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Mesenchymal stem cells (MSCs) are pivotal to tissue homeostasis, repair, and
regeneration due to their potential for self-renewal, multilineage differentiation, and
immune modulation. Mitochondria are highly dynamic organelles that maintain their
morphology via continuous fission and fusion, also known as mitochondrial dynamics.
MSCs undergo specific mitochondrial dynamics during proliferation, migration,
differentiation, apoptosis, or aging. Emerging evidence suggests that mitochondrial
dynamics are key contributors to stem cell fate determination. The coordination of
mitochondrial fission and fusion is crucial for cellular function and stress responses,
while abnormal fission and/or fusion causes MSC dysfunction. This review focuses on
the role of mitochondrial dynamics in MSC commitment under physiological and stress
conditions. We highlight mechanistic insights into modulating mitochondrial dynamics
and mitochondrial strategies for stem cell-based regenerative medicine. These findings
shed light on the contribution of mitochondrial dynamics to MSC fate and MSC-based
tissue repair.

Keywords: mesenchymal stem cells, mitochondria, mitochondrial dynamics, mitochondrial fission, mitochondrial
fusion, cell fate

INTRODUCTION

Mesenchymal stem cells (MSCs) are multipotent stromal cells that originate from many connective
tissues and can differentiate into a variety of cell types, such as osteoblasts, adipocytes, and
myoblasts. MSCs are important for preserving tissue homeostasis and have regeneration potential
(Bianco, 2014). As the progenitor cells of osteoblasts and osteocytes, MSCs can migrate to
defective sites and initiate new bone formation during the early stage of bone healing (Tang
et al., 2009). In addition to osteoblasts, MSCs are also able to differentiate into adipocytes
within bone marrow microenvironment. Increasing evidence suggests that the differentiation of
MSCs into adipocytes or osteoblasts is competitively balanced (Li et al., 2016), and this delicate

Abbreviations: MSCs, mesenchymal stem cells; Drp1, dynamin-related protein 1; Mff, mitochondrial fission factor; Fis1,
mitochondrial fission protein 1; Opa1, optic atrophy 1; Mfn1/2, mitofusin 1/2; ROS, reactive oxygen species; MAPKs, mitogen-
activated protein kinases; JNK, c-Jun N-terminal kinase; ERK, extracellular regulated kinase; iPSCs, induced pluripotent stem
cells; AMPK, adenosine monophosphate-activated protein kinase; IO, iron overload; BMSCs, bone marrow mesenchymal
stem cells; ASCs, adipose-derived mesenchymal stem cells; OXPHOS, oxidative phosphorylation; ESCs, embryonic stem
cells; HSCs, hematopoietic stem cells; NSCs, embryonic mouse neural stem cells; EMS, equine metabolic syndrome.
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balance is important for the maintenance of bone homeostasis
(Hu et al., 2018b; Muruganandan et al., 2020). Dysregulation
of osteo-adipogenic differentiation balance of MSCs contributes
to development of bone diseases, such as osteoporosis, which
manifests typically as a lineage shift toward adipocytes instead of
osteoblasts in MSCs (Qi et al., 2017). Moreover, MSCs play a key
role in the bone marrow microenvironment, which supports and
regulates the stem cell niche and hematopoiesis (Wu et al., 2018).
In recent years, MSCs have emerged as a promising tool for tissue
repair and regeneration due to their multilineage differentiation
potential, angiogenesis promotion, and immunomodulatory
capacity (Chamberlain et al., 2007; Rajabzadeh et al., 2019).
However, the effectiveness of MSCs is unstable since MSC
fate is easily affected by the surrounding microenvironment,
involving a complex regulation network (Sisakhtnezhad et al.,
2017), and both endogenous and exogenous MSCs inevitably
face harsh surrounding conditions and oxidative stress around
the defected tissues (Chen et al., 2016; Sisakhtnezhad et al.,
2017). Understanding the etiology of MSC dysfunction under
stress and the underlying mechanisms would uncover unique
avenues for novel and effective therapeutic strategies in MSC-
based regenerative medicine.

Mitochondria are highly dynamic organelles that are
key players in various biological processes in stem cells,
including energy metabolism, oxidative stress reaction, calcium
balance, and cell apoptosis. Dynamic changes in mitochondrial
morphology are the basis for mitochondrial functionality (Chen
and Chan, 2005; El-Hattab et al., 2018). Mitochondrial dynamics
involves continuous fission and fusion, forming a dynamic
network to maintain their abundance, morphology, and quality
and cell function (Bereiter-Hahn and Vöth, 1994; Merz et al.,
2007). This dynamic change in mitochondria can typically
be simply characterized by morphological heterogeneity.
Specifically, mitochondrial fission results in small and round
mitochondria, while mitochondrial fusion leads to thin and
elongated mitochondria with highly interconnected networks
(Santel and Fuller, 2001; Stiles and Shirihai, 2012). Mitochondrial
fission is essential for cell growth and division, providing
sufficient numbers of mitochondria, sustaining cell polarity,
and aiding in eliminating damaged mitochondria (Wai and
Langer, 2016). In contrast, mitochondrial fusion allows for the
exchange and connection of mitochondrial content, providing
sufficient energy, alleviating oxidative damage, and maintaining
membrane potential (Ikeda et al., 2015).

Although still in its infancy, emerging evidence indicates
a pivotal role of mitochondrial dynamics in the self-renewal,
differentiation, and death of MSCs. Mitochondrial dynamics
are critical for MSCs to acquire the mitochondrial morphology
required for specific behavioral needs, enabling cells to respond
quickly and adaptively to environmental stresses. Intervention
in mitochondrial dynamics can profoundly affect the MSC
fate. In the current review, we illustrate the key mechanisms
related to the posttranslational modification of mitochondrial
dynamics proteins. Then, we reveal typical characteristics of
mitochondria in MSCs and the contribution of mitochondrial
dynamics to orchestrating MSC behavior under physiological
and stressful microenvironments. Furthermore, we discuss the

potential strategies for improving the therapeutic efficacy of
MSCs by the modulation of mitochondrial dynamics.

REGULATORY MECHANISMS OF
MITOCHONDRIAL DYNAMICS

Mitochondrial fission and fusion are orchestrated by a series
of evolutionarily conserved proteins and dynamin-related
GTPases. The large GTPase dynamin-related protein 1 (Drp1)
and mitochondrial outer membrane receptors, including
mitochondrial fission factor (Mff), mitochondrial fission protein
1 (Fis1) and mitochondrial dynamics proteins of 51 and 49 kD
(MiD51 and MiD49), prominently control mitochondrial fission
(Losón et al., 2013). Mitochondrial fusion is mainly mediated
by optic atrophy 1 (Opa1) located on the mitochondrial
outer membrane and mitofusin 1/2 (Mfn1/2) located on the
inner membrane (Santel and Fuller, 2001; Chen and Chan,
2005). Here we list some protein kinase pathways that induce
posttranslational modification of these proteins, especially
phosphorylation, to further elucidate the regulatory mechanisms
of mitochondrial dynamics (Table 1).

cAMP-Dependent Protein Kinase (PKA)
The ubiquitous second messenger PKA, one of the most well-
investigated cytosolic kinases, is located on the mitochondrial
surface and plays a regulatory role in maintaining mitochondrial
activity, including mitochondrial dynamics (Feliciello et al., 2005;
Cribbs and Strack, 2007). Drp1 relies on a GTP hydrolysis-
dependent mechanism to form ring superstructures to contract
and eventually incise mitochondria. Drp1 Serine 656 (Ser656)
of Drp1 is a major PKA phosphorylation site in rat PC12
cells, this phosphorylation inhibits mitochondrial fission and
reduces cellular sensitivity to apoptotic stimuli. Although Ser656
phosphorylation site is near the GTPase effector domain,
there is no significant change in GTP hydrolysis among the
Ser656 variants (Cribbs and Strack, 2007). However, in HeLa
cells, active PKA suppresses Drp1 GTPase activity via Ser637
phosphorylation of Drp1, which may favor GTPase inactivation
and Drp1 localization in the cytoplasm rather than recruitment
to mitochondria, dampening mitochondrial fission (Chang and
Blackstone, 2007; Yu et al., 2019). In contrast, phosphorylation of
Drp1 at Ser600 is also dependent on adrenergic-stimulated PKA
activation, inducing increased mitochondrial fragmentation and
energy expenditure in brown adipocytes (Wikstrom et al., 2014).
These findings suggest that cAMP/PKA controls mitochondrial
fission principally via Drp1 modulation, and its effect on
fission depends on phosphorylation sites and Drp1 transport. In
fact, post-translational phosphorylation of Drp1 predominantly
affects Drp1 activity. The different phosphorylated sites of Drp1
and they mediated-mitochondrial fission are demonstrated in
Figure 1.

