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from Multimodality Analysis of Electromechanical Mapping
and Magnetic Resonance Imaging
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Abstract

Many cardiac catheter interventions require accurate discrimination between healthy and infarcted myocardia. The gold standard
for infarct imaging is late gadolinitum—enhanced MRI (LGE-MRI), but during cardiac procedures electroanatomical or electro-
mechanical mapping (EAM or EMM, respectively) is usually employed. We aimed to improve the ability of EMM to identify
myocardial infarction by combining multiple EMM parameters in a statistical model. From a porcine infarction model, 3D
electromechanical maps were 3D registered to LGE-MRI. A multivariable mixed-effects logistic regression model was fitted
to predict the presence of infarct based on EMM parameters. Furthermore, we correlated feature-tracking strain parameters to
EMM measures of local mechanical deformation. We registered 787 EMM points from 13 animals to the corresponding MRI
locations. The mean registration error was 2.5 £ 1.16 mm. Our model showed a strong ability to predict the presence of infarction
(C-statistic = 0.85). Strain parameters were only weakly correlated to EMM measures. The model is accurate in discriminating
infarcted from healthy myocardium. Unipolar and bipolar voltages were the strongest predictors.

Keywords Heart failure - Myocardial infarction - NOGA - MRI - Electromechanical mapping - Feature tracking - Late
gadolinium—enhanced MRI

Introduction example, ablation of ventricular tachycardia may require abla-
tion lesions to be placed in and around the myocardial infarction
(MI) area to eliminate electrical signals conducted via viable
cells contributing to the arrhythmia [2]. Furthermore, in trials
evaluating cardiac regenerative therapy, therapeutics are often

targeted specifically to the infarct border zone [3]. The current

For many cardiac catheter interventions, accurate discrimina-
tion between healthy and infarcted myocardia is crucial [1]. For
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gold standard for infarct imaging is late gadolinium—enhanced
magnetic resonance imaging (LGE-MRI). Pre-procedural
LGE-MRI may inform operators about the location of the dis-
eased areas, but reviewing MRI data pre-procedurally is not
sufficient to ensure accurate identification of target tissue
intra-procedurally [4]. Both interventional MRI [5] and image
fusion techniques [6, 7] are active fields of research that offer
the possibility of incorporating MR imaging during interven-
tional procedures. However, MRI guidance for cardiac treat-
ment is currently not widely available and, therefore, interven-
tional cardiologists in clinical practice have to rely on other
techniques to identify target tissues intra-procedurally.

Within electrophysiology, electroanatomical mapping
(EAM) is the standard technique to identify the origin of
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arrthythmia and to distinguish healthy from scarred myocardi-
um [8, 9]. This technique is performed using a mapping cath-
eter that is positioned inside the left ventricle (LV) and that is
able to measure local electrical characteristics of the myocar-
dium [10]. Using three magnetic fields, the system is able to
deduct the position of the catheter and register the measure-
ments to a 3D location. Electromechanical mapping (EMM) is
an extension of this technique that allows for measurements of
local mechanical properties as well [11]. Using these measure-
ments, a 3D electromechanical map of the LV can then be
constructed.

Previous research evaluated the ability of (individual)
EAM/EMM parameters to discriminate between areas of
MI and healthy tissue, using LGE-MRI as the gold
standard [12—15]. In practice, MI is not a dichotomous
phenomenon. Interspersed between areas that are healthy
and areas that are completely infarcted (transmurally in-
farcted) are often areas in which the infarction does not
extend completely through the myocardial wall (non-
transmural infarction). Research has shown that different
individual EMM parameters identify different regions of
the MI, and the threshold of infarct transmurality at
which the parameters offer the best diagnostic accuracy
differs between the varying parameters [13—15]. For ex-
ample, one study found that unipolar voltage (UV) best
discriminates at a threshold of 5% infarct transmurality,
while bipolar voltage (BV) has the highest diagnostic
accuracy at a threshold of 97.5% transmurality [15].
Because MI is heterogeneous of nature and individual
EMM parameters enable the differentiation of distinct
regions, we propose that a prediction model that incor-
porates multiple EMM parameters could improve the
detection and differentiation of MI.

