Profs*130) and two missense variants (c.388C>A/p.
Arg130Ser and c.1162G>A/p.Gly388Ser; Table 1, Table 2, 
Figure 1, Figure 2). Three variants were identified in four 
probands with high myopia, including one frameshift variant 
(c.350_356delCGCCGCT/p.Ser117*) and two missense vari-
ants (c.1510A>T/p.Met504Leu and c.794G>T/p.Arg265Leu; 
Table 1, Table 2, Figure 1, Figure 3). The remaining missense 
variant (c.1232A>G/p.Tyr411Cys) was identified in a proband 
with posterior microphthalmia (Table 1, Table 2, Figure 1). 
All eight PPVs were confirmed by Sanger sequencing in the 
nine families and co-segregated with diseases among avail-
able family members with variable overlapping phenotypes 
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and rarely incomplete penetrance (Figure 1). Furthermore, 
all eight variants were located in the two domains of FZD5, 
namely, the extracellular cysteine-rich Wnt-binding domain 
and the seven transmembrane Frizzled domains (NCBI 
database; Figure 4A), and all five missense variants involved 
residues at conserved positions among eight species (Figure 
4B).

Phenotypic expressivity: Coloboma, posterior microph-
thalmos, inferior chorioretinal hypoplasia, and high myopia: 
In the nine families, PPVs of FZD5 were detected in 17 

individuals with variable overlapping phenotypes. The clin-
ical features of 17 individuals from nine families with FZD5 
variants are summarized in Table 2. The phenotypes of these 
affected individuals were variable and included coloboma, 
ICH, ODH, high myopia, and posterior microphthalmos. The 
overlapping associated phenotypes were present in different 
individuals within and among families, as well as in different 
eyes of the same individual.

Typical uveal coloboma was present in 12 eyes of seven 
patients from four families (Table 2, Figure 1). Variable initial 

Figure 1. The pedigrees of nine families with different phenotypes and sequence chromatography of eight heterozygous variants identified 
in FZD5. In the pedigrees, M means mutation site, + means normal allele. The filled squares (male) and circles (female) represent affected 
individuals. The filled patterns were divided into five types: solid black pattern (ocular coloboma), striped pattern (ICH or ODH), checked 
pattern (high myopia), black and white checked pattern (posterior microphthalmia), and mixed pattern (high myopia, ICH and ODH). ICH, 
inferior chorioretinal hypoplasia; ODH, optic disc hypoplasia. The black arrows indicate probands.

http://www.molvis.org/molvis/v27/50
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symptoms were recorded in the seven patients, including 
nystagmus in three cases, photophobia in one patient, stra-
bismus in one patient, and no symptoms in two patients, and 
the visual acuity of the seven patients ranged from light recep-
tion to 1.2 Snellen equivalent (Table 2). Of the seven patients, 
five showed bilateral coloboma (family 9574-II:2 in Figure 
2C; family 5485-II:1and II:2 in Figure 2D, E; family 12467-
II:1 in Figure 2F and Figure 3H; family 17413-II:1 in Figure 
2G), while the other two patients had uveal coloboma in one 
eye and ICH or ODH in the contralateral eye (family 9574-I:1 

and II:1 in Table 2). Posterior staphyloma was observed under 
ultrasonography in three eyes from two patients with typical 
uveal coloboma (5485-II:2 and 17413-II:1) in Appendix 1. 
One patient (9574-I:1) showed uveal coloboma in the right eye 
(Figure 2A) and ODH in the left eye, while another patient 
(9574- II:1) showed uveal coloboma in the left eye (Figure 
2B) and ICH in the right eye (Figure 3G). Moreover, clinical 
heterogeneity in different members with the PPV in the same 
family were also present in the four families with uveal 
coloboma. Bilateral uveal and iris coloboma were present in 

