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Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy worldwide, as

patients are typically diagnosed at a late stage and eventually develop chemoresistant

disease following front-line platinum-taxane based therapy. Only modest results have

been achieved with PD-1 based immunotherapy in ovarian cancer patients, despite

the fact that immunological responses are observed in EOC patients. Therefore,

the goal of this present study was to identify novel immune response genes and

cell subsets significantly associated with improved high grade serous ovarian cancer

(HGSOC) patient prognosis. A transcriptomic-based immune modeling analysis was

employed to determine levels of 8 immune cell subsets, 10 immune escape genes,

and 22 co-inhibitory/co-stimulatory molecules in 26 HGSOC tumors. Multidimensional

immune profiling analysis revealed CTLA-4, LAG-3, and Tregs as predictive for improved

progression-free survival (PFS). Furthermore, the co-stimulatory receptor ICOS was also

found to be significantly increased in patients with a longer PFS and positively correlated

with levels of CTLA-4, PD-1, and infiltration of immune cell subsets. Both ICOS and

LAG-3 were found to be significantly associated with improved overall survival in The

Cancer Genome Atlas (TCGA) ovarian cancer cohort. Finally, PVRL2 was identified as

the most highly expressed transcript in our analysis, with immunohistochemistry results

confirming its overexpression in HGSOC samples compared to normal/benign. Results

were corroborated by parallel analyses of TCGA data. Overall, this multidimensional

immune modeling analysis uncovers important prognostic immune factors that improve

our understanding of the unique immune microenvironment of ovarian cancer.

Keywords: tumor immunology, immune profiling, LAG-3, ICOS, T regulatory cells, CTLA-4, PVRL2, ovarian cancer

INTRODUCTION

Epithelial Ovarian Cancer (EOC), is the most lethal of all gynecological malignancies,
with approximately 21,750 women diagnosed, and 13,940 deaths from the disease in the
United States in 2020 (1). The primary treatment regimen for advanced stage EOC consists
of debulking surgery and platinum-taxane-based chemotherapy, with around 75% of patients
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achieving remission. However, a majority of patients experience
recurrence within months to a few years, at which point the
treatment response to traditional chemotherapy is low (2). To
combat this chemoresistance, there has been a heavy focus on
targeted therapies such as anti-angiogenic and poly (ADP-ribose)
polymerase (PARP) inhibitors, which have shown promising
results when used for maintenance or recurrent disease therapy.
However, significant challenges still exist in producing long-term
outcomes, with prognosis for advanced stage patients remaining
poor (3–7).

Currently, several EOC clinical trials center upon
immunotherapy (3). While melanoma and non-small cell
lung cancer (NSCLC) patients have seen a great benefit from
targeting immune checkpoint inhibitors such cytotoxic T
lymphocyte-associated protein-4 (CTLA-4) or programmed
cell death protein 1 (PD-1), EOC patients have only exhibited
response rates of 10–15% (3). Despite these poor response rates,
evidence suggests that EOC is an immunogenic cancer. It has
been well-established that patients with a higher number of
intratumoral T cells achieve a longer progression-free survival
(PFS) and overall survival (OS) as compared to those with
lower numbers (8). In addition, antigen-specific antibodies and
tumor-reactive T cells have been detected in ovarian cancer (9).
Thus, while evidence suggests that EOC patients could benefit
from some form of immunotherapy, further research is needed
in order to improve response rates.

While immune signatures may not be highly useful as
predictive markers for immunotherapy in EOC, given the
overall low response rates to currently studied PD-1 therapies,
immune-related gene expression profiles may serve as prognostic
indicators of response to frontline chemotherapy. Moreover,
gaining an understanding of which immunological features in
a tumor lead to improved outcomes could reveal opportunities
for novel immunotherapeutic approaches. In ovarian cancer,
studies have begun to explore the relationship between immune
composition, immune-related genes, and clinical outcomes.
Several studies have used computational analysis of tumors with
publicly available gene expression data to report relationships
between immune cell subsets or gene expression and prognosis
(10–13). Yet other studies have employed immunohistochemical
approaches to establish a relationship between intra-epithelial
T cells and other immune cell subsets and survival (14,
15). However, a complete understanding of how the immune
microenvironment responds to chemotherapy and how these
changes relate to clinical outcomes is lacking.

In this present study, we performed a targeted transcriptomic
analysis of immune cell content and coinhibitory and
costimulatory receptor genes and their respective ligands in
a cohort of 26 high grade serous ovarian cancer (HGSOC)
tumors. This multidimensional analysis identified a novel
combination of immune response genes and subsets that
are associated with patient outcomes, and revealed unique
correlations between specific immune genes in HGSOC. Specific
genes were further analyzed using The Cancer Genome Atlas
(TCGA) ovarian cancer cohort. These results highlight the
potential utility of novel immune markers as prognostic factors
or to inform future therapeutic strategies.