Some evidence has confirmed the role of the cAMP/PKA
pathway in influencing mitochondrial fusion-related proteins.
In myoblasts stimulated by reactive oxygen species (ROS),
decreased mitochondrial cAMP/PKA signaling induces
Sirt3 degradation/proteolysis, which in turn promotes
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TABLE 1 | Post-translational modification of some key factors involved in mitochondrial dynamics.

Key factor Post-translational modification Effect on mitochondrial dynamics References

Drp1 Phosphorylation at Ser656 induced by active PKA Reduced mitochondrial fission and swollen mitochondria Cribbs and Strack, 2007

Phosphorylation at Ser637 induced by active PKA Reduced GTPase activity of Drp1 and impaired mitochondrial
fission

Chang and Blackstone,
2007

Phosphorylation at Ser600 induced by active PKA Enhanced mitochondrial fission under norepinephrine treatment Wikstrom et al., 2014

Phosphorylate at Ser616 by induced by active ERK2 Enhanced mitochondrial fission Kashatus et al., 2015

Phosphorylation of at Ser579 induced by active ERK1/2 Enhanced mitochondrial fission in early stage of reprogramming Prieto et al., 2016

Phosphorylation at Ser616 induced by active p38 MAPK Enhanced mitochondrial fission Ko et al., 2017

Phosphorylation at Ser616 induced by active AMPK Enhanced mitochondrial fission Li et al., 2019

Phosphorylation at Ser616 induced by SIRT4 depletion Increased Drp1 and Fis-1combination, enhanced mitochondrial
fission

Fu et al., 2017

Phosphorylation at Ser637 induced by active SIRT5 Reduced mitochondrial fission under starvation Guedouari et al., 2017

Mff Phosphorylation at Ser155 induced by active AMPK Increased Drp1 recruitment, upregulated pSer616-Drp1,
enhanced mitochondrial fission

Zheng et al., 2018

Phosphorylation at Ser155, 172 induced by active AMPK Increased Drp1 recruitment to mitochondria, enhanced
mitochondrial fission

Toyama et al., 2016

Mfn1 Phosphorylation at Thr562 induced by active ERK2 Regulates Mfn1 oligomerization, increased Mfn1 combination with
Bak, reduced mitochondrial fusion

Pyakurel et al., 2015

Phosphorylation at Ser86 induced by beta II PKC Partial inactivation of Mfn1 GTPase, increased mitochondria
fragmentation

Ferreira et al., 2019

Mfn2 Phosphorylation at Ser442 induced by active PKA Extensive perinuclear mitochondria Zhou et al., 2010

Phosphorylation at Ser27 induced by active JNK Ubiquitin-proteasome degradation in Mfn2 and reduced
mitochondrial fusion

Leboucher et al., 2012

Ser-phosphorylation induced by active JNK Mfn2 degradation and reduced mitochondrial fusion Chakraborty et al., 2018

Opa1 Acetylation induced by cAMP/PKA mediated-degradation
Sirt3

Proteolytic Opa1, inhibited mitochondrial fusion under tert-butyl
hydroperoxide treatment

Signorile et al., 2017

Deacetylation at Lys926 and 931 induced by active SIRT3 Enhanced mitochondrial fusion, sustain mitochondrial network Samant et al., 2014

Proteolytic induced by active SIRT4 Upregulation of L-Opa1, enhanced mitochondrial fusion Lang et al., 2017

Acetylation induced by SIRT3 deletion Enhanced mitochondrial fission, dramatic mitochondrial
fragmentation

Yi et al., 2019

the hyperacetylation of Opa1 and short Opa1 generation,
consequently leading to hyperfragmentation of mitochondria
and cell apoptosis (Signorile et al., 2017). Treatment with
8-Br-cAMP, an analog of cAMP, reverses the detrimental effect
of Opa1 on mitochondrial dynamics, as well as cytochrome c
release under oxidative stress in cardiac myoblast cells (Signorile
et al., 2017). Although Zhou et al. (2010) verified that the
specific PKA phosphorylation site Ser442 of Mfn2 effectively
promotes Mfn2-mediated inhibition of vascular smooth muscle
cell growth, these effects are thought to be independent of
mitochondrial morphology and dynamics changes.

Mitogen-Activated Protein Kinases
(MAPKs)
Mitogen-activated protein kinases are serine-threonine kinases
that transmit signals driven by cytokines, hormones, and
other factors from the cell surface to the nucleus. At
least three MAPK families have been characterized, c-Jun
N-terminal kinase (JNK), extracellular regulated kinase
(ERK1/2), and p38, which are involved in a wide variety
of cellular functions, such as proliferation, apoptosis, and
differentiation (Widmann et al., 1999). The most well-
characterized MAPK with a confirmed regulatory effect on
mitochondrial dynamics is ERK1/2 (Serasinghe et al., 2015;

Cook et al., 2017). Oncogenic Ras treatment can activate ERK2
to phosphorylate Drp1 at Ser616, resulting in an increase
in mitochondrial fragmentation. Both activation of MEK
activity and elevated ERK phosphorylation lead to consistent
trends in the expression of Drp1 (Kashatus et al., 2015). ERK
suppresses mitochondrial fusion by phosphorylating Mfn1
at threonine 562 (Thr562), which favors Mfn1 binding to
BAK and promotes their oligomerization and activation,
subsequently facilitating cytochrome c release and apoptosis.
This indicates the significant role of ERK-targeted Mfn1 in
modulating mitochondrial morphology and apoptosis for mouse
embryonic fibroblasts (Pyakurel et al., 2015). ERK1/2 activation
participates in mitochondrial fission mediation during the early
stage of induced pluripotent stem cell (iPSC) reprogramming
by phosphorylating Drp1 at Ser579. Additionally, MEK
inhibitor treatment inhibits mitochondrial fragmentation,
while mutations in Ser579 of Drp1 successfully rescue the
fission inhibition caused by MEK inhibitor application (Prieto
et al., 2016). Similarly, treatment with the MEK inhibitor,
PD325901, results in dramatic decline in both ERK and Drp1616
phosphorylation, effectively reversing mitochondrial fragmented
phenotype in oncogenic Ras-induced embryonic kidney cells
(Kashatus et al., 2015).

JNK activation is connected to Mfn2 but not Mfn1 turnover
(Chakraborty et al., 2018). Leboucher et al. demonstrated
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FIGURE 1 | Phosphorylated Drp1-mediated mitochondrial fission. Mitochondrial fission is mediated by recruitment of Drp1 and their anchor on the outer
mitochondrial membrane. Post-translational modifications of Drp1, especially phosphorylation, affect their localization in the cytoplasm or on the outer mitochondrial
membrane. ERK, P38-MAPK, PKA, AMPK, and SIRT can phosphorylate Drp1. Phosphorylation of Drp1 at Ser637 and Ser656 inhibit mitochondrial fission, whereas
phosphorylation of Drp1 at Ser616, Ser579, and Ser600 promote mitochondrial fission. Drp1 is anchored to the outer mitochondrial membrane via bounding with
four receptors: Fis1, Mff, Mid49, and Mid51. Active Drp1 oligomers are assembled into ring-like structures that further constrict to sever the mother mitochondria into
daughter mitochondria.

that JNK mediated the phosphorylation of Mfn2 at Ser27
of sarcoma U2OS cells in response to cellular stress, which
contributed to ubiquitin-proteasome degradation in Mfn2 and
enhanced apoptosis (Leboucher et al., 2012). Ko et al. (2017)
showed that p38 MAPK promoted Drp1-dependent fission in
MSCs, and treatment with SB203580, a p38 inhibitor, reversed
Drp1 phosphorylation at Ser616, leading to a decline in
fragmented mitochondria.