Figure 2. The coloboma changes of ophthalmic examination results in patients with FZD5 variants. A-G: The fundus images demonstrated 
uveal coloboma in seven individuals (9574-I:1, 9574-II:1, 9574-II:2, 5485-I:1, 5485-II:2, 12467-II:1, 17413-II:1). H: The proband (5485-II:1) 
had microcornea with iris coloboma in both eyes and his sister (5485-II:2) had inferior iris coloboma in both eyes. I: The UBM result from 
family 5485 illustrated iris coloboma in the right eyes of 5485-II:1 and 5485-II:2, while the UBM graph of the right eye in the father from 
family 5485-I:1 was normal.
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Figure 3. Representative fundus photographs from patients with FZD5 variants. A-E: Inferior chorioretinal and optic disc hypoplasia 
presented in both eyes from two patients (12467-I:1 and 13706-I:1). F: The fundus photograph showed typical features of myopic fundus: 
tessellated retina and partial foveal atrophy in one patient (13706-II:1). G: Inferior chorioretinal hypoplasia was observed in the lower left 
area of the fundus in the right eye from patient 9574-II:1. H: Uveal coloboma and tessellated fundus, located between the coloboma and 
optic disc, were observed in patient 1267-II:1. I: A normal fundus photo in individual 5485-I:2.
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siblings (5485-II:1 and 5485-II:2; Figure 2D,E,H,I). However, 
the father (5485-I:1) with the same frameshift mutation had 
bilateral ODH and ICH. The same situation was also present 
in the other two families, 12467 and 17413, where both of the 
probands (12467-II:1 and 17413-II:1) from the two families 
had typical bilateral uveal coloboma. However, the father 
(12467-I:1) with the PPV in family 12467 showed bilateral 
high myopia, ODH, and ICH (Figure 3A-C), while the mother 
(17413-I:2) with the PPV in family 17413 showed unilateral 
ODH in the right eye but a normal-like fundus in the left eye. 
Therefore, these heterogeneous features in family members 
with PPVs, such as ODH and ICH, were likely to be variant 
phenotypes associated with uveal coloboma, which might be 

considered a mild phenotype of uveal coloboma, as suggested 
before [23]. In addition to the seven eyes of five people from 
the four families mentioned above, ICH or ODH was also 
observed in five eyes of three other family members with 
PPVs in two other families (Figure 3D,E): the proband in 
family 18739 had posterior microphthalmia while the proband 
in family 13706 had high myopia (Figure 3F). Moreover, ICH 
was also observed in a patient with typical uveal coloboma 
(Figure 3H). In these families, ODH and ICH (inferior tessel-
lated fundus) might be considered coloboma-variant.

In addition to four families with typical uveal coloboma 
and one family with posterior microphthalmia, PPVs in FZD5 

Figure 4. Distribution and conservation analysis of FZD5 variants. A: The allele count and distribution of all FZD5 variants in the mRNA 
sequence in the current study and previous studies (Ref. NM_ 003468.3). The light green rectangle represents the mRNA sequence of 
FZD5. The potential pathogenic variants in the current study are shown above the structure of the mRNA sequence, while variants in other 
previous studies are shown below the structure of the mRNA sequence. The red, black, and green variants represent truncation variants, 
missense variants, and in-frame variants, respectively. The blue area represents the extracellular cysteine-rich Wnt-binding domain, the 
yellow area represents seven transmembrane Frizzled domains, and the two blank areas before and after the sequence represent the 5′UTR 
and 3′UTR, respectively. The blank area between two slashes indicates the partial sequences of the 5′UTR and 3′UTR. B: The conservation 
analysis of five missense variants identified in our study. Sequence alignment of the sequences of Homo sapiens (humans) and seven other 
seven species, including Pan troglodytes (chimpanzee), Macaca mulatta (monkey), Mus musculus (house mouse), Rattus norvegicus (rat), 
Pelodiscus sinensis (Chinese soft-shelled turtle), Xenopus tropicalis (Western clawed frog), and Danio rerio (zebrafish). The five missense 
variants were located in the conserved region of the FZD5 protein among eight species.
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were also identified in four additional families, where all 
probands had bilateral high myopia (families 13706, 9472, 
1267, and 940; Table 2, Figure 1, Figure 3F). One PPV carrier 
from one family (13706-I:1) had ICH and ODH. In addition, 
high myopia in both eyes was also present in a PPV carrier 
family member (12467-I:1) where the proband had bilateral 
uveal coloboma.

Among the 34 eyes from 17 individuals with pathogenic 
variants of FZD5 in our cohort, typical coloboma, coloboma-
variant, and high myopia were present in 12, 12, and 10 eyes, 
respectively. Moreover, typical coloboma in eight eyes was 
the most common among 14 eyes of seven cases with frame-
shift variants, whereas coloboma-variant and high myopia 
were present in four and two eyes, respectively. For the 20 
eyes of 10 individuals with missense variants, coloboma-
variant (eight eyes) and high myopia (eight eyes) were more 
common than typical coloboma (four eyes).

DISCUSSION

In this study, eight PPVs (three frameshift variants and five 
missense variants) were detected in probands from nine fami-
lies. In total, these variants were present in 17 individuals 
from the nine families. Closely related but different pheno-
types were observed in 17 individuals, and these phenotypes 
overlapped in different eyes of the same individual, as well 
as in different individuals within the same families or among 
different families, including uveal coloboma in 12 eyes of 
seven patients from four families; ICH or ODH in 12 eyes of 
eight patients from six families; high myopia in five patients, 
including one who also had ICH and ODH; and posterior 
microphthalmos in both eyes of one individual from one 
family. The following lines of evidence strongly suggest that 
variants in FZD5 contribute to these phenotypes, including 
extremely rare PPVs in FZD5 highly enriched in specific 
families, association with closely related phenotypes in 17 
individuals with FZD5 variants, cosegregation of the variants 
with the phenotypes in the nine families, and overlapping 
phenotypes within individual families.