MATERIALS AND METHODS

Ovarian Cancer Tissue
Stage IIIC, grade 3 serous ovarian cancer patients were
selected based on duration of PFS (time from completing
chemotherapy to first recurrence). One patient in the long
PFS group had Stage IV disease that was only designated as
Stage IV due to pelvic lymph node spread, which was easily
resected. Eleven patients had a PFS ≥ 54 months (range
54–99+); eight patients had a PFS ≤ 9 months (range 0–
9); and seven had an intermediate PFS (range 16–47). The
median age of the patients in the long PFS group was 55
(range 42–91) and the median age was 67.5 (range 45–79)
for the short PFS group (p = 0.1226). The median CA125
value for patients in the long PFS group was 155, and
1,808 for the short PFS group (p = 0.0346). Median HE4
levels were not calculated because only ten patients out of
the 19 had known HE4 levels. Some patients were treated
with maintenance bevacizumab, as noted (Table 1). Formalin-
fixed, paraffin embedded (FFPE) tissue sections were prepared
from each patient’s residual tissue block from their primary
debulking surgery. All tumors were naïve to chemotherapy.
Before submission, the tissue was analyzed by a pathologist
at Women & Infants Hospital to determine that they met
minimum guidelines for cellularity (≥80%) and viability (≥20%).
All tissue was obtained and data managed under The Women
and Infants Hospital Institutional Review Board approval of
protocol #1326537.

Cofactor ImmunoPrism® Assay
All stages of the assay were performed in a CAP-accredited,
CLIA-licensed clinical laboratory. Schillebeeckx et al. (16)
describes the machine learning approach used to generate
“health expression models” for accurately identifying
percentages of immune cell populations in tumor tissue.
When developing the immune Health Expression Models
used in the ImmunoPrism assay, all models were built using
purified immune cell populations, and validated using flow
cytometry. For example, the surface markers used to identify
Tregs (CD4+/CD25+/CD127low/–/CCR4+) were based on
those used by the Human Immunophenotyping Consortium
(17). The CD4+/CD25+/CD127low/– subpopulation of cells
has been shown to be significantly enriched for Foxp3 expression
compared to the overall CD4+/CD25+ population, and
additionally display higher suppressive capability (18). We
therefore expect the CD4+/CD25+/CD127low/–/CCR4+ cells
isolated to be significantly enriched for Tregs. For macrophages,
a serum-free in vitro differentiation model was used to
generate M1 and M2 macrophages from peripheral blood
monocytes. M1 macrophages were derived by activation with
IFN-gamma and LPS, and M2 macrophages were derived by
activation with IL-4, as described in The Biology of Cancer by
Robert A. Weinberg (second edition) (19). Populations were
confirmed by flow cytometry using the following markers:
M1 macrophages are CD80+/CCR7+/CD206 low/CD209
low and M2 macrophages are CD206+/CD209+/CD80
low/CCR7 low.
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TABLE 1 | Patient information.

Group Stage Grade Age range Received maint. bev PFS (with bev) OS (with bev) HE4 CA125 Debulking

Long IIIC 3 50–59 no 90+ 90+ N/A 0–499 Optimal

Long IIIC 3 50–59 no 93+ 93+ 0–499 0–499 Optimal

Long IIIC 3 50–59 no 100+ 100+ N/A 0–499 Optimal

Long IIIC 3 40–49 no 84+ 84+ 0–499 0–499 Optimal

Long IIIC 3 90–99 no 54 79+ 100–499 1000–1499 Suboptimal

Long IIIC 3 40–49 no 79+ 79+ 100–499 0–499 Optimal

Long IIIC 3 70–79 yes 62 (51) 77 (66)+ N/A 0–499 Optimal

Long IIIC 3 50–59 yes 76 (64)+ 76 (64)+ 0–499 500–999 Optimal

Long IIIC 3 70–79 no 71+ 71+ 0–499 0–499 Optimal

Long IV 3 50–59 no 71+ 71+ 0–499 0–499 Optimal

Long IIIC 3 60–69 no 72+ 72+ N/A 0–499 Optimal

Median 55 76 (72) 79 (79) 155

Short IIIC 3 60–69 no 2 4 N/A 0–499 Suboptimal

Short IIIC 3 60–69 no 4 6 N/A N/A Optimal

Short IIIC 3 70–79 no 6 14 N/A 0–499 Suboptimal

Short IIIC 3 70–79 no 7 28 500–999 0–499 Optimal

Short IIIC 3 60–69 yes 7 (2) 20 (15) N/A 1500–1999 Suboptimal

Short IIIC 3 40–49 yes 0 (0) 6 (0) N/A 0–499 Suboptimal

Short IIIC 3 60–69 no 9 18 0–499 3000+ Optimal

Short IIIC 3 70–79 no 6 24 2000–2499 2500–2999 Optimal

Median 67.5 6 (5) 16 (14.5) 1808

Intermediate IIIC 3 70–79 no 16 38 N/A 2500–2999 Optimal

Intermediate IIIC 3 60–69 yes 20 (9) 76 (67)+ N/A 1000–1499 Optimal

Intermediate IIIC 3 50–59 yes 33 (22) 95 (84) N/A 0–499 Optimal

Intermediate IIIC 3 60–69 yes 47 (41) 51 (45) 0–499 0–499 Optimal

Intermediate IIIC 3 60–69 no 17 47 N/A 0–499 Optimal

Intermediate IIIC 3 80–89 no 24 29 1000–1499 0–499 Suboptimal

Intermediate IIIC 3 60–69 no 31 56+ 0–499 0–499 Optimal

Median 63 24 (22) 51 (47) 218

Clinical information for all 26 patients was determined, and median values calculated for each group (long, short, intermediate). In the case of patients who received maintenance

bevacizumab, PFS and OS values from time of completion of bevacizumab are included in parentheses.