Strain analysis, MRI feature tracking (MRI-FT), al-
lows quantification of myocardial deformation on MRI.
While other advanced deformation imaging methods re-
quire additional, often time-consuming imaging se-
quences, FT is based on standard cine MR imaging
sequences that are routinely acquired. The reduced me-
chanical activity coincides with myocardial scar on
LGE-MRI [16] and is even a sensitive marker for sub-
clinical myocardial dysfunction [17]. However, as of
yet, there is no data comparing the resulting strain pa-
rameters with EMM-derived parameters of local me-
chanical activity (local linear shortening (LLS) and local
activation time (LAT)).

In this retrospective study, we investigated the use of a
logistic prediction model based on multiple EMM parameters
to distinguish infarcted from healthy myocardium with the
most accuracy, and we evaluated the predictive accuracy of
this model in a porcine model of chronic MI. Furthermore, we
compared the EMM-derived parameters of local mechanical
activity with MRI-FT—derived parameters.
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Methods
Animals

We re-analyzed 13 EMM and MRI datasets acquired in a
porcine model of chronic MI. The experiments have been
described in more detail previously [15, 18]. In short, MI
was induced by 90-min occlusion of the left anterior descend-
ing coronary artery distal to the second diagonal branch.

Data Acquisition
Electromechanical Mapping (EMM)

The EMM procedure was described in detail previously [15].
In short, the NOGA® XP system (Biosense Webster, Johnson
& Johnson, Diamond Bar, USA) was used to create an EMM
of the LV by using a conventional 7 French deflectable-tip
mapping catheter (NogaStar, Biosense Webster). Under fluo-
roscopy guidance, the catheter was introduced into the LV
after retrograde passage through the aortic valves. To ensure
complete LV endocardium coverage, EMM parameters (UV,
BV, LAT, and LLS) were recorded at 80 to 200 LV endocardial
locations. Electrocardiograms were filtered at 30—400 Hz
(bipolar) and 1-240 Hz (unipolar). EMM measurement points
were accepted if they were triggered on the R-wave in com-
bination with acceptable catheter stability, in accordance with
the criteria for good electromechanical mapping [11].

MRI Acquisition

Detailed acquisition settings can be found in the appendix.
CMR images were acquired using a 1.5-T Ingenia system
and a 3-T Achieva XT system (Philips Healthcare, Best,
The Netherlands). Imaging planes were selected according
to standard cardiac views (four-chamber, two-chamber, and
short-axis view). Fifteen minutes after injection of
3.0 mmol/kg gadolinium, an LGE inversion recovery se-
quence was acquired in the short-axis orientation.

Data Processing
Image Segmentation

LV segmentations were created using Segment for Matlab
(version 2.1 R5768) [19]. Automatic segmentation of the epi-
cardial and endocardial contours was performed on the short-
axis cine images in the end-diastolic phase and end-systolic
phase. Segmentation quality was visually assessed using long-
axis images and adjusted if necessary. Wall thickness was
measured on the short-axis cine images. Wall thickening
(WT) was calculated as the difference between wall thickness
in the end-diastolic and end-systolic phases. Fractional wall
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thickening (WT%) was calculated relative to the end-diastolic
phase wall thickness.

Automatic identification, segmentation, and quantification
of LGE lesions were performed using the full-width at half
maximum (FMWH) algorithm. Area-based infarct
transmurality (TM), WT, and WT% values were calculated
in 80 circumferential segments per slice. In all image process-
ing steps, manual correction was performed if necessary.

Strain Analysis

Myocardial deformation analysis was performed on
short-axis cine images using FT software (TomTec
Arena, 2D Cardiac Performance Analysis MR, version
1.2, Unterschleissheim, Germany). Circumferential strain
curves were exported into a custom Matlab script to
automatically determine time-to-peak-strain (TTP )
and maximum strain (strain,.,) for 48 sectors per slice.
Identification of the timing-of-onset (7j,,s;) Was per-
formed using a modified algorithm for estimation of
the onset time of shortening as described in the appen-
dix [20]. To prevent erroneous strain values in akinetic
sectors affected by MI due to poor tracking of the im-
age features, sectors with mean strain values below a
pre-determined —7.5% threshold were excluded from
the strain analysis. The sectors were included in the
univariable linear analysis as akinetic sectors.