Loss-of-function variants are highly rare in FZD5 (pLoF 
= 0.98) based on the gnomAD database. In addition, missense 
variants predicted to be damaging by multiple online tools 
are also highly rare. The frameshift variants and PPVs 
described in current studies are exclusively present in the 
nine families described here. Such variants with damaging 
effects were not detected in families with other eye condi-
tions. Based on the phenotype analysis, segregation analysis, 
and ACMG criteria (PVS1, PS4, PM2, PP1, and PP4) [21], 
two novel frameshift variants in FZD5, c.1428delG and 
c.1403_1406dupACCT, were considered pathogenic variants 

in two cases with uveal coloboma. Two frameshift vari-
ants in FZD5 have been reported to cause coloboma in two 
families before [15,16]. The truncated FZD5 protein, which 
lacks the seven transmembrane Frizzled domains, affects the 
activity of the Wnt signaling pathway, which was confirmed 
by functional analysis [15]. The frameshift variants in FZD5 
that were identified in the current study may have similar 
effects. Through bioinformatic analysis, genotype-phenotype 
analysis, and conservation analysis, five missense variants, 
including two missense variants c.1162G>A and c.388C>A in 
two cases with coloboma, two missense variants c.1510A>T 
and c.794G>T in three cases of high myopia, and one 
missense variant c.1232A>G in the case of posterior microph-
thalmia, were considered likely pathogenic variants in FZD5 
based on the ACMG criteria, although missense variants 
in FZD5 have not been reported to cause any hereditary 
disease before. Interestingly, an apparent pathogenic variant, 
c.350_356delCGCCGCT, was identified in a proband with 
bilateral high myopia, which not only supports the variable 
phenotypes observed in different family members but also 
indicates that high myopia is a closely related phenotype of 
FZD5 variants.

The following points provide strong evidence to 
support the association of FZD5 variants with the phenotype 
described above: 1) novel variants with significant damaging 
effects are highly rare in existing databases; 2) such PPVs 
are exclusively present in families with related phenotypes; 
3) overlapping phenotypes associated with FZD5 variants, 
including coloboma, ICH or ODH, and high myopia, are 
observed between different eyes of the same person, among 
different members within the same family, or among different 
members in different families; and 4) cosegregation of related 
phenotypes occurs in most families. Such variable pheno-
types associated with FZD5 variants have not been reported 
before, although incomplete penetrance was present in the 
largest family with the first coloboma-associated variant 
[15]. However, overlapping phenotypes between coloboma 
and high myopia or between coloboma and ICH have been 
described before in other genes. With an autosomal domi-
nant inheritance of ocular coloboma due to SOX2 and PAX6, 
family members with same variant exhibited myopia or 
ICH [23,24]. Furthermore, in cases with syndromic ocular 
coloboma due to variants in SALL4 or TFAP2A, individuals 
carrying the same variant may showed coloboma in one eye 
and ODH in the other or myopia and ODH [25-27].

In conclusion, eight novel variants were confirmed in 
our study in nine families with various phenotypes, including 
coloboma, ICH, ODH, and high myopia. Our results provide 
additional evidence confirming that FZD5 variants, including 
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frameshift and missense variants, can be the potential patho-
genic cause of coloboma. In addition, overlapping pheno-
types, including coloboma, ICH or ODH, and high myopia, 
exclusively occurred in individuals with FZD5 variants. 
Therefore, FZD5 variants may also lead to a coloboma-related 
phenotype, such as ICH, ODH, or high myopia.

APPENDIX 1. SUPPLEMENTARY FIGURE 1.

To access the data, click or select the words “Appendix 1.” 
The ultrasonography results from patients with potential 
pathogenic variants in FZD5. Ultrasonography revealed 
posterior staphyloma in both eyes from one patient (5485-II:2; 
A-B) and posterior staphyloma in the right eye from another 
patient (17413-II:1; C-D)

APPENDIX 2. LIKLEY BENIGN VARIANTS IN 
FZD5 DETECTED IN OUR STUDY.

To access the data, click or select the words “Appendix 2.” 
Note: In gnomAD, 5% varants had REVEL or CADD scores 
greater than 0.856 or 29.1, while 75% had such scores less 
than 0.613 or 25.1. All the 15 variants were not present in 
HGMD, Abbreviations: B=benign; T=tolerated; N=neutral; 
PB=possibly damaging; D=damaging.
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