LaFranzo et al. describes in detail the Cofactor Genomics
predictive immune modeling workflow (16, 20), which is
summarized as follows:

RNA Extraction: Unstained, unmounted FFPE sections from
the same FFPE block were processed for RNA extraction using
the Cofactor Prism Extraction Kit, following the manufacturer’s
suggested protocol.

Total RNA Quality Control: Unstained, unmounted FFPE
sections from the same FFPE block were processed for RNA
extraction using the Prism Extraction Kit (Cofactor Genomics,
San Francisco, CA). Total RNA was evaluated for quality
and quantity using the Bioanalyzer or TapeStation assay
(Agilent, Santa Clara, CA), and the Qubit RNA HS or BR
Assay (ThermoFisher, Waltham, MA). RNA concentration and
quantity (in ng/µL and total ng) and quality (DV200, % of
fragments above 200 nt) was evaluated to determine library
input amount.

ImmunoPrism Library Preparation and Sequencing: Total
RNA was processed for library construction by Cofactor
Genomics according to the ImmunoPrism assay standard
protocol for FFPEmaterials; 20–100 ng of RNAwas used as input

depending on sample quality. Libraries were sequenced as single-
end 75 base pair reads on a NextSeq500 (Illumina, San Diego,
CA) following the manufacturer’s protocols.

ImmunoPrism Analysis: An individual ImmunoPrism
report including expression characterization and immune cell
quantification was provided for each sample processed. Samples
were grouped according to clinical meta and outcomes data to
generate ImmunoPrism Biomarker Reports, as appropriate.

Single analyte biomarkers were created using a linear
threshold approach. All possible thresholds were considered
and the threshold that jointly optimizes the leave-one-out
specificity and sensitivity was chosen for each respective single
analyte. This approach converges quickly to the population
accuracy, even in small sample sizes, and is robust to
class imbalance.

The multidimensional biomarker was created using machine
learning to simultaneously consider multiple readouts from the
ImmunoPrism assay. The process involves two steps: first, it
chooses the highest performing combination of analytes, and
then second, it chooses the highest performing machine learning
hyperparameters to train the final model.
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In the research-use-only version of the software, the top five
analytes are considered, sorted by accuracy as an individual
predictive readout and then by p-value. Next, all power set
combinations of these five analytes were used to train Random
Forest models with default hyperparameters. The analytes
corresponding to the model with the lowest leave-one-out error
were considered for the next step. In cases of ties, the model with
more analytes was chosen. Using this final set of analytes, a grid
search optimization over all hyperparameter values is performed.
The model with the lowest leave-one-out error was used as the
final model. The model’s predictions of the left out samples were
used to evaluate the performance of the final model.

Immunohistochemistry
FFPE human ovarian tissue slides were baked at 2 h at 65◦C.
Slides were then washed in xylene, 100, 95, 70% ethanol,
deoxygenated water, and FTA Hemagglutination Buffer. Antigen
retrieval was performed using Antigen Retrieval Solution
(1X) (Vector Laboratories, H-3300) and heated to 95◦C for
20min. Slides were then blocked with 5% horse serum in
FTA Hemagglutination buffer and incubated overnight in
PVRL2/Nectin-2 antibody (Cell Signaling, 95333S, 1:100) at
4◦C. Anti-rabbit IgG Dylight 488 secondary antibody (Vector
Laboratories, DI-488, 1:1000) was then applied to slides following
incubation in the dark at room temperature for 1 h. Slides were
washed between each step using FTA Hemagglutination buffer
and cover-slipped with DAPI containing mounting medium
(Vector Laboratories, H-1200).

Image Analysis
Three randomly selected fields per case were selected based
on DAPI staining and acquired with a spinning disk confocal
Nikon Eclipse Ti microscope at 10x objective. Image analysis
was performed on grayscale 8-bit images in ImageJ. Images
were thresholded for specific staining and mean and maximum
intensity was calculated. Representative images were taken using
confocal microscopy at 20x objective.

The Cancer Genome Atlas
The ovarian cancer dataset (TCGA-OV) with complete RNA-
sequencing results (n = 378) from The Cancer Genome Atlas
was obtained using GenomicDataCommons (version 1.12.0) and
RStudio (R version 4.0.0) (21, 22). Fragments Per Kilobase of
transcript per Million mapped reads (FPKM) values, vital status,
and days to death/follow-up were obtained for correlation and
survival analyses.