Adenosine Monophosphate-Activated
Protein Kinase (AMPK)
AMPK is a conserved, redox-activated cellular energy sensor
and regulator that is sensitive to AMP/adenosine-5′-triphosphate
(ATP) stimulation. This kinase is activated during ATP
consumption in response to stresses, such as low glucose,
hypoxia, and ischemia (Carling, 2004). Reduced ATP levels
induced by, for example, iron overload (IO), can activate
AMPK in bone marrow mesenchymal stem cells (BMSCs),
followed by Mff phosphorylation, further resulting in Drp1
translocation to mitochondria and fission enhancement, which

partly contributes to BMSC dysfunction derived from IO
patients with myelodysplastic syndrome (Zheng et al., 2018).
The expression of p-Drp1 was downregulated while Mfn2 was
upregulated in BMSCs after they were treated with compound
C, an AMPK inhibitor, and cell senescence was therefore
increased. These results indicated that mitochondrial fission
activated by AMPK protected BMSCs from senescence (Li
et al., 2019). At low ATP levels, AMPK-mediated fission
is promoted due to Drp1 transport to the mitochondrial
membrane stimulated by phosphorylation of Mff (Ducommun
et al., 2015; Toyama et al., 2016). Consistently, stimulation of
U2OS osteosarcoma cells with either electron transport chain
inhibitor complexes or AMPK agonists resulted in significantly
increased mitochondrial fragmentation (Toyama et al., 2016).
AMPK-mediated mitochondrial fission is widely involved in
cellular reaction to energy stress, and these mitochondrial
fission events may serve as a trigger to initiating mitophagy to
remove damaged mitochondria (Youle and van der Bliek, 2012;
Toyama et al., 2016).

In contrast, activation of AMPK by a specific AMPK
activator reversed the reduction in drug-induced mitochondrial
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fusion via upregulation of Mfn1, Mfn2, and Opa1, thereby
sustaining hepatocyte viability (Kang et al., 2016). AMPK
activation by AICAR, a known activator of AMPK, induced
fused mitochondria and interconnected networks when adipose-
derived mesenchymal stem cells (ASCs) from pericardial adipose
tissue were differentiated into adipocytes (Abdul-Rahman
et al., 2016). In addition, AMPK activated by metformin is
able to suppress Drp1-dependent mitochondrial fission and
alleviate oxidative stress, thus ameliorating atherosclerosis in
diabetic mice (Wang et al., 2017b). However, mitochondrial
fusion activated by AMPK is not always related to positive
consequences. TGF-1 induces mitochondrial fusion through
the AMPK signaling pathway, which induces aging of vascular
progenitor cells isolated from patients with Marfan syndrome
(He et al., 2019).

These findings suggest that AMPK activation can have
opposing effect on mitochondrial dynamics, which possibly
depend on cell types, bioenergetic status, and oxidative stress
levels. The positive situation is that active AMPK sustains
well-quality mitochondria at least partially via triggering
mitochondrial fission and subsequent autophagy. When damage
or stress is alleviated or removed, AMPK may support
mitochondrial function by strengthening fusion rather than
fission. Although AMPK-mediated mitochondrial dynamics
have been found to be involved in some cellular damage
processes, their relationship and detailed mechanisms have not
been well studied.

Sirtuin (Sirt) Family
The Sirt family is composed of highly conserved nicotinamide
adenine dinucleotide (NAD+)-dependent deacetylases (HDACs).
There are seven mammalian sirtuin subtypes (SIRT1 to SIRT7)
that have different subcellular localizations and regulate a variety
of cellular functions through posttranslational modifications of
target proteins (Huang et al., 2010). Among them, SIRT3, SIRT4,
and SIRT5 are located on mitochondria and can mediate the
activity of some proteins related to mitochondrial dynamics
(Huang et al., 2010; Samant et al., 2014; Lang et al., 2017).

SIRT3-mediated deacetylation of Opa1 at lysine 926 and
931 enhances Opa1 GTPase activity and sustains mitochondrial
morphology, protecting cardiomyocytes from doxorubicin-
induced cell death (Samant et al., 2014). Accurately, OPA1
appears to work in two different isoforms. Long membrane-
bound form of OPA1 is responsible for mitochondrial fusion.
But cleavage of long OPA1 inhibits mitochondrial fusion
accompanied with generation of fission or mitophagy-associated
short, soluble forms (MacVicar and Langer, 2016). SIRT4
expression facilitates mitochondrial fusion with an incremental
increase in mitochondrial mass by inducing long Opa1 instead
of short Opa1, further contributing to decreased mitophagy in
HEK293 cell lines (Lang et al., 2017). In addition to promoting
fusion, Fu et al. (2017) showed that SIRT4 may modulate
mitochondrial fission in lung cancer cell lines by reducing
Drp1 phosphorylation and diminishing Drp1 recruitment to the
mitochondrial membrane by modulating MEK/ERK signal and
interacting with Fis1. SIRT5-overexpressing C2C12 cells contain
large and lengthened mitochondria that are uniformly arranged

in the cytoplasm partly due to SIRT5-mediated upregulation
of Mfn2 and Opa1, whereas SIRT5-silenced cells display small,
round mitochondria that are distributed around the nucleus
(Polletta et al., 2015). Consistent with these findings, SIRT5-
mediated fusion promotion in mouse embryonic fibroblasts
was also reported by Guedouari, and the results showed that
elongated mitochondria and depressed autophagy depended on
SIRT5 under starvation conditions (Guedouari et al., 2017).
SIRT5 deletion increased the expression of mitochondrial
dynamic protein of 51 kDa, Fis1, and pDRP1-S637, subsequently
causing Drp1 activation and its translocation to mitochondria,
thus promoting mitochondrial fission (Guedouari et al., 2017).

The available evidence suggests that Sirt family members
located on mitochondria generally promote mitochondrial fusion
and/or inhibit mitochondrial fission, and this effect is largely
accompanied by a reduction in mitophagy or autophagy. It is
hypothesized that fused mitochondria modulated by Sirt subtypes
on mitochondria help alleviate stress injury and avoid damage
caused by mitophagy.

MORPHOLOGICAL CHARACTERISTICS
OF MITOCHONDRIA IN MSCs

Mitochondria are the major source of energy in the form
of ATP, which is produced through oxidative phosphorylation
(OXPHOS). The process of OXPHOS and ATP generation
occurs in the inner membrane of mitochondria (Gilkerson
et al., 2003; Strauss et al., 2008). The shape of mitochondrial
cristae and total mitochondria affect electron transport chains
and protein complex production, which is significant for
bioenergetic output (Beninca et al., 2014; Khacho et al., 2014).
On the one hand, mitochondrial morphology is tightly linked
to mitochondrial bioenergetics (Hoppins et al., 2007; Cogliati
et al., 2013); on the other hand, it is also a reflection of
ever-changing dynamics. Generally, well-developed, interlinked
mitochondria with complex cristae structures tend to produce
energy more efficiently than immature, spherical mitochondria
because they have a larger surface area that can hold more
intermembrane proteins (Zick et al., 2009). The fused or
interconnected morphology of mitochondria is commonly found
in metabolically active cells that depend on OXPHOS for energy
production (Zhang et al., 2018; Fu et al., 2019). In contrast, cells
that utilize glycolytic metabolism for energy production primarily
have unfused spherical mitochondria (Seo et al., 2018; Zhang
et al., 2018). Such immature mitochondria are metabolically less
energetic and less polarized (Collins et al., 2002).

