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Abstract
Transforming growth factor- (TGF) has been reported to be dysregulated in malformed ureters. There exists,
however, little information on whether altered TGF levels actually perturb ureter development. We therefore
hypothesised that TGF has functional effects on ureter morphogenesis. Tgfb1, Tgfb2 and Tgfb3 transcripts
coding for TGF ligands, as well as Tgfbr1 and Tgfbr2 coding for TGF receptors, were detected by quantitative
polymerase chain reaction in embryonic mouse ureters collected over a wide range of stages. As assessed by in situ
hybridisation and immunohistochemistry, the two receptors were detected in embryonic urothelia. Next, TGF1
was added to serum-free cultures of embryonic day 15 mouse ureters. These organs contain immature smooth
muscle and urothelial layers and their in vivo potential to grow and acquire peristaltic function can be replicated
in serum-free organ culture. Such organs therefore constitute a suitable developmental stage with which to define
roles of factors that affect ureter growth and functional differentiation. Exogenous TGF1 inhibited growth of
the ureter tube and generated cocoon-like dysmorphogenesis. RNA sequencing suggested that altered levels of
transcripts encoding certain fibroblast growth factors (FGFs) followed exposure to TGF. In serum-free organ
culture exogenous FGF10 but not FGF18 abrogated certain dysmorphic effects mediated by exogenous TGF1. To
assess whether an endogenous TGF axis functions in developing ureters, embryonic day 15 explants were exposed
to TGF receptor chemical blockade; growth of the ureter was enhanced, and aberrant bud-like structures arose
from the urothelial tube. The muscle layer was attenuated around these buds, and peristalsis was compromised.
To determine whether TGF effects were limited to one stage, explants of mouse embryonic day 13 ureters, more
primitive organs, were exposed to exogenous TGF1, again generating cocoon-like structures, and to TGF receptor
blockade, again generating ectopic buds. As for the mouse studies, immunostaining of normal embryonic human
ureters detected TGFRI and TGFRII in urothelia. Collectively, these observations reveal unsuspected regulatory
roles for endogenous TGF in embryonic ureters, fine-tuning morphogenesis and functional differentiation. Our
results also support the hypothesis that the TGF up-regulation reported in ureter malformations impacts on
pathobiology. Further experiments are needed to unravel the intracellular signalling mechanisms involved in these
dysmorphic responses.
© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

The mammalian ureter connects the kidney with the
bladder. Cadherin-1 (CDH1) is located at urothelial
intercellular junctions and in the mature organ uro-
plakin (UPK) proteins coat the lumenal surface of

the pseudostratified urothelium, conferring waterproof-
ing properties [1]. The urothelium is surrounded by
smooth muscle (SM) cells expressing contractile pro-
teins including α-SM actin (αSMA) and the intermediate
filament desmin [2,3]. The SM is surrounded by adven-
titial fibrocytes. Between the urothelium and SM lie the
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lamina propria interstitial cells. The ureter propels urine
in a proximal (i.e. near the kidney) to distal direction
[3]. Contractions are initiated by pacemaker cells near
the renal pelvis [4], and peristaltic waves are propagated
by Cajal-like cells [5].

The ureter epithelium originates when the ureteric
bud branches from the mesonephric duct [6]. The bud
elongates and its stalk differentiates into urothelia. Mes-
enchymal cells condense around the urothelial stalk, dif-
ferentiating into SM [7]. The distal end of the stalk joins
the bladder [8]. In mice, the bud initiates at embry-
onic day 10 (E10). The bud elongates and becomes sur-
rounded by condensed mesenchyme. At E13 the latter
compartment has differentiated so that the inner cells
begin to express SM molecules and the outer cells form
adventitia [2]. At E15 the primitive urothelium has dif-
ferentiated into basal and superficial cell layers [2]. Over
the next few prenatal days the ureter begins to transmit
urine generated by the metanephros [7], with the urothe-
lium having three cell layers by E18 [2]. In humans,
the bud initiates at 5 weeks gestation and the 10-week
ureter contains a multi-layered urothelium surrounded
by SM [9].

Human ureter malformations can be visualised upon
foetal ultrasonographic screening [10]. Mild dilation
is detected in 5% of foetuses [11]. Most are tran-
sient anomalies whereas in other individuals dysmorphic
ureters persist postnatally [11]. Some of these are sec-
ondary to primary diseases that prevent urine flow, such
as bladder outflow obstruction [12]. Other malforma-
tions represent intrinsic defects of ureter morphogene-
sis, ranging from an absent organ to a ureter which has
either an occluded lumen or a patent lumen but with dys-
functional peristalsis. Ureter malformations can co-exist
with dysplastic kidneys containing poorly differentiated
and metaplastic cells [12].