Timer
TIMER2.0 (https://timer.cistrome.org) (23–25) was used to
determine percentages of immune cells in TCGA-OV samples.
CIBERSORT was used as the immune deconvolution method.

cBioPortal
Mutation count data and RNA seq (V2 RSEM) data for TCGA-
OV (Firehose Legacy) was downloaded from cBioPortal (https://
cbioportal.org) (26, 27). Data was available for 185 samples.

Statistics
The statistics reported for the ImmunoPrism assay were
produced via leave-one-out cross validation. For a dataset
limited in size, leave-one-out cross validation gives the best
approximation to how an estimator will generalize to future,
independent samples. The process works by iterating n times
(where there are n datapoints), each time learning a threshold
considering n-1 points and testing the prediction of the nth, left
out, point. Then, all n predictions are considered to calculate
prediction statistics.

Wilcoxon Rank Sum Test was used to determine differences
in median values for age and CA125 levels. Cuzick trend test
was used to evaluate differences in medians between “long”,
“intermediate”, and “short” PFS groups. Kaplan-Meier curves
were generated for TCGA survival data, and log-rank p-values
along with hazard ratios and 95% confidence intervals were
determined. Spearman rank correlation was used to determine
correlations between genes and cell types. Two-tailed unpaired
t-test was used to determine differences in gene expression
levels between mutation count groups. Statistical analyses were
performed in GraphPad Prism and R version 4.0.3. p < 0.05 was
considered significant.

RESULTS

Prognostic Biomarker Status in Epithelial
Ovarian Cancer Tissue
Twenty-six formalin fixed paraffin-embedded (FFPE) samples
underwent ImmunoPrism immune profiling analysis (Cofactor
Genomics, San Francisco, CA). Clinical data can be seen in
Table 1. Nineteen samples that were stratified by PFS were
included in the biomarker analysis to determine differences
in a panel of immune genes and immune cell subtypes
between the two groups (short vs. long PFS). Multidimensional
immune profiling analysis revealed the combination of CTLA-
4, LAG-3, and Tregs was significantly higher in patients
with improved patient prognosis (Figure 1). Furthermore,
individual analyte assessment revealed that LAG-3, CTLA-4,
ICOS, and TNFRSF18 transcripts were significantly more
abundant in the long PFS group compared to the short (p
< 0.05). PD-1 also demonstrated a strong trend toward
higher transcripts per million (TPM) in the long PFS group
than in the short (p = 0.0575). The relationships between
individual immune cell types and PFS did not reach the
level of significance. Thresholds were determined for each
cell type or gene, along with accuracy, positive predictive
value (PPV), negative predictive value (NPV), sensitivity,
and specificity (Table 2). RNA seq data is available through
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) under
accession number E-MTAB-9743.

Relationship of Immune Genes and Cell
Types With Progression-Free Survival
Next, we went on to analyze the entire cohort of samples,
including those with short, intermediate, and long PFS.
There were significant trends observed in the analysis of
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FIGURE 1 | ImmunoPrism® Multidimensional Biomarker Assessment of high grade serous ovarian cancer. (A) The most predictive marker from immune cell types

(“immune health expression models”) and each type of immune gene were less accurate than a multidimensional biomarker comprising LAG-3, CTLA-4, and Tregs at

predicting length of progression free survival. (B) The distributions of individual samples from both cohorts were evaluated for future performance using the

multidimensional biomarker as the classifier. Multidimensional values are plotted along the x-axis, and the frequency of sample values are visualized in the vertical

space. The sample distribution visualization is approximate. The cohorts are distinguished by color (green and blue) and shape (circle and square), and estimations are

distinguished by outline color (white: correct estimation, yellow: incorrect estimation.) The dashed line at value = 0 indicates the prediction threshold that separates

the cohorts. Samples that were incorrectly estimated are highlighted in yellow, and listed in Supplementary Table 2. (C) A Receiver Operating Characteristic (ROC)

Curve was generated for the multidimensional biomarker. For various thresholds of the biomarker, the True Positive Rate (y-axis) is plotted against the False Positive

Rate (x-axis). The area under the curve (AUC) is included in the lower right corner. The random predictor is shown as a dashed red line. (D) A confusion matrix was

generated for the multidimensional biomarker. This matrix was used to calculate positive predictive value (PPV), negative predictive value (NPV), specificity, and

sensitivity of the multidimensional biomarker by comparing how the samples are classified based on the assay (rows) vs. their known label based on clinical data (28).

The incorrectly estimated samples are the same as those noted and labeled in the Multidimensional Biomarker Assessment.

LAG-3 (p = 0.0016), ICOS (p = 0.0381), TNFRSF18 (p
= 0.0354), PD-1 (p = 0.0474), and CTLA-4 (p = 0.0410)
(Figure 2A). No significant trends were observed with
any of the cell types and PFS (Supplementary Table 1).

Interestingly, there was no correlation between “total
immune” and PFS (Figure 2B), suggesting that patients
with longer PFS don’t necessarily have a larger total
immune infiltrate.
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TABLE 2 | Analyte table displaying cell type percentages and TPM values for all genes analyzed in the ImmunoPrism assay.