Mitochondrial morphology in embryonic stem cells (ESCs)
and iPSCs is generally in an immature state featured by
perinuclear-localization and fragmented, spherical, or
punctate shapes (Folmes et al., 2011; Zhou et al., 2012).
Similar mitochondrial characteristics have been observed in
predominantly quiescent non-transplanted hematopoietic stem
cells (HSCs) (Papa et al., 2018, 2019; Liang et al., 2020). These
immature mitochondria are consistent with the energy state of
stem cells, which usually depend on glycolysis as their primary
energy source. Although MSCs have glycolysis-dependent
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energy metabolism and immature mitochondria with poorly
developed cristae, the shape of their mitochondria is relatively
more tubular than that in ESCs and iPSCs (Seo et al., 2018;
Fu et al., 2019). ASCs have typical tubular mitochondria that
form a robust mitochondrial network (Alicka et al., 2019).
Additionally, more than two-thirds of ASCs display small
globular and linear tubular structures (Li et al., 2015). Another
morphological analysis of mitochondria showed general
wiry or tubular mitochondria in BMSCs (Jin et al., 2018).
Correspondingly, mitochondria-mediated fission contributes
to immature mitochondrial morphology in BMSCs (Feng
et al., 2019). These mitochondrial characteristics in MSCs
are consistent with the metabolic level of MSCs in which
mitochondria maintain low mitochondrial activity, low ROS
lever and provide energy primarily through glycolysis (Fillmore
et al., 2015; Hu et al., 2018a). However, embryonic mouse neural
stem cells (NSCs) have increased mitochondrial lengths and
relatively developed networks compared with ESCs or iPSCs,
although these cells depend on aerobic glycolytic metabolism
(Khacho et al., 2016).

It seems that most quiescent stem cells prefer glycolysis
and have immature mitochondrial networks. However, this is a
common situation, rather than a fixed and universally applicable
criterion. The details referring to mitochondrial morphology
and regulatory mechanisms vary among different types of stem
cells. One should likely consider other factors beyond energy
metabolism to impact mitochondrial morphology and dynamics.
Additionally, based on the immature networks dominated by
mitochondrial fission, it can be hypothesized that mitochondrial
fusion-related factors remain in the low activation state. This does
not mean, however, that mitochondrial fusion is not important.
In contrast, male germline stem cells with simple and punctate
mitochondria are sensitive to a block in fusion, and knockdown
of mitofusin or Opa1 results in dysfunctional mitochondria and
dyslipidemia (Senos Demarco et al., 2019). Additionally, deletion
of Opa1 or Mfn1/2 destroys the structure of mitochondria and
causes cell dysfunction in NSCs (Khacho et al., 2016). These
findings suggest that both fission and fusion are indispensable for
maintaining a normal mitochondrial morphology in stem cells.

Moreover, even the same types of stem cells undergo metabolic
transitions and distinct mitochondrial dynamics due to different
pluripotent states and differentiation fates. ESCs have been found
to exhibit two stable but epigenetically distinct pluripotent states,
named naïve and primed (Zhou et al., 2012; Sperber et al., 2015).
Even though naïve ESCs contain under-developed mitochondria,
they rely on bivalent metabolism and display a dynamic
transition from glycolysis to OXPHOS according to demand
(Zhou et al., 2012; Sperber et al., 2015). In contrast, highly
glycolytic primed ESCs and epiblast stem cells manifest more
mature mitochondria with well-developed cristae compared with
naïve ESCs (Zhou et al., 2012; Sperber et al., 2015). With
differentiation toward neural progenitor cells, iPSCs gradually
form fused mitochondria with well-defined cristae, accompanied
by a metabolic switch from glycolysis to OXPHOS (Lorenz et al.,
2017). Lymphoid dominant HSCs have longer mitochondria
compared with other hematopoietic populations, and Mfn2 is
indispensable for HSCs to maintain extensive lymphoid potential
(Luchsinger et al., 2016). Even many differentiated cells have
more developed mitochondrial networks than stem cells (Cho
et al., 2006; Lambertini et al., 2015), and this mitochondrial
structure change may not be linear and may suffer complex
dynamic changes. Mitochondria display considerable structural
diversity in response to different physiological conditions.

Together, mitochondrial networks vary among different types
of stem cells, distinct pluripotent states, and specific commitment
fates (Table 2). Such variable mitochondrial morphology
mediated by mitochondrial fission and fusion is rather sensitive
to environment stimulation and is highly plastic.

MITOCHONDRIAL DYNAMICS IN MSC
FUNCTION

Mitochondria undergo specific dynamic changes during stem
cell proliferation, migration, differentiation, apoptosis, and aging
(Figure 2). However, mitochondrial dynamics regulate cell fate
by orchestrating the energy supply, intracellular ROS production
and calcium balance.

TABLE 2 | Mitochondrial morphology in stem cells and differentiated cells.

Stem cell type Mitochondria morphology Morphological change Differentiated fate References

Naïve embryonic stem cells Rounded to oval mitochondria Mitochondrial elongation Cardiomyocytes Zhou et al., 2012; Kasahara et al., 2013;
Sperber et al., 2015; Wang et al., 2017aPrimed embryonic stem cells Elongated mitochondria with

well-defined cristae

Induced pluripotent stem cells Globular mitochondria Mitochondrial elongation Neural progenitor cells Prieto et al., 2016
Fang et al., 2016; Lorenz et al., 2017Mitochondrial elongation Neurons

Neural stem cells Elongated mitochondria Mitochondrial fragmentation Committed progenitors Khacho et al., 2016; Ribeiro et al., 2019;
Beckervordersandforth et al., 2017Mitochondrial elongation Neurons

Mesenchymal stem cells Tubular mitochondria Mitochondrial elongation Adipocyte, osteoblasts Alicka et al., 2019; Feng et al., 2019; Forni
et al., 2016Mitochondrial fragmentation Chondrogenic commitment

Non-transplanted hematopoietic
stem cells

Small and globular
mitochondria

Mitochondrial elongation Lymphoid commitment Romero-Moya et al., 2013; Papa et al.,
2018; Luchsinger et al., 2016; Liang et al.,
2020Transplanted hematopoietic

stem cells
Elongated and swollen
mitochondria
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FIGURE 2 | A simple diagram of mitochondrial dynamics in different MSCs behaviors. MSCs contain an immature mitochondrial network characterized by tubular
mitochondria. Active mitochondrial fission, adapted to glycolytic dependence on energy production, is critical for the self-renewal and pluripotency of MSCs. After
osteogenic or adipogenic induction, MSCs develop elongated mitochondria with interconnected networks. Correspondingly, MSCs undergo dramatic metabolic
changes from glycolysis to oxidative phosphorylation for the energy supply. In contrast, in the early stage of chondrogenic commitment, fragmented mitochondria
are clearly increased in MSCs accompanied by a low level of basal respiration. Mitochondrial fission is significantly enhanced in apoptotic MSCs, whereas
mitochondrial fusion is markedly upregulated in aging MSCs.

Mitochondrial Dynamics in MSC
Pluripotency
As previously mentioned, fragmented mitochondria meet the
energy needs of immature MSCs, exerting a fundamental role
on intrinsic function (Seo et al., 2018; Zhang et al., 2018).
Mitochondrial fission is essential for maintaining stemness
in MSCs, and inhibiting fission leads to a reduction in
the expression of stemness markers and multidirectional
differentiation potential (Feng et al., 2019). During somatic
cell reprogramming to iPSCs, cells undergo mitochondrial
reconstruction, usually from a mature network toward immature
mitochondria, and a metabolic shift, usually from OXPHOS
toward glycolysis. Drp1-dependent mitochondrial fission is also
necessary for the acquisition of cellular pluripotency during the
early stage of embryonic fibroblast induction to form iPSCs
(Prieto et al., 2016). Moreover, depletion of fusion-related Mfn1
and Mfn2 activates hypoxia-inducible factor 1α signaling, a
necessary mediator of the metabolic switch to glycolysis, thus
facilitating the transition in metabolic pattern from OXPHOS
to glycolysis (Son et al., 2015). These processes promote the
conversion of somatic cells to a pluripotent state (Son et al., 2015).
However, over fission induced by Mff overexpression impairs the
pluripotency of ESCs and iPSCs, suggesting that active fission
should be within a certain threshold to better maintain stem

cell function (Zhong et al., 2019). In summary, MSCs prefer
mitochondrial fission to mitochondrial fusion to sustain the cell
state and function, and active to-fission promotes the self-renewal
and pluripotency of stem cells by stimulating glycolysis.