Image Registration

A 3D surface mesh was constructed from the end-diastolic LV
cine MRI segmentation. The EMM points were registered to
this mesh based on iterative closest point (ICP) algorithm [21].
The registration was manually optimized if necessary.
Figure 1 shows an example of the registration of the LV endo-
cardial mesh with EMM points. The algorithm and registra-
tion steps have previously been described in detail [22].
Registration error was expressed as the shortest distance of
each EMM point to the closest point on the mesh surface.
As a first step of the registration, both datasets where placed
in patient coordinates, and the apex of both the EMM data and
the 3D surface mesh was registered. Furthermore, during the
ICP registration, the rotation parameter was constrained to
10°. EMM points that were located more basal than the most
basal segmentation of the MR images (and therefore also out-
side of the mesh) were excluded.

After the EMM-MRI registration, MRI-derived (WT,
WT%, TM) values were calculated for each EMM point as
an inverse distance weighted average of all vertices of the
surface mesh within 5 mm. EMM points without vertices
within the 5-mm range were excluded for the model.

Statistical Analysis
Scar Prediction Model

Infarct transmurality was dichotomized at a threshold of
50%. A multivariable prediction model for scar location
on MRI with the EMM parameters as input was fitted
using a logistic mixed-effects model with a random in-
tercept per subject. All EMM parameters were scaled
and centered and used as predictors in the model.
Backward predictor selection was performed using
Akaike’s Information Criterion (AIC), and 95% confi-
dence intervals around the odds ratios were derived
using 500 bootstrap samples for all models [23].
Predicted probabilities for scar were derived using the
fixed effects and a mean random intercept since the
random cluster effect will be unknown for new subjects.
Performance of the prediction model (i.e., discrimination
and calibration) was assessed using the C-statistic
(equivalent to the area under the receiver operating
curve) and calibration slope. The within-subject C-statis-
tic was estimated as a mean of the C-statistic for each
subject (i.e., each animal), weighted for the amount of
EMM points per subject [24]. The within-subject cali-
bration slope was derived from a logistic mixed-effects
model with a random slope for the linear predictor and
random intercept per subject [25]. Considering the small
number of subjects, internal validation and correction
for optimism in performance were performed using
bootstrapping (n=500) of individual data points (in
contrast to bootstrapping complete clusters as would be
preferable with a large number of subjects). A more
comprehensive description of the internal validation ap-
proach can be found in supplementary information 2.

Correlating EMM Parameters to Feature Tracking

A univariable linear mixed-effects model, with a random
intercept per subject, was fitted for a one-to-one com-
parison of EMM parameters with MRI parameters. A
fixed-effect R? value is a statistical measure that repre-
sents the reduction in residual variance after adding pa-
rameters to a null model with only the random inter-
cept. We approximated these values using a method de-
scribed by Snijders and Bosker [26].

All statistical analyses were performed using R (version
3.5, R Foundation for Statistical Computing, Vienna,
Austria) [27] and the /me4 package [28]. Data are presented
as mean = SD or median with interquartile range (IQR) where
appropriate. Point estimates are presented with a 95% confi-
dence interval in square brackets. A p value of <0.05 was
considered statistically significant.
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Fig. 1 Projection of the NOGA-derived EMM-points on the endocardial surface mesh created from the MR images in LAO (a) and RAO (b) view. Red

points are excluded based on their distance (> 5 mm) to the mesh
Results
Imaging

Chronic MI was present in all animals at the time of the EMM
procedure as evidenced by a clear hyperintense area on LGE-
MRI. In all animals, the infarctions were located apicoseptal
and mid-apicoanterior. The MRI results are summarized in
Table 1.

After dichotomization, the mean endocardial surface area
for MI was 18.5+ 8.2 cm” compared with 66.6 + 10.2 cm? for
healthy tissue, thereby covering 21.2 +8.4% and 78.8 £ 8.4%
of the total LV, respectively. The mean infarct volume was
172453 em’.

An average of 49.1 +25.3 sectors were filtered in the strain
analysis and marked as akinetic sectors, thereby covering

Table 1 Results of cine and late gadolinium enhancement magnetic
resonance imaging of 15 animals

LV volumetry

LV end-diastolic volume 110.7£20.2 (ml)
59.5+17.1 (ml)

47.3+9.7 (%)

LV end-systolic volume
LV ejection fraction

Heart rate 54+ 8 (bpm)
LV mass 118.2+20.5 (g)
Infarct mass 16.8+6.5 (g)

Infarct size 28.3+£12.3 (%)

All results are presented in mean + standard deviation

@ Springer

13.24+6.9% of the total LV. In healthy tissue, the median cir-
cumferential strain,,,, was —26.0% (IQR=-34.9, —17.6)
and within myocardial scar the median value was — 15.7%
(IQR=-25.3,-9.0).