Molecules in the transforming growth factor-β
(TGFβ) axis have been detected in both kidney and
ureter malformations. In human dysplastic kidneys
TGFβ1 immunostaining is prominent in metaplastic SM
enveloping dysplastic tubules that themselves express
TGFβRI and TGFβRII [13], cell surface receptors
activated by TGFβ1-3 ligands [14]. Exposing cultured
human dysplastic kidney epithelia to TGFβ1 leads
to up-regulated fibronectin [13]. In organ culture of
mouse metanephric kidneys, exogenous TGFβ1 inhibits
tubule formation, whereas blocking endogenous TGFβ1
enhances tubulogenesis [15]. Experimental urinary flow
obstruction in foetal sheep generates dysmorphic kidney
tubules, with increased TGFβ1, TGFβRI and TGFβRII
[16]. TGFβ1 has been detected in congenital stenoic
ureters and megaureters [17–19] and ureteric ligation in
postnatal rats up-regulated TGFβ1 and its receptors in
the ureter capsule [20].

Given that TGFβ pathway molecules have been
reported to be up-regulated in both human kidney and
ureter malformations, we here first examined normal
human embryos, immunodetecting both TGFβRI and
TGFβRII in developing ureters. Key components of the
TGFβ axis were detected in embryonic mouse ureters

using RT-qPCR, in situ hybridisation and immunohis-
tochemistry. Hypothesising that TGFβ mediates ureter
morphogenesis, we added TGFβ1 to serum-free organ
cultures of mouse E15 ureters. These organs contain
immature SM and urothelial layers and their in vivo
potential to grow and acquire peristaltic function can
be replicated in serum-free organ culture, as demon-
strated previously [3] and in this study. E15 ureters thus
constitute a suitable stage of development with which
to define roles of factors that may perturb or enhance
ureter growth and functional differentiation. Exogenous
TGFβ1 inhibited growth of the ureter tube and gener-
ated cocoon-like dysmorphogenesis. RNA-sequencing
suggested TGFβ altered levels of numerous transcripts,
including Fgf18 and Fgf10 that code for fibroblast
growth factors (FGFs). Given that little is known about
the roles of these molecules in ureter development, we
added them to serum-free embryonic ureter cultures.
FGF10 but not FGF18 abrogated certain dysmorphic
effects mediated by exogenous TGFβ1. To assess
whether an endogenous TGFβ axis operates in devel-
oping ureters, E15 explants were exposed to TGFβ
receptor blockers. Here, aberrant bud-like structures
arose from the urothelial tube and the rate of peristalsis
was decreased.

Materials and methods

Ethics
Human tissues, collected after maternal consent and
ethical approval (REC 08/H0906/21+5), were provided
by the MRC and Wellcome Trust Human Develop-
mental Biology Resource (http://www.hdbr.org/). CD1
wild-type strain mouse experiments were approved by
the University of Manchester ethics committee and UK
Home Office (licence PAFFCI44F).

Organ culture
Embryonic ureters were explanted onto platforms
(0.4 μm; Millipore, Watford, UK) and cultured
for 6 days [3,21]. Explants were fed DMEM/F12
(D8437, Sigma-Aldrich, Gillingham, UK) containing
insulin–transferrin–selenium (41400045, Gibco, Life
Technologies, Paisley, UK) and penicillin–streptomycin
(Thermo Fisher Scientific, Paisley, UK). Media were
renewed at day 3. In some experiments the following
were added: recombinant human TGFβ1 (240-B; R&D
Systems, Minneapolis, MN, USA); TGFβR inhibitor
LY2109761 (A8464, Generon, Slough, UK); TGFβR
inhibitor SB431542 (04-0010; Generon); recombi-
nant mouse FGF18 (CYT-064; ProSpec, Ness-Ziona,
Israel); recombinant mouse FGF10 (6224-FG-025,
R&D Systems); and 5-bromo-2′-deoxyuridine (BrdU;
B5002-100MG, Sigma-Aldrich), applied 2 h before
harvest. Photographs were taken using inverted light
microscope (Leica M80; Leica Microsystems, Mil-
ton Keynes, UK). Growth was assessed using ImageJ
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software (National Institutes of Health, Bethesda, MD,
USA). For linear growth, a line drawn down the middle
of the ureter tube was measured. To measure ureter tube
area, a line was drawn around the epithelium plus SM
layer. These two parameters give a more sophisticated
view of growth than that based on just one dimension.
On day 6, the number of waves of peristalsis initiating in
the proximal ureter during 2 min was counted by direct
inspection using an Eclipse Ti inverted microscope
(Nikon UK, Kingston upon Thames, UK) maintaining
explants at 37 ∘C in 5% CO2 [21]. Statistical compar-
isons were made using Student’s t-test, Mann–Whitney
or Kruskal–Wallis tests, as appropriate, adjusting for
multiple comparisons when appropriate.