Mitochondrial Dynamics in MSC
Differentiation
In contrast to most stem cells, which have immature
mitochondria, stem cells undergoing differentiation usually
develop mature or specialized mitochondrial networks. MSCs
undergoing differentiation display elongated and interconnected
mitochondria accompanied by significantly decreased Drp1
and markedly increased OPA1 expression, indicating that
mitochondrial fusion is conducive to MSC differentiation into
adipocytes and osteocytes (Feng et al., 2019; Fujiwara et al., 2019).
Similarly, Forni et al. induced osteogenesis and adipogenesis in
MSCs and demonstrated enhanced mitochondrial biogenesis
and network restructuring via mitochondrial fusion mediated
by Mfn1 and Mfn2 during the early stages of induction
(Forni et al., 2016). Furthermore, Mfn2 knockdown restrains
respiratory activity, including basal ATP, maximal respiratory
capacity, and H+-leak-related respiratory activity, leading
to a loss of differentiation ability (Forni et al., 2016). The
fused mitochondrial network facilitates mitochondrial energy
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production through OXPHOS, which corresponds to the
energy required in these differentiated cells (Hsu et al., 2016;
Li et al., 2017b). Consistently, during the differentiation of
human iPSCs into cardiomyocytes, blocking Drp1 induces a
metabolic transition from glycolysis toward OXPHOS, resulting
in increased differentiation capacity in these cells (Hoque et al.,
2018). Neuronal differentiation of iPSCs is closely related to
upregulation of Mfn2 expression (Fang et al., 2016). Depletion
of Mfn2 induces mitochondrial respiratory dysfunction by
inhibiting complexes I and IV enzymatic activity and reducing
ATP levels (Fang et al., 2016).

Interestingly, chondrogenesis in MSCs involves a fragmented
mitochondrial phenotype at the beginning stage with increased
expression of Drp1, Fis1, and Fis2 (Forni et al., 2016), which
seems to contradict the finding that mitochondrial fusion is
promoted during osteogenic and adipogenic differentiation of
MSCs. Cells undergoing chondrogenesis do have low levels
of basal respiration at the early commitment phase (Forni
et al., 2016). Metabolomic analysis has revealed that catabolic
processes occurring during the early stage of chondrogenesis
are performed by both glycolysis and mitochondrial respiration
(Kwon and Ohmiya, 2013). These metabolic changes differ from
the enhanced mitochondrial OXPHOS that occurs during early
adipogenic or osteogenic commitment (Chen et al., 2008; Li et al.,
2017b), which may partly explain the increased fission to support
glycolysis in MSCs during the early stage of chondrogenesis.

Mitochondrial dynamics clearly alter the differentiation fate of
MSCs by regulating energy metabolism. However, mitochondrial
dynamics-mediated regulation of MSC differentiation is
not limited to energy metabolism regulation. Mitochondrial
dynamics-dependent mitophagy may also be involved in
modulating stem cell differentiation. Evidence has shown
that mitochondria become fragmented before mitophagy
enhancement (Forni et al., 2016; Marycz et al., 2016),
demonstrating that mitochondrial fission is essential for
mitophagy or autophagy (Gomes and Scorrano, 2008; Frank
et al., 2012), which plays a critical role in MSC differentiation
(Marycz et al., 2016; Vidoni et al., 2019). Additionally, although
the relationship between mitochondrial dynamics and calcium
homeostasis in MSCs has not been revealed, it has been
suggested that mitochondrial dynamics can influence the
differentiation of stem cells by regulating intracellular calcium
balance. Zhong et al. (2019) reported that excess mitochondrial
fission exacerbated cytosolic Ca2+ entry and CaMKII activity,
resulting in the degradation of β-catenin and ultimately
impairing the differentiation and embryonic development of
iPSCs. Mfn2 negatively regulates calcineurin/NFAT activity
by intracellular Ca2+ buffering, thereby maintaining HSCs
with extensive lymphoid potential (Luchsinger et al., 2016).
Kasahara et al. (2013) demonstrated that gene trapping of
Mfn2 or OPA1 was sufficient to inhibit the differentiation
of ESCs into cardiomyocytes. Mechanically, mitochondrial
fusion orchestrates Ca2+ and calcineurin A to further affect
Notch1-mediated suppression of the cardiomyocyte transition
(Kasahara et al., 2013).

In short, although mitochondrial fission and mitochondrial
fusion may exert pleiotropic effects during MSC differentiation

depending on specific lineage commitment and different stages,
we hypothesize that such mitochondrial dynamics undergo
specific transformations to ensure the ever-changing energy
demands and calcium balance, which is fundamental for the
multidirectional differentiation of MSCs.

Mitochondrial Dynamics in MSC
Senescence
Long-term in vitro amplification is a common way that can
induce senescence of MSCs (Kasper et al., 2009). After a
certain number of cell divisions (7–12 passages), senescent
cells increase, which is characterized by morphological
abnormalities, enlargement, and increase of senescence-
associated β-galactosidase positive cells. The long-term MSCs
cultures (more than 100 passages) derived from rat have been
found to exhibit increased susceptibility to senescence and
have non-tumorigenic (Wagner et al., 2008; Geissler et al.,
2012). Karyotype analysis in BMSCs reveals that aneuploidy
chromosomal alterations may occurs during population
doublings, but they became senescent without transformation
features (Tarte et al., 2010).

Lengthened mitochondria often occur in various aging cells
(Mai et al., 2010; Lin et al., 2015). Aged MSCs also exhibit
a strong and complicated interconnected network that is
distributed evenly in the cytoplasm, suggesting a potentiation
of fusion processes (Geissler et al., 2012). p-Drp1 expression
has been reported to be greatly downregulated, whereas Mfn2
expression is markedly upregulated in passage 12 (P12) BMSCs
compared with those in P4 BMSCs, suggesting that these
cells undergo aging accompanied by mitochondrial fusion (Li
et al., 2019). Consistent with these observations, P7 ASCs have
large tubular mitochondria forming an intertwined network
that is regulated by Mfn1, Opa1, and Fis1 (Stab et al.,
2016). In contrast, P2 ASCs show small tubular mitochondria
forming a slightly interconnected network (Stab et al., 2016).
Excessive mitochondrial fusion may adversely affect cells by
altering ROS levels. Prolonged or giant mitochondria have
been reported to augment ROS generation and weaken
mitochondrial respiration activity in deferoxamine-induced
senescent cells (Yoon et al., 2006). Furthermore, blocking
mitochondrial fission, by overexpression of Drp1-K38A (active
site is mutated in Drp1) and Fis1-1TM (transmembrane
domain is deleted in Fis1), successfully leads to a senescent
phenotype with ROS elevation in normal cells (Yoon et al.,
2006). Additionally, the reduction in Drp1 levels during
vascular aging exacerbates endothelial cell dysfunction by
increasing mitochondrial ROS and suppressing autophagic flux,
while the antioxidant N-acetyl-cysteine restores autophagosome
clearance and improves angiogenesis in senescent endothelial
cells (Lin et al., 2015).

Notably, increased mitochondrial fusion during aging
is not always harmful (Stab et al., 2016). During fusion,
depolarized mitochondria and normal mitochondria can join
together to exchange their contents, further aiding in damaged
mitochondrial repair and membrane potential maintenance
(Twig et al., 2008b; Meyer et al., 2017). Of course, excessive fusion
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can be detrimental when depolarized and damaged mitochondria
are overloaded, which is conducive to mitochondrial dysfunction
during aging (Ikeda et al., 2015; Lang et al., 2017).