Analyte Long PFS Median Short PFS Median Threshold p-value Accuracy PPV NPV Sensitivity Specificity

Multidimensional biomarker −0.7 0.6 0 - 89 100 80 82 100

Treg cells 5.3 3.2 4.1 0.0829 79 82 75 82 75

CD8+ T cells 2 0.8 1.2 0.1485 74 80 67 73 75

M2 macrophages 0.6 1 0.7 0.0829 63 56 70 62 64

CD4+ T cells 1.4 0.6 0.7 0.1864 63 70 56 64 62

M1 macrophages 0.1 0 0.1 0.2312 63 70 56 64 62

CD14+ monocytes 0.2 0.6 0.4 0.302 63 56 70 62 64

CD19+ B cells 5.9 4 5.3 0.8688 63 70 56 64 62

CD56+ NK cells 1.3 1.4 1.4 0.409 53 44 60 50 54

Total immune 17.6 14.9 - - - - - - -

CTLA4 3,191 1,912 2,343 0.039 84 83 86 91 75

PD-1 2,612 892 1,381 0.0575 74 80 67 73 75

ICOS 1,339 549 896 0.0475 63 70 56 64 62

PD-L1 1,648 900 1,388 0.0693 63 70 56 64 62

TIM-3 5,865 6,023 5,904 0.6797 58 50 64 50 64

OX40 4,580 3,727 4,010 0.0829 53 60 44 55 50

BTLA 1,385 767 938 0.3218 53 60 44 55 50

CD47 50,296 60,332 59,375 0.5089 53 44 60 50 55

ARG1 32 36 35 0.6797 53 44 60 50 55

IDO1 11,162 8,732 11,037 0.7412 47 56 40 45 50

LAG3 8,041 3,618 5,416 0.00 39 79 82 75 82 75

PDCD1LG2 2,852 1,500 1,999 0.0986 63 70 56 64 62

LGALS9 12,112 16,504 13,209 0.3218 63 56 70 62 64

CD96 6,364 2,863 4,419 0.3218 63 70 56 64 62

CD48 5,288 3,924 5,009 0.5089 63 70 56 64 62

CD244 355 412 360 0.8365 53 44 60 50 55

CD40LG 1,078 360 776 0.0693 74 80 67 73 75

CD28 1,483 914 1,011 0.1372 74 80 67 73 75

CD27 5,814 2,864 3,666 0.1864 74 80 67 73 75

TNFRSF18 4,811 2,402 3,168 0.039 68 73 62 73 62

CD70 918 593 875 0.1864 63 70 56 64 62

PVRL2 85,599 64,526 72,381 0.21 55 63 70 56 64 62

TNFRSF25 23,986 34,522 25,030 0.2155 63 56 70 62 64

TNFSF4 1,818 2,100 2,002 0.2477 63 56 70 62 64

TMIGD2 331 508 373 0.4828 63 56 70 62 64

CD80 2,318 1,994 2,218 0.6 203 63 70 56 64 62

CD40 22,051 14,557 19,788 0.7412 63 70 56 64 62

TNFSF18 75 87 81 1 63 56 70 62 64

HHLA2 92 265 106 0.3637 53 44 60 50 55

ICOSLG 421 381 419 0.6203 53 60 44 55 50

TNFSF15 307 436 410 0.9342 53 44 60 50 55

CD276 13,864 13,942 14,213 0.8688 47 40 56 50 45

A “Multidimensional Biomarker” value was generated on the arbitrary scale of −1 to +1, where the “long PFS” group was placed on the negative axis. Accuracy, positive predictive

value (PPV), negative predictive value (NPV), sensitivity, and specificity are displayed for each cell type or gene.

Relationship of Top Differentially
Expressed Genes With Overall Survival
We analyzed The Cancer Genome Atlas ovarian cancer cohort
(TCGA-OV), and generated Kaplan-Meier curves for overall
survival for each of the top differentially expressed genes
(Figure 3A). In this larger, somewhat less homogeneous cohort,

patients with higher levels of LAG-3 and ICOS had improved OS,
with an HR of 0.6820 [0.4724–0.9846] (p = 0.0424) for LAG-3

and an HR of 0.5832 [0.4026–0.8448] (p = 0.0195) for ICOS. No

significant differences were determined for the other candidate

genes. Small differences in mean LAG-3 (p = 0.0371) and ICOS

(p = 0.0799) mRNA transcript levels were observed in patients
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FIGURE 2 | Relationship of immune genes and cell types with progression-free survival. The entire 26 patient cohort, including patients with short, intermediate, and

long PFS were analyzed. (A) Values were plotted for each group (horizontal bar indicates median). Cuzick trend test was used to determine significant trends in the

three groups. The horizontal variation in each group is a random jitter and not the actual PFS values. (B) “Total immune” percentages were correlated with PFS by