RNA sequencing
RNA-sequencing was undertaken, as described pre-
viously [22–25] and detailed in supplementary
material, Supplementary materials and methods.
Data was deposited in the ArrayExpress repository
(E-MTAB-7395).

Histology, RT-qPCR and in situ hybridisation
Please see supplementary material, Supplementary
materials and methods for details.

Results

Human ureters
Ureters in a 7-week gestation embryo contained
epithelial tubes, with walls one to two cells thick,
that were immunopositive for CDH1 but not for
UPKII, surrounded by mesenchyme-like cells with
αSMA immunostaining barely detectable (Figure 1).
Ureters of a 10-week gestation embryo had urothe-
lium, with multiple layers, immunopositive for CDH1.
UPKII immunostaining was detected on the luminal
aspect of the urothelial layer, and cells around the
urothelium immunostained for αSMA. Picrosirius
red, a collagen-reactive dye [26], stained a basement
membrane-like line around urothelia at 7 weeks, a
signal more prominent at 10 weeks. At both ages,
epithelia immunostained for TGFβRI and TGFβRII.
pSMAD2, a TGFβ canonical intracellular signalling
molecule [14] was detected in subsets of epithelia and
surrounding cells. Fluorescence immunohistochemistry
was undertaken in a separate late first trimester speci-
men, detecting a plasma membrane-like localisation of
TGFβRI and TGFβRII in urothelia (see supplementary
material, Figure S1).

Mouse ureters in vivo
The E15 mouse ureter (Figure 2) consisted of an epithe-
lial tubule, two cells deep, immunostaining for CDH1
but not UPKII. The tube was surrounded by a nascent
SM layer expressing αSMA. In the CD1 mice used here,

birth occurs at 21 days of gestation i.e. 6 days after E15.
Neonates (Figure 2) had a multi-layered urothelium that
was immunopositive for CDH1 and UKPII, surrounded
by αSMA expressing SM. Picrosirius red staining
revealed a basement membrane-like patterns on the
ablumenal border of the E15 epithelium while neona-
tally the most prominent signal was in the adventitia.
Bright-field peroxidase-based immunohistochemistry
(Figure 2) showed signals for TGFβRI and TGFβRII
in E15 and neonatal ureters. Fluorescence immunohis-
tochemistry at E15 detected a plasma membrane like
pattern for TGFβRI and TGFβRII in the urothelium
(see supplementary material, Figure S2). We undertook
RT-qPCR for Tgfb1, Tgfb1, Tgfb3, Tgfbr1 and Tgfbr2
using mRNA from freshly dissected mouse ureters.
These results (see supplementary material, Figure S3),
showed that all were expressed over a wide span of
mouse ureter development i.e. at embryonic days 13, 15
and 18, and on the day of birth. Given that a focus of
our functional experiments were E15 explants, below,
in situ hybridisation was undertaken for Tgfb1, Tgfbr1
and Tgfbr2 on E15 ureters (see supplementary material,
Figure S4). Sparse signals for Tgfb1 were detected.
More prominent signals were detected for Tgfbr1 and
Tgfbr2. Both receptor mRNAs were detected in the
epithelium, consistent with the immunohistochemical
data for TGFβRI and TGFβRII, showing that this layer
is equipped with two key receptors to bind and initiate
signalling by TGFβ ligands. Tgfbr2 was also detected
in lamina propria, SM and adventitia.

TGFβ axis molecules in embryonic ureter culture
As expected [3,21], E15 explants fed serum-free control
media alone grew over 6 days, elongating an average of
1.2 mm, and increasing in area by an average of 0.3 mm2

(see supplementary material, Figure S5). From 2 days,
as expected [3,21], explants displayed spontaneous peri-
stalsis. RNA-sequencing at one and 6 days confirmed
epithelial molecular maturation, with increased levels
of transcripts encoding UPKIa, UPKIb, UPKII and
UPKIIIa (each p< 0.05, corrected for multiple compar-
isons). Transcripts encoding αSMA were expressed at
both times with a non-significant increase, while tran-
scripts for desmin, a SMC protein up-regulated later
than αSMA in vivo in embryonic urinary tracts [27],
showed a significant (p< 0.05) increase between days
1and 6. We sought transcripts encoding TGFβ axis mem-
bers in the array (see supplementary material, Table S1).
Tgfb1, Tgfb2 and Tgfb3 were robustly expressed (aver-
age reads >100) on days 1 and 6. Tgfb1 significantly
(p= 0.003, after adjusting for multiple comparisons)
increased during culture, while Tgfb2 and Tgfb3 tended
to fall. Tgfbr1 and Tgfbr2 were robustly expressed, as
was Tgfbr3 encoding TGFβRIII, or betaglycan, a pro-
teoglycan that sequesters TGFβ [28].