Mitochondrial Dynamics in MSC
Apoptosis
Conversely, cell apoptosis is usually accompanied by abnormal
rupture of mitochondria in MSCs. Apoptotic ASCs isolated
from equine metabolic syndrome (EMS) horses contain
notably increased fragmented mitochondria (Kornicka et al.,
2019). Analogously, prominently increased expression of
Fis1 and decreased Mfn1 and Mfn2 expression have been
reported in apoptotic human umbilical cord MSCs induced
by monocrotophos exposure (Srivastava et al., 2018). Ma
et al. (2019) demonstrated that dexamethasone increased
mitochondrial fission and meanwhile diminished mitochondrial
fusion. Mitochondrial fission was promoted by increased Fis1
and Mff expression, whereas the mitochondrial fusion was
inhibited by decreased Mfn1 and Mfn2 expression. These
mitochondrial dynamics alterations contributes to apoptosis
enhancement and osteogenic suppression of BMSCs (Ma et al.,
2019). Correspondingly, treatment with mdivi-1, an inhibitor
of Drp1, dramatically ameliorated hydrogen peroxide (H2O2)-
induced cellular apoptosis and death in human periodontal
ligament stem cells (PDLSCs) and human W8B2+ cardiac cells
(Rosdah et al., 2017; He et al., 2018). Moreover, glucose/serum-
deprived/hypoxia treatment-induced apoptosis in MSCs is
reduced by increased glycolytic efficacy, which is modulated by
the leptin/OPA1/SGLT1 signaling pathway (Yang et al., 2019).

The role of mitochondrial fission in modulating stem
cell apoptosis is still unclear. Mitochondrial outer membrane
permeabilization (MOMP) mediates the cascade conduction of
many apoptotic signals. Arnoult et al. (2005) observed that
Bax/Bak could facilitate the release of deafness dystonia protein 1
homolog, a member of mitochondrial intermembrane chaperone,
into the cytoplasm, promoting its binding to the C-terminus of
Drp1, this further results in Drp1 recruitment to mitochondria
and Drp1-dependent mitochondrial fission. This Drp1-mediated
mitochondrial fragmentation is vital for mitosis, which is
involved in caspase-independent cell death (Arnoult et al., 2005).
Earlier findings suggested that overexpression of Mfn1 reduces
apoptotic HeLa cells induced by etoposide by impeding Bax
transport to mitochondria and cytochrome c release (Sugioka
et al., 2004). Intriguingly, other reports have shown that Drp1-
mediated mitochondrial fission prevents cell apoptosis, especially
Ca2+-related death (Szabadkai et al., 2004; Jahani-Asl and
Slack, 2007). Specific upregulation of Drp1 leads to division
of the mitochondrial network and damages the connectivity
of the mitochondrial lumen, separating mitochondria from the
endoplasmic reticulum, the source of calcium, which decreases
Ca2+ absorption and ultimately abrogates Ca2+ overload-
induced apoptosis (Szabadkai et al., 2004). However, these
mitochondrial fission-dependent antiapoptotic events have not
been demonstrated in stem cells.

Although current studies have shown that the apoptotic
process of stem cells is dominated by mitochondrial fission,

different apoptosis-inducing factors should be further studied
to comprehensively understand the effect of mitochondrial
dynamics on apoptosis. Overall, the interaction between
mitochondrial dynamics and apoptotic signals is complicated.
In response to different apoptotic or death pathway stimuli,
mitochondrial dynamics may either support or restrain
apoptosis. Increased apoptosis is usually attributed to enhanced
mitochondrial fission since these processes act on Bcl-2 family
dependent apoptotic pathways and related molecules. The
effectiveness and mechanisms involved in mitochondrial
dynamic-mediated alleviation of cell death caused by Ca2+

overload requires further confirmation.

MITOCHONDRIAL DYNAMICS IN MSCs
UNDER STRESS

Mitochondria can sense many stresses and influence cell
survival and function by regulating a variety of signaling
molecules. Mitochondrial dynamics play an important role in the
mitochondrial stress response (Youle and van der Bliek, 2012;
Meyer et al., 2017; Eisner et al., 2018). At present, the stress
response of mitochondrial dynamics in MSCs primarily includes
oxidative stress, metabolic stress, and some exogenous stimuli,
such as physical stress and toxins.

Mitochondrial Dynamics in MSCs Under
Oxidative Stress
Oxidative stress occurs when the balance of the oxidative stress
and antioxidant systems breaks down, which subsequently causes
cellular damage. During physiological or repair processes, stem
cells inevitably suffer attacks caused by oxidative stress. In fact,
oxidative stress is a well-explored mechanism in regulating stem
cell fate (Ko et al., 2012; Tan and Suda, 2018). Overgeneration
of ROS indicates the occurrence of oxidative stress in tissues (Tan
and Suda, 2018; Vina et al., 2020). Under pathological conditions,
excessive ROS can be produced by mitochondria, which in turn
leads to the inactivation of mitochondrial components (Zorov
et al., 2014). The damaged members involved in mitochondrial
dynamics may destroy the mitochondrial morphology and
structure, resulting in a vicious cycle of continuous ROS release
(Ježek et al., 2018). This reflects the complex interaction between
mitochondrial dynamics and ROS generation.

Oxidative stress with ROS evaluation induced directly
by H2O2 treatment leads to mitochondrial fragmentation
in hMSCs; moreover, the combination of N-acetylcysteine,
a biologic antioxidant, and ascorbic acid 2-phosphate, an
oxidation-resistant derivative of ascorbic acid, successfully
inhibits mitochondrial fission, decreases ROS production, and
stabilizes mitochondrial membrane potential (Li et al., 2015). In
another similar study of oxidative stress conditions stimulated by
serum deprivation and hypoxia treatment, BMSCs had increased
mitochondrial fragmentation along with upregulation of p-Drp1
Ser616 expression and downregulation of Mfn2 expression (Deng
et al., 2020). In addition, an in vitro study underscored that
CoCl2, a hypoxia mimetic, promoted mitochondrial fission in
PDLSCs mediated by Drp1 elevation (He et al., 2018). Targeted
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inhibition of Drp1 markedly increased ATP levels, suppressed
ROS generation, and eventually reduced cell apoptosis, indicating
the important role of the ROS-Drp1-dependent mitochondrial
pathway in CoCl2-induced apoptosis in PDLSCs (He et al.,
2018). These findings suggest that high ROS levels and oxidative
stress generally lead to abnormal mitochondrial dynamics,
especially excessive mitochondrial fission. Reducing ROS levels
helps to restore normal mitochondrial dynamics. Moreover, the
regulation of mitochondrial dynamics can also be beneficial for
reversing ROS overgeneration.

Unlike the high level of ROS, which is always associated
with cell damage and disease, low or normal ROS level has
been shown to have a positive effect on cell homeostasis and
function via participating in signal transduction and promoting
mitophagy (Shadel and Horvath, 2015; Palmeira et al., 2019).
Early outbreaks of transient oxidative phosphorylation and
elevated ROS in somatic cells promote NRF2 transcription factor
activity, which further initiates the hypoxia inducible factor
α-mediated glycolytic shift in early reprogramming (Hawkins
et al., 2016). During reprogramming toward iPSCs, mitochondria
undergo reconstruction dominated by enhanced mitochondrial
fission, gradually forming an immature state instead of a mature
mitochondrial network (Vazquez-Martin et al., 2012; Prieto
et al., 2016; Lisowski et al., 2018). Compared with somatic cells,
stem cells including MSCs have low ROS levels and immature
mitochondrial networks (Hsu et al., 2016; Lisowski et al., 2018).
Therefore, it is speculated that the changes in mitochondrial
dynamics associated with low ROS levels are conducive to
mitochondrial remodeling and adaptive changes.