Image Registration

EMM points were homogeneously distributed over the LV
endocardial surface. The total number of EMM points in the
13 datasets after filtering was 1459 (112 £ 41 per subject) and
these were used for registration and projection. Of the regis-
tered points, 672 (46.1%) were not located within 5 mm of the
mesh and were excluded from the model. The resulting regis-
tration error, after exclusion of these points, was 2.5 + 1.2 mm.
Ultimately, high-density maps with a total of 787 (61 £ 19 per
subject, on average 5.0 + 1.6 points per segment) points were
matched to corresponding MR-derived values and were used
for fitting the model.

Linear Relationships Between EMM and LGE-MRI

We assessed the relationship between T, s, TTP pax, and LAT
time as well as between (fractional) WT, strain,,,,, and LLS.
Results from the univariable linear regression analysis are
shown in the supplemental data. Both T, se¢ and TTP,,,,, were
significantly correlated with LAT (p =0.05 and p =0.02, re-
spectively) and WT, fractional WT, and strain,,,, were all
statistically significant predictors of LLS (p <0.001 for all);
although in all these correlations, the explained variance was
small (R? values ranged between 0.006 and 0.029).
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Prediction Model

The odds ratios (OR) of the normalized EMM parameters are
shown in Table 2. UV, BV, and LAT were statistically signif-
icant predictors for the presence of myocardial scar on LGE-
MRI. In our dataset, UV was the strongest predictor for myo-
cardial scar (OR =0.14 [0.08-0.21]) followed by BV (OR =
0.36 [0.23—0.52]). The association with scar was less pro-
nounced for LLS (OR =0.76 [0.61-0.92]) and did not reach
statistical significance for LAT (OR =0.80 [0.61-1.06]). The
combination of UV, BV, LLS, and LAT shows a strong pre-
dictive ability to discriminate between scar and no scar (C-
statistic = 0.85 [0.82—0.89]). Internal validation of the predic-
tion model showed a comparable optimism-corrected C-sta-
tistic value of 0.84 and good calibration (calibration slope =
1.01), as shown in Table 3. Within-subject results of the mul-
tivariable logistic mixed model (evaluated without the random
intercept) can be appreciated from Fig. 2. The sensitivity and
specificity of the combined EMM parameters to distinguish
between scar and no scar were 72% and 85%.

The relationship between the predictions made by our mod-
el and the presence of scar on MRI can visually be appreciated
from Fig. 3, which shows both the MRI-derived values plotted
on the mesh (a and ¢) and the prediction of our model (b and d)
for one of the animals. The predicted probabilities of scar, for
the same animal, are plotted in Fig. 4 as a function of unipolar
voltage. Figure 5 shows the relationship between the predicted
probability of the model and the actual transmurality.

Discussion

In this study, 13 NOGA and MRI datasets of a porcine model
of chronic MI were retrospectively analyzed. Parameters de-
rived from electromechanical mapping (UV, BV, LAT, LLS)
were registered in 3D and combined with MRI parameters in a
multivariate mixed model for prediction of myocardial scar.
The animal model used in this study provided large transmural
myocardial infarct areas with only small non-transmurally in-
farcted areas. To prevent the effect introduced by the variation
of samples measured in the small non-transmurally infarcted
areas on the model, the outcome parameter was dichotomized

Table 2 Odds ratio results of the multivariable logistic mixed model
analysis for four EMM parameters

Parameter Odds ratio

Unipolar voltage 0.14 [0.08-0.21]
Bipolar voltage 0.36 [0.23-0.52]
Local linear shortening 0.76 [0.61-0.92]
Local activation time 0.80[0.61-1.06]

All results are presented in odds ratio with 95% confidence interval

Table3  Internal validation results of the multivariable prediction model

Original C-statistic 0.85 [0.82-0.89]

Optimism-corrected C-statistic 0.84
Original slope 1.10 [1.00-1.21]
Optimism-corrected slope 1.01

Data is presented as the point estimate with 95% confidence interval

to transmural infarction or healthy myocardium and logistic
regression was fitted. Consequently, the resulting scar predic-
tion model has the highest predictive ability to discriminate
between infarcted and non-infarcted myocardia.