Spearman rank correlation.
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FIGURE 3 | LAG-3 and ICOS are associated with overall survival and mutation counts in The Cancer Genome Atlas ovarian cancer cohort. (A) Kaplan-Meier curves

for LAG-3, ICOS, CTLA-4, PD-1, PD-L1, and TNFRSF18 were generated using TCGA-OV dataset. The top and bottom quartiles of expression (n = 95/group) were

used to define “high” vs. “low” expressing groups. Log-rank hazard ratios (HR) and p-values are reported, with 95% confidence intervals in parentheses. (B) TCGA-OV

dataset was separated into low (8–43) and high (43–158) mutation count groups by median mutation count. mRNA expression for each gene (RNA seq V2 RSEM)

was determined for each group, with the black bar indicating median mRNA level for each group. P-value was determined by two-tailed, unpaired student t-test.
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with low vs. high mutation counts, although this difference was
not significant for ICOS (Figure 3B).

Correlation of Top Differentially Expressed
Genes Between Each Other and With
Immune Cell Subsets
The top differentially expressed genes were correlated amongst
each other and with immune cell subsets. No significant
correlations emerged for LAG-3 with the rest of the top
differentially expressed immune genes. Conversely, there were
strong and significant correlations between ICOS, TNFRSF18,
PD-1, PD-L1, and CTLA-4 amongst each other (r > 0.5,
p < 0.001). Likewise, similar correlations between immune
genes were observed in TCGA data, except LAG-3 also
emerged as significantly correlated, although the strength of
LAG-3 correlations was weaker than for ICOS (p < 0.0001
for all correlations) (Figures 4A,C–F). Because of reported
relationships between PD-1 and LAG-3, as well as between
ICOS and CTLA-4, we further examined these relationships in
our cohort vs. TCGA. We observed a similar “fan” pattern in
the correlation of LAG-3 and PD-1 in our cohort vs. TCGA,
although the relationship between these two genes in TCGA
dataset emerged as statistically significant (r = 0.5971, p <

0.0001), likely due to the large number of samples in the TCGA
dataset (Figures 4C,D). We also observed a strong correlation
between ICOS and CTLA-4 in both our cohort (r = 0.8913, p
< 0.0001) and the TCGA ovarian cancer cohort (r = 0.9093, p <

0.0001) (Figures 4E,F).
We then performed correlations between the top differentially

expressed genes and each immune cell subset in our cohort.
There were no significant correlations between LAG-3 and any
of the immune cell subtypes, while ICOS, TNFRSF18, PD-1, PD-
L1, and CTLA-4 all significantly correlated (p < 0.05) to CD8,
CD4, and Tregs, with the exception of TNFRSF18 and Tregs. There
was a trend toward inverse correlation with all genes to CD14+
monocytes, but only PD-L1 significantly inversely correlated (p
= 0.0230). No immune genes were significantly correlated to
CD56+ NK cells or M2 macrophages. ICOS, TNFRSF18, PD-
1, PD-L1, and CTLA-4 all significantly positively correlated to
M1 macrophages (p < 0.05). ICOS and CTLA-4 were both
significantly associated with CD19+ B cells (p < 0.05). The
pattern of correlations between immune genes and cell types
was strikingly similar when analyzing TCGA data, using TIMER
(CIBERSORT) to generate correlations between immune cell
composition and specific immune genes, although the strength
of the correlations was overall weaker (Figure 4B).

PVRL2 Is the Most Highly Expressed
Transcript in Ovarian Cancer Tissue and Is
Upregulated in Ovarian Cancer Compared
to Normal/Benign
PVRL2 was found to be the most abundantly expressed transcript
out of all immune response genes and ligands within the
modeling analysis. Interestingly, when we compared mean
expression of PVRL2 to PD-L1, the most commonly studied
immune ligand in EOC, we observed over 44-fold higher

levels of PVRL2. This was also observed in TCGA-OV dataset,
with 82-fold higher levels of PVRL2 compared to PD-L1
(Figures 5A,B). Next, we examined the correlation of PVRL2
to immune cell subsets and found that PVRL2 expression
significantly inversely correlated to CD4+ T cells, CD19+ B
cells, and M2 macrophages (p < 0.05) (Figure 5C). Examining
PVRL2’s expression with the top regulated immune response
genes revealed a significant inverse relationship with PD-1, ICOS
and CTLA-4, and a positive correlation with LAG-3 (p < 0.05
for all). The trend toward negative correlations between PVRL2
and immune genes and cell types was also observed for TCGA
data, although only the correlations of PVRL2 with CD8+ T
cells and M2 macrophages were significant (p < 0.05). These
data sharply contrast with data for PD-L1, which was strongly
and significantly correlated with all top immune response genes
except LAG-3, as shown in Figure 4A. Next, we performed
PVRL2 fluorescent immunohistochemistry on benign/normal (n
= 5) and HGSOC (n = 15) samples. Mean and maximum
intensity was 1.6-fold and 2.4-fold greater, respectively, in
HGSOC compared to normal/benign tissue (p = 0.0021, p =

<0.00001) (Figures 5D–F), which is in agreement with published
studies (29, 30).