Mitochondrial Dynamics in MSCs Under
Metabolic Stress
Studies on the effects of metabolic stress on mitochondrial
dynamics mainly involve abnormalities in glucose and lipid
metabolism. High levels of fatty acids alone or in combination
with high glucose induce an increase in mitochondrial
fragmentation (Molina et al., 2009). Dysfunctional ASCs isolated
from patients with type 2 diabetes exhibit a similar trend in
mitochondrial phenotype, in which overexpression of Fis1 causes
fragmented, round mitochondria, and mitochondrial autophagy
is also impaired, as indicated by reduced parkin RBR E3 ubiquitin
protein ligase (PRKN, better known as Parkin) expression (Alicka
et al., 2019). The Parkin is a crucial mitophagy regulator and
its activation can build ubiquitin chains to ubiquitinating outer
membrane protein on damaged mitochondria to label them
for degradation in lysosomes (Bingol and Sheng, 2016). These
findings are consistent with previous research by the same team,
which showed that increased ASC apoptosis derived from EMS
horses resulted in enhanced mitochondrial fission compared with
the healthy control (Marycz et al., 2018). Similarly, metabolic
syndrome impairs the swine ASC mitochondrial structure
featured by an increase in mitochondrial fission and reduction
of mitochondrial fusion (Farahani et al., 2020). Yu et al. (2006)
have found that hyperglycemia-induced mitochondrial fission
promotes ROS production and its periodic fluctuations, and
either fission inhibition by Drp1 inhibition or fusion induction

by Mfn2 overexpression prevents an increase in ROS induced
by hyperglycemia.

Mitochondrial Dynamics in MSCs Under
Physical Stress and Toxins
Limited studies have indicated the potential impacts of physical
stimuli or exogenous toxins on the mitochondrial dynamics
of MSCs. Patten et al. (2019) observed that mitochondrial
length in human BMSCs was slightly increased 4 h after
exposure to 2 Gy radiation. They further demonstrated that
Opa1 knockdown in mouse embryonic fibroblasts induced
a decline in their adaptation to radiation, suggesting that
mitochondrial networks may also be involved in the regulation
of BMSC adaptation to radiation (Patten et al., 2019). Yin
et al. (2017) revealed that low-level laser exposure facilitated
mitochondrial biogenesis via upregulation of molecules
associated with both mitochondrial fusion (Mfn1, Mfn2, and
Opa-1) and mitochondrial fission (Fis1, Drp1, and MTP18),
which contribute to elevated proliferation of BMSCs. In
an in vitro study, methamphetamine exposure dampened
the osteogenic differentiation of BMSCs due to abnormal
OXPHOS and reduced ATP generation and mitochondrial
membrane depolarization. These mitochondrial malfunctions
were attributed to damaged mitochondrial biogenesis
and mitochondrial fusion (Shen et al., 2018a). Similarly,
treatment with carbon black Printex 90, a representative
carbonaceous particle toxicant, induced mitochondrial
dysfunction in BMSCs, which is closely related to suppressed
mitochondrial biogenesis and mitochondrial dynamics,
ultimately resulting in impaired osteogenic potential of BMSCs
(Shen et al., 2018b).

Multifaceted Effects of Mitochondrial
Dynamics Under Stress
According to the literature, stress often results in fragmentation
but not elongation events in mitochondria in MSCs, which
is attributed to dramatic enhanced mitochondrial fission
with/without inhibited mitochondrial fusion (He et al., 2018;
Marycz et al., 2018; Shen et al., 2018a; Ma et al., 2019). In
addition, the suppression effect on both mitochondrial fission
and fusion was observed in BMSCs when they were treated
with high levels of ferric ammonium citrate, a commonly used
agent to induce iron overload (Yao et al., 2019). In contrast,
Marycz et al. (2019) suggested that ASCs derived from metabolic
syndrome horses displayed abnormal dysregulated and mixed
mitochondria due to hyperactive mitochondrial fission and
fusion. Moreover, stress-induced mitochondrial hyperfusion
has been proposed by Tondera et al. (2009) as a particular
prosurvival response to stress, and their research confirmed
that exposure to a low dose of UV irradiation or actinomycin
D efficiently induces hyperfusion of mitochondria in mouse
embryonic fibroblasts within 9 h. Similarly, mouse embryonic
fibroblasts show elongated mitochondria after starvation
treatment, which protects them from autophagy-induced
mitochondrial clearance (Gomes et al., 2011). Jendrach et al.
(2008) observed that short-term and low doses of H2O2 result
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in a transitory increase in mitochondrial fusion in human
umbilical vein endothelial cells. This enhanced mitochondrial
fusion is beneficial to damaged mitochondria, in which
mitochondrial DNA and membrane potential are sustained
and the energy supply capacity is maximized to enhance
adaptation under stress (Tondera et al., 2009; Gomes et al., 2011;
Meyer et al., 2017).

Therefore, it is reasonable to conclude that different
stressors and stress intensities can lead to complex changes
in mitochondrial dynamics in MSCs, which are involved in
fission and/or fusion activity. Mitochondrial dynamics seem
to be central to bridging the gap between external stress
and MSC function (Figure 3). Fusion events may act as a
compensatory reaction in response to weak stress to better
promote survival. In many cases, mitochondrial elongation
is beneficial for resisting stress (Agarwal et al., 2016; Yang
et al., 2019). However, upregulated fusion does not always
mean elevated function. For example, senescent cells usually
have a highly fused mitochondrial network, but their functions
are relatively poor (Lin et al., 2015; D’Amico et al., 2019).
Likewise, mitochondrial fragmentation is not always the result
of maladaptation. Under stress states, impaired mitochondria
may cause damage by ROS or other overgenerated harmful by-
products and abnormal accumulation of Ca2+ (Shaughnessy
et al., 2014; Park et al., 2017; Dilberger et al., 2019). Accordingly,
timely and proper clearance of damaged mitochondria is
imperative to cell survival and function. Mitophagy is the main

way to selectively eliminate damaged or old mitochondria (Twig
et al., 2008a; Ashrafi and Schwarz, 2013). The suppression
of mitophagy impairs cell adaptability to stress and has been
implicated in diabetes and neurodegenerative and cardiovascular
aging diseases (Wallace, 2005; Egan et al., 2011; Marycz et al.,
2016; Baechler et al., 2019). Mitochondria rely on mitochondrial
fission to produce different daughter units. The daughter
units with healthier membrane potentials will continue to
participate in the dynamic cycle and facilitate recovery, whereas
depolarizing mitochondria can be removed by mitophagy
(Twig et al., 2008a). Inhibition of mitochondrial fission
impairs mitophagy, while transitory enhanced mitochondrial
fission acts as a protective strategy via cooperation with
mitophagy (Twig et al., 2008a; Youle and van der Bliek,
2012). Stress most often induces hyperfission or abnormal
mitochondrial dynamics, thus stimulating or worsening cell
damage or death. Taken together, these findings suggest that the
coordination of mitochondrial fission and mitochondrial fusion
is a pivotal cytoprotective mechanism for cellular renovation and
homeostasis under stress.

MSC-BASED MITOCHONDRIAL
THERAPEUTICS

The coordination of mitochondrial fission and mitochondrial
fusion is essential for maintaining integrity and function

FIGURE 3 | Illustration showing possible responses of mitochondrial dynamics to stress. Different stressors and stress levels lead to altered mitochondrial fission
or/and fusion. Mild stress induces moderate ROS production and decreased ATP generation, which triggers adaptive changes in mitochondrial dynamics.
Mitochondria can maintain their quality either by enhanced mitochondrial fission to remove damaged mitochondria or enhanced mitochondrial fusion to share
components that, in turn, can relieve oxidative stress and fortify the energy supply, thus promoting survival. Excess stress causes a dramatic ROS increase and ATP
exhaustion, which contributes to abnormalities in mitochondrial dynamics. In turn, abnormal mitochondrial dynamics exacerbate this situation via a vicious circle of
continuous ROS elevation and/or ATP reduction, therefore inducing or worsening cell dysfunction or death.
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of MSCs. Some crucial proteins that control mitochondrial
dynamics play particularly important roles in regulating MSC
fates. Based on these regulators, many strategies are being
developed to guide mitochondrial dynamics to govern cell fate,
thus improving the efficacy of MSC-based tissue repair.