Effects of exogenous TGFβ1
Basal media was supplemented with TGFβ1 at concen-
trations similar to those used when exploring effects
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Figure 1. Histology of human embryonic ureters. (A,C,E,G,I,K,M,O) Transverse section of ureter from a 7-week embryo. (B,D,F,H,J,L,N,P)
Longitudinal section of proximal ureter from a 10-week embryo. All sections were counterstained with haematoxylin (blue) apart from G and
H. At 7 weeks CDH1 was detected (brown) in the primitive urothelium (A; m indicates mesenchyme), with expression maintained at 10 weeks
in the multi-layered urothelium (B; sm indicates SM layer and the asterisk is in the lumen). At 7 weeks UPKII was not immunodetected (C)
and αSMA was faintly detected in a subset of mesenchyme-like cells (D). Both UPKII and αSMA were prominent at 10 weeks (D,F). Pricrosirius
red staining showed a faint line around the base of the urothelium at 7 weeks, with a stronger signal in this location at 10 weeks (G,H).
TGFβRI and TGFβRII were immunodetected in urothelium at seven (I, K) and 10 weeks (J,L). pSMAD2 was detected in subsets of urothelial
cells (arrowhead in M) and in subsets of surrounding cells (arrow in M) at 7 weeks. pSMAD2 was detected in subsets of urothelial and
surrounding cells at 10 weeks (N). No primary antibody negative controls (O,P). Bars, 10 μm.

of this molecule on mouse embryonic kidney, small
intestine and salivary gland explants [15,29–31]. About
5 and 50 ng/ml concentrations were each able to alter
explant morphology, detailed below. One ng/ml had no
overt effect and was not studied further (not shown).
After 2 days, 5 ng/ml TGFβ1 exposed explants began to
acquire a ‘cocoon’, with a prominent adventitia, a dys-
morphic appearance that became more marked by day
6 (Figure 3). Five ng/ml TGFβ1 significantly reduced
length and area growth, as assessed on the final day of
culture (Figure 4) but these explants underwent peristal-
sis as normal (Figure 4). Fifty ng/ml TGFβ1 had more
marked effects, with day 6 organs resembling circular
discs (not shown): these underwent peristalsis, showing
they were viable.

To determine whether exogenous TGFβ1 effects were
restricted to E15 organs, we also studied E13 rudiments

that is less differentiated than E15 organs [2]. E13
explants exposed to 5 ng/ml TGFβ1 also acquired a
cocoon-like phenotype (see supplementary material,
Figure S6).

Hereafter, we mostly focused on E15 rudiments
exposed to 5 ng/ml TGFβ1. The histology of dys-
morphic explants harvested day 6 (Figure 5) showed
prominent adventitia. The SM layer was intact and
immunostained for αSMA, as in controls. The urothe-
lium in both control explants and TGFβ1 exposed
explants immunostained for CDH1 and UKPII.
pSMAD2 immunostaining appeared prominent in
TGFβ1 exposed cultures but was not quantified. We
undertook proliferation assays with BrdU incorpora-
tion after 24 h of culture (see supplementary material,
Figure S7), reasoning that any changes found would
be less likely to reflect secondary effects from the
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Figure 2. Histology and immunohistochemistry of mouse embryonic ureters. (A,C,E,G,I,K,M) Transverse sections of an E15 ureter within
an intact embryo. (B,D,F,H,J,L,N) Transverse sections of ureter from a mouse on the day of birth. All sections were counterstained with
haematoxylin (blue) apart from G and H. At E15 CDH1 was detected (brown) in the primitive urothelium (A); e indicates the epithelium, sm
indicates the nascent SM layer, and the asterisk is in the lumen. At this age, UKPII was not detected in the epithelium (C), the surrounding
cells expressed αSMA (E), and picrosirius red stained in a linear pattern adjacent to the base of the urothelium (G). In the neonatal ureter,
both CDH1 (B) and UPKII (D) were detected in the urothelium, αSMA was detected in the SM layer (F), and picrosirius red staining was
prominent in the putative interstitial layer adjacent to the urothelium, and in the adventitia (H). TGFβRI and TGFβRII were immunodetected
in the E15 (I,K) and neonatal (J,L) ureter. No primary antibody negative controls (M,N). Bars, 20 μm.

cocooning that became prominent later on. No sig-
nificant differences were found between controls and
TGFβ1-exposed organs in either epithelial, SM or
adventitial layers.