DISCUSSION

Thismultidimensional immunemodeling analysis revealed that a
signature of CTLA-4, LAG-3, and Tregs was significantly higher in
patients with improved clinical outcomes in a subset of patients
with HGSOC. While further studies are needed to make any
firm conclusion about this multidimensional signature, this study
serves as proof-of-principle that immunological signatures can be
prognostically informative, and also serves to highlight potential
unique immunological responses in ovarian cancer patients.

In addition to PD-1, CTLA-4 is one of the most clinically
studied immune checkpoint receptors in EOC, with six open
Phase I/II clinical trials evaluating the combination of anti-
PD-1/PD-L1 and CTLA-4 therapy (31). While the clinical
significance of targeting CTLA-4 has been well-studied, its
prognostic value has not previously been investigated in HGSOC.
Likewise, LAG-3, whose transcript level we also found to be
higher in patients with longer PFS, is a co-inhibitory receptor
that has received more attention recently in EOC. Preclinical
studies have demonstrated the efficacy of targeting LAG-3 in
combination with immune checkpoint receptors in EOC, and
Phase I/II development of a LAG-3 monoclonal antibody is
currently being investigated in pancreatic, breast, melanoma,
and other solid tumors, including ovarian cancer (32). While
studies have reported no association between patient outcomes
and LAG-3 expression in ascites or residual patient tumors after
neoadjuvant chemotherapy (32, 33), the relationship between
LAG-3 expression in naïve tumors and clinical outcomes has not
been previously studied.

Tregs are known to play a particularly important role in
ovarian cancer pathogenesis. Intriguingly, it has been reported
that response to immunotherapy is exceptionally challenging
due to the fact that EOC tumors exhibit elevated levels of
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FIGURE 4 | Correlation analysis of immune response genes and individual immune cell subsets. (A) Spearman rank correlation analysis was used to determine the

relationship between the top differentially expressed genes among each other in all 26 patient samples in our cohort (WIHRI), as well as in TCGA-OV cohort. Heat

maps illustrating the strength of the correlations (r values) were generated. (B) Spearman rank correlation analysis was used to determine the relationship between

immune co-receptors and immune cell subsets in the WIHRI cohort (left) and TCGA-OV cohort, using CIBERSORT data (right). (C,D) Spearman rank correlation

analysis of PD-1 and LAG-3 in the WIHRI and TCGA cohort. (E,F) Spearman rank correlation analysis of CTLA-4 and ICOS in the WIHRI cohort and TCGA cohort.

Spearman r and p-values are indicated on each graph.
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FIGURE 5 | PVRL2 overexpression in high grade serous ovarian cancer. (A,B) Transcript levels of PVRL2 vs. PD-L1 in our cohort and TCGA cohort. p-values were

determined by two-tailed paired student t-test. (C) Heat map of Spearman rank correlations between PVRL2 and individual immune cell subsets and top differentially

expressed immune response genes in WIHRI and TCGA cohorts. Spearman r values are indicated by color. (D) Representative immunohistochemistry staining of

PVRL2 in HGSOC and normal/benign ovaries. Negative control is secondary antibody alone. (E,F) Mean and maximum PVRL2 intensity (pixels) in serous ovarian

cancer vs. normal/benign tissue.
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highly activated Tregs (31), with a distinct phenotype exhibiting
higher levels of FOXP3, PD-1, 4-1BB, and ICOS compared
to melanoma tumoral Tregs, while also displaying increased
suppressive capabilities against cytotoxic T cell proliferation (34).
Despite Tregs contributing to challenges with immunotherapy
response in EOC, our study identified Tregs as part of the
multidimensional biomarker for the long PFS group of patients.
Contradictory reports exist on the prognostic significance of Tregs

in ovarian cancer, with one study reporting a positive association
between levels of Tregs in primary and metastatic lesions
and patient outcomes, and another determining a negative
association between Tregs and survival in all stages of disease (35,
36). While further studies will be required to understand these
discrepant results, the outcomes from our study suggest that Tregs

may be more abundant in a subset of patients with a longer PFS,
although further studies in larger cohorts will be needed to fully
evaluate this hypothesis. This observation is in agreement with
the fact that Tregs tend to infiltrate proportionally with effector T
cells, which are known to be prognostically favorable in ovarian
cancer (8, 14, 15). One major caveat to consider in making
conclusions regarding the prognostic ability of Tregs and effector
T cells in ovarian cancer is their localization. Various reports on
the effect of intra-tumoral vs. stromal T cell localization exist,
with some reporting that intra-tumoral localization improves
prognostication, while others determined that averaging effector
T cells through the tumor and stroma improves prognostication
(14, 15).

While we are the first to report a combined prognostic
significance of CTLA-4, LAG-3, and Tregs, a major limitation of
our study is the small sample size. Furthermore, all patients in our
cohort did not receive the exact same therapy, as some patients
were treated with bevacizumab in the maintenance setting.While
the effect of the bevacizumab treatment should not be significant
enough to change the patients’ PFS grouping, in future studies
this analysis should be repeated in a larger cohort to allow
for separate analysis of patients that have received additional
regimens apart from platinum-taxane chemotherapy.