The accuracy of the electromechanical map depends on the
number, quality, and distribution of the measurements ac-
quired. A homogenous distribution of EM points importantly
determines the result of the interpolation between measure-
ment points and thus the accuracy of the 3D map. Because
the NOGA system only acquires a single point per measure-
ment, the mapping procedure requires time and patience to
create complete and representative maps. A strength of our
study is the high density of the acquired NOGA maps. In all
animals, the electromechanical maps were more densely pop-
ulated than the recommended minimum of 3 points per cardi-
ac segment [11] allowing accurate comparison to MR images
over a large number of sampled points. Even though electro-
mechanical maps with an overall high number of points were
used in this study, the shape of the EMM surface mesh is
interpolated between the measured points and, therefore, nev-
er exactly represents the LV endocardial surface. Furthermore,
because MR and EMM are not performed at the same time,
hemodynamic and LV filling conditions may have changed
between the two individual data acquisitions. Aforementioned
factors inevitably result in a registration error.

To fit a statistical model that predicts transmurality from
EMM parameters, it is important to match the EMM parame-
ters to the transmurality values of the same location.
Therefore, it is important to keep the registration error as
low as possible. The registration error in our study is lower
than in previous publications that used a similar approach (3.0
+1.9 mm [15] and 4.6 £3.6 mm [12]), although there is no
generally accepted cutoff we consider the registration error to
be well within the acceptable range.

The overall model based on multiple EMM parameters
shows a good predictive ability to identify areas with scar on
LGE-MRI. From Fig. 2, we can appreciate that the predictive
accuracy was very good in most animals. In one subject (an-
imal 5), the model performed moderately. This might be due
to a residual registration error. In one of the animals (subject
number 1), all UV values (both in healthy and infarcted myo-
cardia) were significantly lower than the values of the rest of
the dataset while BV, LLS, and LAT values were within nor-
mal ranges. The reason for this is unknown. Accurate

@ Springer
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Fig. 2 The within-subject model 54 Py
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prediction in this animal was preserved because UV values
were still consistently lower within scar than within healthy
tissue. Previous research demonstrated poor overlap between
the individual EMM-derived parameters and LGE-MRI de-
rived TM. However, due to the dichotomization of the TM
and use of a logistic mixed model used in this study, direct
comparison between the two studies is not possible.

In this study, we used LGE-MRI as the gold standard for
scar detection. Therefore, we could not perform a comparison
between accuracy in detecting scar between LGE-CMR and
our model. Despite that the NOGA-derived measurements of
local mechanical activity and MR-derived values of local me-
chanical activity were statistically correlated, they showed at
best very weak correlations. Even though circumferential
strain and LLS are fundamentally different quantities, both
are thought to represent local mechanical myocardial [29]
function. In previous research, both were shown to correlate
with the myocardial scar on LGE-MRI [16, 30]. It is therefore
surprising to find only a weak correlation between these pa-
rameters. Although we can never exclude registration error as
a possible explanation, the performance of our scar prediction
model makes that unlikely to be the only explanation. Another
possibility is that, MRI-FT, even with its reasonable agree-
ment with MRI tagging [31], has difficulties tracking features
in the circumferential direction since in the circumferential
direction there is less contrast in the direction of the myocar-
dial deformation. A more in-depth evaluation of the relation-
ship between strain and LLS is an interesting topic for future
research.

In human subjects, the normal value for the global circum-
ferential strain is estimated to be —23% (95% CI —24.3 to —
21.7%) [32]. Reference ranges for endocardial circumferential
strain in pigs (either in healthy pigs or in a porcine model of
MI) have not been previously described. In the literature,

@ Springer

various thresholds for circumferential strain have been report-
ed to differentiate between infarcted and non-infarcted seg-
ments, for example, Ogawa et al. found a sensitivity of 72%
and a specificity of 71% at a cutoff of — 11.2% [16, 33]. Our
group has previously shown FT-derived strain has moderate
ability to discriminate healthy from scarred myocardium [34].
In the current study, absolute values for endocardial circum-
ferential strain were higher than expected within both healthy
and infarcted myocardia. However, the scar area presented
lower average circumferential strain values than in the healthy
myocardial segments. Analysis of the diagnostic capability of
endocardial circumferential strain to detect MI was not
performed.