FGFs in ureter cultures
We compared RNA-sequencing datasets in
TGFβ1-exposed and control explants harvested after
24 h. After adjustment for multiple comparisons, lev-
els of several hundred species of transcripts differed
significantly. The most significantly changed tran-
scripts are listed in supplementary material, Table S2,
with the full set deposited in the ArrayExpress repos-
itory (E-MTAB-7395). Transcripts considered in
the Discussion are annotated in the volcano plot
(see supplementary material, Figure S8). Among the
up-regulated transcripts after exposure to 5 ng/ml
of TGFβ1, was Fgf18 (see supplementary mate-
rial, Table S3). Levels were significantly increased

(p= 5x10−12, average reads 172 versus 27) after 24 h
in culture. We undertook RT-qPCR for Fgf18, and
confirmed its significant up-regulation (see supple-
mentary material, Figure S9). RT-qPCR showed that
Fgf18 was also expressed in native ureters harvested
between E13 and birth (see supplementary material,
Figure 3). Cultures exposed to exogenous TGFβ1 for
6 days showed a significant increase of Fgf18 versus
time-matched controls (p= 0.03, average reads 143
compared with 8). Reasoning that FGF18 might affect
ureter development, E15 explants were studied: with
basal media alone; with basal media supplemented
with 200 ng/ml FGF18, a concentration effective in
chondrocyte proliferation assays [32]; with basal media
supplemented with TGFβ1; or with both exogenous
FGF18 and TGFβ1. Addition of FGF18 alone produced
a modest and significant elongation of the ureter tube
versus controls. FGF18 did not, however, ameliorate
TGFβ1 induced dysmorphogenesis (see supplementary
material, Figure S10).
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Figure 3. Gross morphology of E15 ureter explants. Explants viewed from above as whole mounts at day 6 of culture. (A) An organ fed basal
media only shows a snake-like appearance, with high power of the proximal part (boxed) shown in (B). The SM layer (sm, arrowed) and
epithelium (e) are indicated. (C) An organ fed with media supplemented with 5 ng/ml TGFβ1. Note that it is smaller than the control organ
and it has cocooned appearance. In the high power view (D), the ureter tube is surrounded by a prominent interstitial cell layer (asterisk). (E)
Organ after 6 days of culture fed with media supplemented with 10 μM LY2109761 that inhibits TGFβRI/TGFβRII kinase. Note the overgrown
appearance compared with the control organ, with numerous bud-like structures protruding from the epithelial tube. Some of these are
visualised (arrowheads) in the high power image (F).

RNA sequencing of explants after 24 h exposure to
TGFβ1 found a numerically modest but statistically
significant down-regulation of Fgf10, which encodes
FGF10, a recognised urothelial mitogen [33]. Although
RT-qPCR showed only a non-significant tendency
for Fgf10 levels to fall (see supplementary material,
Figure S9), we tested whether exogenous FGF10 might
affect ureter growth. In these experiments (Figure 6)
basal media was supplemented with 500 ng/ml FGF10,
a concentration that restores ureteric bud growth in
embryonic mouse kidneys with defective receptor
tyrosine kinase signalling [34]. These cultures showed
significantly increased lengths versus controls. In other
cultures, media was supplemented with both FGF10 and
TGFβ1. Here, although the cocooning effect of TGFβ1
was still evident, the TGFβ1-induced deceleration in
linear growth was overcome. Immunostaining revealed
FGF10 (see supplementary material, Figure S11) in
human and mouse embryonic ureters in vivo, and in
explanted mouse E15 ureters. RT-qPCR showed that
Fgf10 was expressed also in native ureters harvested
between E13 and birth (see supplementary material,

Figure 3). The 24 h RNA sequence data was interrogated
to seek other Fgf transcripts [35] and results are shown
in supplementary material, Table S3. In controls, Fgf1,
Fgf2, Fgf7, Fgf11, Fgf10, Fgf13 and Fgf14 were each
robustly expressed (average reads >100), Fgf5, Fgf9,
Fgf12, Fgf18 and Fgf20 were moderately expressed
(average reads 10–100), while Fgf3, Fgf4, Fgf6, Fgf8,
Fgf15, Fgf16, Fgf21, Fgf22 and Fgf23 were barely or
not expressed (reads 0–9). Regarding receptors that
transduce FGF signals, robust levels (reads >100) of
Fgfr1, Fgfr2, Fgfr3 and Fgfr4 were detected in controls.

TGFβ receptor blockade in ureter culture
As described above, explanted E15 ureters expressed
transcripts of Tgfb1, Tgfb2 and Tgfb3, as well as from
Tgfbr1 and Tgfbr2, the genes coding for their sig-
nal transducing receptors. This raised the possibility
that endogenous TGFβ ligands affect differentiation.
Accordingly, we supplemented basal media with either
LY2109761, that inhibits TGFβRI/TGFβRII kinase
activity [36], or SB431542, that inhibits TGFβRI kinase
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Figure 4. Quantification of growth and peristalsis in E15 ureter explants assessed at day 6 of culture. (A–C) Explants exposed to exogenous
5 ng/ml TGFβ1 showed significantly less (p < 0.001) elongation compared with explants fed basal media alone (A). A similar conclusion was
made regarding the explant area (p < 0.001) (B). In both, growth of each explant was expressed as the percent increase over the length
or area of the same explant measured on the day when it was explanted. Exogenous TGFβ1 did not significantly affect the number of
contractions measured during 2 min (C). (D,E,F) Organs fed with basal media supplemented with 10 μM LY2109761, a molecule that inhibits
TGFβRI/TGFβRII kinase. LY2109761 significantly increased ureter growth assessed as both length (D) and area compared with explants fed
basal media alone. LY2109761 significantly decreased the number of ureter contractions recorded during 2 min compared with controls
(F). Data are depicted as either mean± SEM or median, interquartile range and range, as appropriate for the distribution of data points.
Numbers of organs assessed are indicated on the graphs under the horizontal axes.