Perhaps one of the most interesting findings from this study
is the identification of ICOS’s association with improved patient
survival in EOC. ICOS appears to be a particularly relevant
immune gene in ovarian cancer, as ICOS and LAG-3 were
the only genes determined from our multidimensional analysis
that were validated independently in TCGA cohort. ICOS is
a member of the B7 CD28/CTLA-4 costimulatory family of
receptors that play a vital role in T cell immunity (37). As
an immune checkpoint agonist, ICOS acts as a counterpart to
CD28, strongly enhancing T cell proliferation, survival, and
differentiation. ICOS is an interesting co-stimulatory receptor,
since its function depends on the T cell subset in which it is
predominantly expressed. On Tregs, it may dampen the immune
response, while on cytotoxic T cells, it may promote an immune
response (38). While ICOS has been studied in other cancers, its
role in EOC has yet to be well-elucidated. To date, there have only
been two studies that have examined ICOS in the context of EOC,
both of which have described its high expression on Tregs. Conrad
et al. (39) reported that the majority of FOXP3+ Tregs in the EOC
tumor microenvironment expressed ICOS, were responsible for

the stimulation of immunosuppressive plasmacytoid dendritic
cells, and were associated with disease progression. As stated
earlier, Toker et al. (34) also reported that EOC Tregs exhibit
a distinct phenotype that have higher levels of ICOS compared
to melanoma Tregs, which may explain why melanoma patients
have responded well to ICOS agonist interventions as thesemight
primarily act on cytotoxic T cells in melanoma rather than Tregs.
There is a need for larger studies to fully elucidate the expression
profile of ICOS in EOC, in order to determine if it can be
efficaciously targeted.

It is interesting to note that patient PFS did not correlate
with total immune infiltrate and was not statistically associated
with any particular immune cell infiltrate. However, since ICOS
correlated well with T cell infiltrate, it is still possible that ICOS
is prognostically favorable because of preferential increases in
T cell infiltrates in patients with improved survival. However,
LAG-3 did not correlate well with any immune cell populations
in our cohort. These findings suggest that increased immune
infiltrate alone is probably not responsible for the observed
prognostic ability of these T cell co-receptors. Moreover, other
T cell co-receptors examined, such as TIM-3 and BTLA, showed
no association with survival, suggesting a unique role for ICOS
and LAG-3 in HGSOC.

Finally, results from our immune modeling analysis revealed
PVRL2 as the most abundantly expressed immune factor. PVRL2
has been previously shown to be overexpressed in ovarian
cancer (29, 30, 40), which we confirmed in a small independent
cohort. It is a member of the nectin and nectin-like family
that contains receptors such as DNAM-1 (CD226), CD96, T
cell immunoreceptor with Ig and ITIM domains (TIGIT), and
poliovirus receptor related immunoglobin (PVRIG). PVRL2
binds with a higher affinity to PVRIG rather than TIGIT, which
favors the ligand poliovirus receptor (PVR) and only weakly
binds to PVRL2 (29). Furthermore, it was found that out of
all cancer types studied, ovarian cancer exhibited the highest
percentage of PVR-PVRL2+ cells (29), emphasizing a specific
overexpression of PVRL2 unique to ovarian cancer.

While PVRL2 was universally highly expressed and no
significant relationship existed between PVRL2 levels and
PFS, results of the above described studies suggest that anti-
PVRIG/PVRL2 based therapy has the potential to greatly impact
EOC patients whose tumors lack PD-L1 expression. PD-1/PD-
L1 targeting has been well-studied in EOC, despite the fact that
only 33% of high grade ovarian cancer patients are considered
PD-L1 positive and no significant correlation exists between PD-
L1 levels and survival (41). Overall, while the PD-1/PD-L1 axis
remains themost frequently investigated clinical immunotherapy
target in EOC, it is still uncertain which subset of EOC patients
will most benefit from this therapy since response rates remain
low and expression analysis studies have shown conflicting data
regarding the relationship of PD-1/PD-L1 and clinical outcomes
(42). Our data reports an over 44-fold higher expression of
PVRL2 compared to PD-L1 in our advanced stage cohort,
highlighting the importance of further investigation of this
pathway in EOC. Overall, the PVRIG/PVRL2 axis represents a
potential therapeutic target that may aide in improving EOC
patient response to immunotherapy.
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CONCLUSIONS

Our immune modeling analysis revealed that CTLA-4, LAG-3,
and Tregs aremore abundant inHGSOCpatients with longer PFS.
ICOS was also significantly more highly expressed in patients
with longer PFS, and strongly correlated with CTLA-4, PD-1,
and specific subsets of immune cell infiltration. High ICOS and
LAG-3 levels were significantly associated with longer survival
in the ovarian cancer TCGA cohort. PVRL2 was the most
abundantly expressed transcript in the ImmunoPrism analysis,
and was overexpressed in a cohort of HGSOC tissue compared
to benign/normal samples. Our findings highlight the idea
that immunological signatures are related to patient outcomes
in HGSOC.
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