We calculated circumferential strain in 48 segments per
short-axis slice, compared with the usual practice of defining
the 6 anatomical cardiac segments per short-axis slice. This
method allows us to compare strain parameters with increased
accuracy, but is also more sensitive to errors in the FT analysis,
segmentation, and image registration. Furthermore, recent
studies have shown that intervendor agreement and
intravendor reproducibility for MRI strain analysis are at most
reasonable [35, 36].Comparing strain results from this study
with results from studies in literature and previous studies
from our department may, therefore, not be comparable and
must be performed with caution.

Limitations

The animal model used in this study provides large transmural
myocardial infarcted areas resulting in small areas with non-
transmurally infarcted tissue. Therefore, we excluded the non-
transmurally infarcted tissue and dichotomized the resulting
measurements to fit a multivariable mixed-effects model. This
model predicts the likelihood of finding an infarction at a
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SCAR TRANSMURALITY
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Fig. 3 The LGE-MRI-derived scar transmurality versus the NOGA-
predicted scar model for animal 2. a, ¢ LGE-MRI-derived myocardial
infarct transmurality projected on a cine surface mesh. The values of the
scar transmurality are reflected in the color bar. b, d Predicted scar

given location based on all EMM parameters. In Fig. 5, we
show the relation between the predicted transmurality and
presence of scar as a continuous variable. It seems plausible
that intermediate likelihood for the presence of scar predicted
by our model correspond to non-transmural infarction on
MRI, but the model was not calibrated toward those predic-
tions and we were not able to verify the performance of the
model in areas with intermediate scar transmurality.

Future research should evaluate the performance of our
model in a clinical dataset. In a clinical dataset, a linear model

SCAR PREDICTION —100 %

50 %

0%

—100 %

50 %

d 0%

transmurality based on EMM-derived parameters projected on a cine
surface mesh. The values of the predicted scar transmurality are
reflected in the color bar

and a dataset which includes non-transmural infarctions might
be better suited to predict areas with non-transmural
infarction.

Clinical Implications
LGE-MRI is considered the gold-standard imaging tool for lo-
calization of myocardial scar. However, MRI is unavailable in

many cardiac disease patients, such as in patients with an im-
plantable cardioverter defibrillator or in patients with advanced
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renal failure. Furthermore, when pre-procedural LGE-MRI im-
ages are available, tools for intraprocedural image fusion are not
widely available. Modern EAM systems provide the functional-
ity to derive the cardiac anatomy from pre-procedural imaging
(e.g., cardiac MRI) but scar information is not extracted.
Therefore, electrophysiologists often use EAM to identify
scarred regions of the myocardium based on bipolar voltage. A
more elaborate model, using all parameters gathered during the

Unipolar voltage

mapping procedure, may improve scar identification. The pre-
sented scar prediction model enables more accurate differentia-
tion between healthy and infarcted myocardia based on a com-
bination of all EMM parameters and may be instrumental in
improving cardiac procedures such as application of regenerative
therapy, ablation of ventricular arrthythmia, or cardiac biopsy. For
example, several studies have proposed the use of EAM to guide
endocardial biopsy procedures and showed improved biopsy
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yield compared with the X-ray guided approach [37, 38]. Both
studies highlighted the differences in identification capabilities of
diseased myocardium by different EAM parameters and suggest
a combination of multiple parameters to further improve identi-
fication of diseased or infarcted myocardium. Furthermore,
EMM is the clinical standard for trans-endocardial delivery of
cardiac regenerative therapy into the myocardial infarct border
zone [39] and continues to be used in multiple current studies [3].
A recent publication suggested that EAM-guided LV lead im-
plantation improves response to cardiac resynchronization [40].
An additional advantage is the ability to directly identify the area
of latest activation on the LV endocardium using EAM during the
implantation.

Conclusion

The scar prediction model, based on the combination of uni-
polar voltage, bipolar voltage, local activation time, and linear
local shortening by NOGA, can accurately distinguish areas
with MI from healthy myocardium as defined by LGE-MRI.
In this dataset, unipolar voltage and bipolar voltage were the
strongest predictors for the presence of ML In the future, the
scar prediction model may prove to be useful in VT ablations,
biopsy procedures, or regenerative therapy. Surprisingly,
EMM-derived parameters were not significantly correlated
with MRI-derived strain parameters.
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