[37]. LY2109761 (10 μM) resulted in ureter overgrowth,
with bud-like structures initiated from the urothe-
lial tube, most prominent proximally (Figure 3E,F).
Inhibition of TGFβ1 also caused enhanced linear and
area growth (Figure 4D,E). In E15 ureters exposed
to LY2109761, peristalsis was significantly decreased
versus controls (Figure 4F). As assessed by histology
of day 6 organs (Figure 5), in LY2109761 explants we
visualised pocket-like protrusions from the main lumen
terminating in bud-like structures containing clusters
of BrdU positive cells. SM over these buds appeared
attenuated (Figure 5D). As assessed by BrdU incorpo-
ration, after 24 h of culture (see supplementary material,
Figure S7), in E15 organs exposed to TGFβ receptor
blockade there was no change in the SM compartment,
a significant (p= 0.0086) decrease in the adventitial
compartment, and an increase approaching significance
(p= 0.0699) in the epithelial compartment. As for
E15 explants, E13 rudiments exposed to LY2109761

also acquired bud-like structures (see supplementary
material, Figure S6), although growth was not for-
mally quantified. SB431542, a different type of TGFβ
receptor blocker, also resulted in bud-like structures in
E15 explants, and it caused an increase in ureter tube
area when applied at 10 or 20 μM (see supplementary
material, Figure S12).

The cocooning effect of exogenous TGFβ1 and its
growth decelerating effect on area were partly abro-
gated (see supplementary material, Figure S13) by
LY2109761. This goes some way to prove that the
dysmorphic effects of exogenous TGFβ1 were mediated
through TGFβRI/TGFβRII.

Discussion

This study showed that TGFβ axis molecules are
detected in both human and mouse developing ureters.
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Figure 5. Histology of cultured E15 ureters. The first column depicts sections of organs fed basal media alone (Control); the second depicts
transverse sections of organs exposed to exogenous 5 ng/ml TGFβ1 (TGFβ1); and the third depicts transverse sections of organs exposed
to TGFβ blocker LY2109761 (TGFβ1 antagonist). Sections were counterstained with haematoxylin apart from E. (A) Eosin stained sections
reveal the smaller profile of the TGFβ1 exposed ureter and the larger profile of the LY2109761 exposed ureter versus control. The lumen
in the LY2109761 exposed ureter had extensions (asterisks) from the main lumen. (B) CDH1 and (C) UPKII immunostaining (brown). In the
LY2109761 exposed organ note the bud-like structure (b). (D) In all three conditions, an αSMA immunostained layer (brown) was noted
around the urothelium. This layer appeared attenuated over the bud in the LY2109761 exposed ureters. (E) Picrosirius red staining (red)
was prominent in adventitial tissue (i) in TGFβ1 exposed organs. (F) pSMAD2 immunostaining (brown) detected positive nuclei in the three
conditions. (G) BrdU immunostained (brown) nuclei were detected in both epithelial and surrounding layers in all conditions. In the organ
exposed to LY2109761, clusters of positive nuclei were detected in bud-like structures. Bars, 20 μm.
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Figure 6. Effects of FGF10 in organ culture. (A–H) Explants viewed at day 6. (A) Organ fed basal media only, with high power of the boxed
area shown in (B). SM (sm, arrowed) and epithelial (e) zones are indicated. (C,D) Organ fed with basal media supplemented with 5 ng/ml
TGFβ1 has a cocoon-like appearance. Interstitial zone indicated by asterisk. (E,F) Organ fed with basal media supplemented with 500 ng/ml
FGF10. Note the apparent increased length versus organ fed basal media alone. (G,H) Organ fed with basal media supplemented with both
5 ng/ml TGFβ1 and 500 ng/ml FGF10. Cocooning is still apparent with prominent interstitial tissue (*) but the length of the tube appears
increased versus the organ exposed to TGFβ1 alone. (I,J) Quantification of increases in urothelial tube length (I) and area (J) show that
FGF10 (n= 12) caused significant linear growth versus basal media alone (n= 13). Addition of TGFβ1 (n= 13) caused significant reduction
in linear and area growth versus basal media alone. When FGF10 was added together with TGFβ1 (n= 13) the negative effect of the latter
on linear growth was overcome.