Mdivi-1 is widely used as a selective Drp1 inhibitor that
can inhibit the GTPase activity of Drp1. Some researchers have
demonstrated the protective effect of mdivi-1 against apoptosis
in stem cells under pathological or stress conditions. Targeted
inhibition of Drp1 with mdivi-1 increases mitochondrial
fission and protects human PDLSCs against H2O2-induced cell
dysfunction (He et al., 2018). Mdivi-1 treatment rescues the
EMS-induced abnormal mitochondrial network in ASCs, which
subsequently reverses the senescence of ASCs, as indicated by
suppression of p53, p21, and p62 expression (Kornicka et al.,
2019). Moreover, short-term or intermittent administration of
mdivi-1 is more beneficial for resisting tissue damage (Jheng
et al., 2015). Single administration of mdivi-1 reverses the
excessive fission of mitochondria and diminishes myocardial
ischemia/reperfusion-induced damage in diabetic mice (Ding
et al., 2017). Intermittent application of mdivi-1 1 and 16 h
before insulin stimulation can improve insulin resistance in
the skeletal muscles of obese mice (Jheng et al., 2012). Other
mitochondrial fission inhibitors include P110, which blocks
Drp1/Fis1 interactions, and dynasore, which non-selectively
dampens GTPase activity. Several studies have reported that these
inhibitors can prevent ischemia/reperfusion-induced damage in
mouse hearts, suggesting their potential application for stem
cells under oxidative stress conditions (Disatnik et al., 2013;
Gao et al., 2013).

Gene modification and epigenetic regulation are also used
to regulate mitochondrial dynamics and render MSCs more
favorable for bone tissue repair. Silencing Mfn2 can diminish
ROS levels and reverse the aging phenotype induced by deletion
of the FGF21 in BMSCs (Li et al., 2019). Pretreatment of
BMSCs with miR181-c activates the AMPK-Mfn1 signaling
pathways, consequently reversing H2O2-induced negative effects
on proliferation, migration, and paracrine activity in BMSCs
(Fan et al., 2019). Mfn1 silencing abrogates the protective effect
of miR-181c on BMSCs under oxidative stress conditions (Fan
et al., 2019). Inhibiting miR-155-5p or Mfn2-siRNA reverses
mitochondrial hyperfusion-mediated senescence in MSCs, and
transplantation of aged MSCs pretreated with anti-miR-155-5p
significantly ameliorates cardiac dysfunction in an infarction
mouse model (Hong et al., 2020). miR-214 improves fibroblast
differentiation of ASCs by directly binding to the Mfn2 3′-
UTR, enhancing ASC-mediated repair in pelvic floor dysfunction
in rats with birth trauma. Injection of a miR-214 inhibitor or
overexpression of Mfn2 can counteract the therapeutic effect of
ASCs in rat urinary tissues (Wu et al., 2017). Local application
of lgr5-overexpression MSCs at the fracture site is reported as a
superior method in augmenting bone healing in mice because of
the positive regulation of mitochondrial dynamics and Wnt/ERK
signaling pathways (Lin et al., 2019).

In addition to the targeted strategies described above, some
compounds can also improve the biological activities of MSCs
by modulating mitochondrial dynamics (Table 3). These studies
suggest a complex regulatory network induced by mitochondrial
dynamics that affects different MSC behaviors. Given the
extensive and complicated role of mitochondrial dynamics, it is

TABLE 3 | A summary of compounds for mitochondrial dynamics modulation in MSCs.

Compounds MSC
types

Mitochondrial dynamics
effect and mechanism

Effect on MSCs References

Fibroblast growth factor 21 Human
BMSCs

AMPK-Drp1↑ Mfn2↓

Mitochondrial fission↑

Senescence↓ Li et al., 2019

N-Acetylcysteine and Ascorbic
Acid
2-Phosphate

Human
ASCs

Drp1 S616 translocation↓

Mitochondrial fission↓

Mitochondrial function↑

mitoptosis↓
Li et al., 2015
Li et al., 2017a

Tyrphostin A9 Rat
BMSCs

Mitochondrial fission↑ Stemness maintenance Feng et al., 2019

Leptin Human
BMSCs

Opa1-mediated
mitochondrial fusion↑

Survival in hypoxia↑

Glucose/serum-deprived/hypoxia-induced
apoptosis↓

Yang et al., 2019
Yang et al., 2018

Haemin Human
BMSCs

p-Drp1 ser616↓ Mfn2↑

Mitochondrial fission↓

SD/H-induced apoptosis↓
Myocardial infarction-induced damage in mice↓

Deng et al., 2020

Succinate Human
MSCs

MAPK-P38p-Drp-1↑

mitochondrial fission↑

Migration↑

mice skin wound healing↑

Ko et al., 2017

PDGF-D Human
ASCs

p66shc-mediated mitochondrial fission↑ Migration↑

proliferation↑

Hye Kim et al.,
2015

Icariin Rat
BMSCs

Fis-1↑ Mfn2↑ Drp1↑ mediate mitochondrial
fusion and fission

Iron overload induced- osteogenesis inhibition↓ Yao et al., 2019

Pyruvate kinase muscle
isoenzyme 2

Rat
BMSCs

Drp1↑ Fis1↑ Mff↑
Opa1↓ Mfn2↓

mitochondrial fission↑

Osteogenic commitment↓
Adipogenic commitment↑

Guo et al., 2020

Melatonin Mouse
BMSCs

Opa1↓ Mfn1↓

mitochondrial fusion↓

Chronic kidney disease-related cellular
senescence

Han et al., 2019
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necessary to be more precise and prudent in exploring targeted
regulatory strategies.

CONCLUSION AND PERSPECTIVES

Mitochondrial dynamics are closely related to the fate
determination of MSCs. The coordinated collaboration of
mitochondrial fission and mitochondrial fusion is of great
significance in the self-renewal, multilineage differentiation, and
stress response of MSCs. Proper regulation of mitochondrial
dynamics benefits MSCs in sustaining viability, promoting
differentiation, and resisting apoptosis, aging, and stress
damage. Since mitochondrial dynamics vary with different MSC
commitments and ways to participate in the response, and
mediation of mitochondrial dynamics should be investigated
in diverse MSC differentiation populations. In addition, the
mechanism of mitochondrial dynamics in regulating the fate
of stem cells includes energy metabolism alteration, oxidative
stress modulation, and calcium homeostasis regulation. However,
how these regulatory pathways mediate the interaction between
mitochondrial dynamics and MSC behaviors requires further
elucidation. Additionally, mitochondrial morphology and quality
are integrally connected via mitochondrial biogenesis, fission,
fusion, and mitophagy, and their crosstalk in MSC fates merits
further exploration.

Stimuli such as oxidative stress often induce single changes in
mitochondrial dynamics, especially fission activation, in which a
strategy unilaterally targeting mitochondrial fission can achieve
desirable results with reduced risk. However, the situation is
sometimes complicated, and differentiation suppression in MSCs
is accompanied by both abnormal fission and fusion (Shen
et al., 2018b; Marycz et al., 2019; Yao et al., 2019). In such
cases, changes in mitochondrial dynamics may involve a variety
of dynamic-related proteins. Therefore, strategies targeting the
mediation of mitochondrial dynamics will be complicated
and risky and should therefore be carefully evaluated. It is
also noteworthy that increased mitochondrial fragmentation

may be due to enhanced fission and/or suppressed fusion,
while elongated mitochondria are attributed to inhibited fission
and/or intensified fusion. An accurate and comprehensive
assessment is necessary to obtain the simplest but most
effective strategy.

Although still at an early stage, modulating mitochondrial
dynamics by various means to guide MSCs to better
promote tissue repair is an emerging regulatory strategy
that shows great potential in the future of regenerative
medicine. More importantly, the definite crosstalk between
mitochondrial dynamics and MSC fate should be clarified in
detail before any conclusions can be drawn regarding how to
direct mitochondrial fission or mitochondrial fusion toward
controlling MSC behaviors.
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