Moreover, unique dysmorphic phenotypes were gen-
erated by adding exogenous TGFβ1 (i.e. inhibition of
growth and generation of a cocoon-like phenotype) or
by adding TGFβ receptor blockers (i.e. acceleration of
linear growth accompanied by formation of epithelial
‘buds’).

Previous studies defined molecules directing ureteric
bud initiation, branching of its top end, and the
connection of its distal end to the bladder. These included
secreted molecules such as glial cell line-derived growth
factor (GDNF), bone morphogenetic proteins (BMPs),
FGFs and retinoic acid [8,34,38,39]. Growth factor
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control of stalk development has been studied less.
The embryonic urothelium secretes sonic hedgehog
(SHH) that induces BMP4 in nearby mesenchyme: here
BMP4 leads to induction of SM proteins [40,41]. SHH
signalling is also required for pacemaker maturation
[42], while Cajal-like cells in the SM layer of the
ureteric express KIT, a growth factor receptor needed
for their function [5]. Before our study, however, little
had been reported about the possible roles for TGFβ in
the embryonic ureter.

We discovered that blocking endogenous TGFβ, with
either of two receptor inhibitors, generated epithelial
overgrowth in embryonic ureters, thus revealing a pre-
viously unreported regulatory role for the TGFβ axis
in morphogenesis of the ureteric stalk. The phenotype
may in part be explained by the fact that, based on
experiments with cultures of postnatal urothelia, exoge-
nous TGFβ1 inhibits proliferation [43]. Thus, in the
current context, blockade would be associated with over-
growth, as manifested by aberrant bud-like structures.
The current results observed after blockade of endoge-
nous TGFβ are broadly consistent with the observation
that a monoclonal antibody to TGFβ1 administered to
pregnant rabbits increased the incidence of ureter mal-
formations in offspring [44]. The dysmorphic effects
of TGFβ blockade on developing ureters have paral-
lels in other organs. Antibody mediated TGFβ1 block-
ade causes accelerated nephron tubule formation in
metanephric kidney organ culture [15], and inhibiting
TGFβRI in embryonic lungs increases branching [45]. In
contrast to the bud-like structures observed in the ureter
stalk, this lung phenotype appears confined to the dis-
tal sections of the bronchial tube, where branching nor-
mally occurs [45]. The bud-like phenotype of the ureter
upon TGFβR blockade appear morphologically similar
to that reported in embryonic ureter stalks exposed to
GDNF or FGF7 [46]. We speculate that these buds, to
a small extent, mimic the phenotype of inverted papil-
lomas, a rare human ureter disorder. In this disease,
the ureteric urothelium extends cords of epithelial cells
in away from the organ’s lumen [47,48]. In future, it
may be informative to analyse expression of TGFβ axis
molecules in these benign tumours.

This study additionally discovered that exogenous
TGFβ1 causes embryonic ureter malformations, gener-
ating a phenotype distinct from that caused by TGFβ
blockade. This supports the idea that an overactive
TGFβ axis contributes to dysmorphogenesis in human
renal tract malformations [17–19]. Exogenous TGFβ1
caused the explanted ureteric tube to become encased
in a cocoon-like structure. This may have generated
a physical constraint limiting ureter tube growth, and
indeed we did not find a decreased proliferative index
in explants. On the other hand, exogenous TGFβ1 is
reported to decrease proliferation of postnatal urothe-
lia [43] and ureteric bud tips [49], and it compromises
branching morphogenesis in salivary glands [31,50] and
lung [45]. Another study reported that embryonic rat
ureters exposed to TGFβ had impaired urothelial and

SM proliferation [51]. That study [51], however, nei-
ther showed images of growing organs nor assessed gene
expression.

In future, it will be important to pinpoint the intra-
cellular signalling mechanisms of TGFβ and in ureter
development. This is a potentially complex field,
with numerous pathways potentially involved [14].
The canonical, TGFβ signalling pathway involves
SMAD2 and SMAD3 that form complexes with
SMAD4 which then move to the nucleus. Although
we detected pSMAD2 on histology sections, this study
did not quantify the signals. Moreover, another SMAD,
SMAD7, inhibits the TGFβ pathway [14]. Furthermore
non-canonical TGFβ signalling may be operative, too,
involving p38 MAPK, JNK or NF-κB [14]. One way
forward here would be to generate a series of mutant
mice, each with a deletion of specific TGFβ receptors
or SMADs or other intracellular signalling molecules
in either the urothelium or the mesenchyme/SM or
the adventitia. In this respect, it is notable that Mamo
et al [41] used a Tbx18Cre driver to delete SMAD4 in
differentiating SM of the ureter, noting only a modest
delay in SM differentiation. In fact, TGFβ signalling
is also thought to enhance SM differentiation in the
developing intestine [30]. The study of Mamo et al
[41] would not have been informative with regard to
potential TGFβ direct effects on the differentiating
urothelium and this may explain why ectopic buds,
prominent after TGFβ receptor inhibition in the current
work, were not observed.

After 24 h of TGFβ1 exposure, the most up-regulated
transcripts in the RNA sequencing sets were those
encoding: platelet-derived growth factor-like (Pdgfrl),
implicated in chondrocyte differentiation [52]; scler-
axis (Scx), implicated in extracellular matrix molecule
expression in tendons and heart [53]; chondroadherin
(Chad), which is enriched in cartilage [54]; bigly-
can (Bgn), a matrix molecule that, like chondroad-
herin, is up-regulated during TGFβ induced differen-
tiation of mesenchymal stem cells towards cartilage
[55]; fibronectin-1 (Fn1), a matrix protein implicated
in myofibroblast formation [56]; and matrix Gla pro-
tein (Mgp) that modulates urinary stone formation [57].
These changes were consistent with increased adventi-
tial prominence after TGFβ1 exposure, suggesting that
its composition begins to shift towards a metaplastic
cartilage-like phenotype.

Fgf18 was also up-regulated in TGFβ1 exposed
ureters. Rudiments also expressed Fgfr3, encoding
the cell surface receptor for FGF18 [58]. Ours is the
first report drawing attention to whether this ligand is
expressed in the embryonic ureter, and exploring its
potential relation to morphogenesis. When recombinant
FGF18 was added to ureteric explants fed basal media
alone, a small increase in linear growth occurred but
exogenous FGF18 did not impact on TGFβ1-induced
dysmorphogesis. Further experiments are needed
to determine whether endogenous Fgf18 affects ureter
development. FGF18 is related to FGF8 and FGF17 [58]
but Fgf8 and Fgf17 transcripts were barely detectable in
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ureter rudiments. FGF18 polymorphisms are associated
with facial clefting, FGFR3 mutations cause skeletal
dysplasias [35], and Fgf18 deleted mice have delayed
chondrocyte differentiation [59]. Mice lacking FGF18
have impaired alveolar epithelial growth in development
[60], and Fgfr3 mutant mice have enhanced intestinal
crypt proliferation [61]. Other studies link FGF18 and
TGFβ biology. In hair, TGFβ2 and FGF18 respectively
accelerate and delay telogen-to-anagen transition in
which new hair shafts are generated from stem cells
[62]. Finally, in bone cultures, TGFβ1 up-regulates
Fgf18, with increased FGFRIII phosphorylation [32].

Among down-regulated transcripts were those encod-
ing: sushi, nidogen and EGF-like domains 1 (Sned1), an
extracellular matrix protein found in embryonic kidneys
[63] and implicated in tumour invasion [64]; hippocal-
cin (Hpca), a calcium sensor implicated in neurodegen-
eration [65]; solute carrier family 26A7 (Slc26a7), a
Cl−/HCO3

− exchanger [66]; solute carrier family 26A1
(Slc4a1), an anion exchanger [67]; and tenascin XB
(Tnxb). TNXB mutations cause human urinary tract mal-
formations and healthy urothelia express tenascin XB
[68], a protein that regulates TGFβ1 bioavailability [69].
Robust levels of the following transcripts were detected
at days 1 and 6 of culture in controls: Shh, Ptch1,
Smo, Gli1, Gli2 and Bmp4, encoding hedgehog path-
way molecules that generate SM [70]; and Rara, Rarb,
Rarg, Sox9, Tbx18 and Tshz3, encoding urinary tract
transcription factors [3,70–73]. Exogenous TGFβ1 did
not alter these transcripts after correction for multiple
comparisons. FGF10 is mitogenic for urothelia [33] and
stimulates amniotic stem cells to acquire urothelial char-
acteristics [74]. We noted a tendency for down-regulated
Fgf10 upon exposure to TGFβ1. When FGF10 was
added to cultures, the growth inhibiting effect of TGFβ1
was abrogated. This introduces the idea that the dysmor-
phic effects of TGFβ1 can be modified by other growth
factors expressed in the embryonic ureter. Notably, in
an ex vivo model, exogenous TGFβ1 inhibited Fgf10
expression in prostate-related mesenchyme, an effect
mediated through the Fgf10 promoter [75].

Collectively, these observations reveal an unsus-
pected regulatory role for endogenous TGFβ signalling
in embryonic ureters, fine-tuning morphogenesis. The
results also support the hypothesis that up-regulation of
TGFβ axis molecules plays roles in the pathobiology of
ureter malformations. Further experiments are needed
to unravel the intracellular signalling mechanisms
involved in these dysmorphic responses.
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