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Precision multidimensional 
neural population code recovered 
from single intracellular recordings
James K. Johnson1*, Songyuan Geng1, Maximilian W. Hoffman1, Hillel Adesnik2 & 
Ralf Wessel1

Neurons in sensory cortices are more naturally and deeply integrated than any current neural 
population recording tools (e.g. electrode arrays, fluorescence imaging). Two concepts facilitate 
efforts to observe population neural code with single-cell recordings. First, even the highest quality 
single-cell recording studies find a fraction of the stimulus information in high-dimensional population 
recordings. Finding any of this missing information provides proof of principle. Second, neurons 
and neural populations are understood as coupled nonlinear differential equations. Therefore, 
fitted ordinary differential equations provide a basis for single-trial single-cell stimulus decoding. 
We obtained intracellular recordings of fluctuating transmembrane current and potential in mouse 
visual cortex during stimulation with drifting gratings. We use mean deflection from baseline when 
comparing to prior single-cell studies because action potentials are too sparse and the deflection 
response to drifting grating stimuli (e.g. tuning curves) are well studied. Equation-based decoders 
allowed more precise single-trial stimulus discrimination than tuning-curve-base decoders. 
Performance varied across recorded signal types in a manner consistent with population recording 
studies and both classification bases evinced distinct stimulus-evoked phases of population dynamics, 
providing further corroboration. Naturally and deeply integrated observations of population dynamics 
would be invaluable. We offer proof of principle and a versatile framework.

Pyramidal neurons aggregate population synaptic transmissions and neuromodulatory information then pass 
limited but useful information to downstream neuronal populations via action potentials. Experimentally access-
ing such upstream information would allow researchers to analyze the behavior of an intrinsically unambigu-
ous neuroanatomical subpopulation: the group of neurons that synapse onto the same neuron (or neurons)1. 
Replicating findings about neural code in presynaptic population dynamics would be valuable because existing 
population recording methods, (e.g. electrode array or imaging methods) capture an outsider’s perspective of 
neural populations. They record from groups with distributions of neuron types and different functions (e.g. 
tunings) that may not be consistent with the distributions within intrinsic neural groups.

Unfortunately, the transformation of presynaptic population dynamics into synaptic input and then to neural 
output is very messy. Synaptic inputs can interfere with each other and are obscured by single-neuron biophysical 
effects, such as membrane properties1–3. Whole-cell recording methods observe these as fluctuations of current 
and potential at the neuronal cell body, i.e., the soma. Even the recording method complicates matters. The cell 
membrane must be held at a fixed voltage to record transmembrane currents, but distal dendrites may be poorly 
controlled4. No existing methods are reliable for even partially reconstructing the rich information in presynaptic 
population dynamics from transmembrane potential and current fluctuations.

Fortunately, there is an ongoing revolution in data analysis5 and neuronal recording methods6,7. Even without 
machine learning, network-state signatures like scale-freeness can be uncovered with long enough recordings8. 
However, it would be more useful to get to detailed information about presynaptic population dynamics from 
fluctuations on short timescales. To test whether useful population information can be extracted from single-
trials of single-cell recordings we use a stimulus discrimination challenge. Stimulus discrimination is a familiar 
classification-type machine learning problem. The spike trains of individual neurons discriminate stimulus 
poorly on a single trial basis because spiking is too sparse. Deflection from baseline of membrane potential and 
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transmembrane current has been related to presynaptic populations9 and can improve discrimination somewhat 
while preserving the “tuning curve” stimulus encoding found in single neuron spike trains. We assert that any 
method which is agnostic to tuning curves and shows any increased discriminability demonstrates that one has 
“decoded” stimulus information from presynaptic populations, rather than or in addition to decoding single-
neuron output. Most machine learning methods are unsuitable because usually a small number of recordings 
are available. As a rule of thumb, the number of parameters in the model must be less than the number of 
examples used in training. However, the number of parameters in the model can never be less than the num-
ber of data points in each example (e.g. the number of time points in a recording). Therefore, we need a very 
compact representation of neural time-series before proceeding with classification. In a best-case scenario this 
representation should be routed in neuroscience, have a clear interpretation, and have intrinsic value for testing 
hypotheses about neural code. Neuronal population dynamics are often characterized by systems of differential 
equations10,11 which have few terms. Therefore, time series analysis and latent variable discovery may be the 
missing elements needed for extracting detailed population information within single trials of single-neuron 
intracellular recordings.

The attractor network paradigm12–15, provides a hypothetical connection between ordinary differential equa-
tion models (ODEs) and stimulus decoding. This paradigm is novel in primary visual cortex16,17. It describes 
brain activity as trajectories in a high-dimensional state-space and maps trajectory characteristics like shape 
or location to specific brain functions (e.g. memory, movement, or recognition18). Attractor network dynam-
ics exhibit attracting sets representing brain operations, i.e. a stimulus evokes a perturbation causing network 
dynamics to either explore state space near a different fixed point, or to undergo a bifurcation. A fixed point is a 
point (or manifold of points) where all derivatives are zero. Near a fixed point most dynamical systems fall into a 
simple, or at least quasiperiodic, dynamical pattern (e.g. limit cycle oscillations, monotonic convergence)19, and 
similar initial conditions produce similar trajectories over short timescales unless a dynamical bifurcation has 
occurred. A bifurcation is a sudden change in the character of fixed points, this also causes a sudden change in 
the repertoire of possible population dynamics. Thus, if a shift in stimulation also shifts dynamics to a different 
fixed point or causes a bifurcation, then brief snippets from trajectories co-occurring with different stimuli will 
have different characteristics.

Although equations completely governing a network have fixed parameters, approximations and reductions 
of governing equations have different parameters near different fixed points. Thus, stimuli may modulate the 
parameters of rudimentary equations fitted to brief snippets of evoked activity. This modulation is illustrated in 
Fig. 1a by pendulum with physical properties which are like stimulus characteristics providing the context for 
a recording of neural activity. Upon change of coordinates, the pendulum’s motion is a simple Lorenz system20 
(Fig. 1b) with coefficients modulated by physical properties (i.e. context).

To test our dynamical systems insights, we obtained recordings of membrane current and potential from 
single neurons in primary visual cortex of awake mice concurrent with visual stimulation by drifting gratings 
of varying orientation, size, and contrast (Fig. 1c). This data was collected to support a prior publication21. We 
applied a Whitney–Takens time-delay based dimensionality expansion22–24 to one-dimensional intracellular 
recordings. This is analogous to dimensionality reduction methods such as PCA and results in moderate dimen-
sion neural trajectories that represent a projection of a putative high-dimensional dynamical system (population 
dynamics) onto a lower dimensional space. We then applied a model discovery algorithm25 (Fig. 1d) modified 
to interpret the coefficients of differential equations as a compact representation of neural time series and thus a 
basis for stimulus discrimination. Because dynamical systems are used as features in a stimulus decoder, we call 
the algorithm “dynamical discrimination”.

We found that dimensionality expansion of our intracellular recordings followed by dynamical discrimina-
tion permitted better than chance classification of small changes in orientation, size, and contrast of drifting 
gratings. Overall correct classification rates exceeded tuning-curve classifiers based on deflections of trans-
membrane current and potential. This is especially significant for grating orientation both because a tuning 
curve model failed to perform better than chance and because prior knowledge identifies thalamic populations 
as essential to orientation tuning V126–28, thus evincing population decoding, rather than single-neuron decod-
ing. To understand the importance of an ODE perspective, we also tested a Maximum Likelihood Stimulus 
decoder on a derivative-free state-space representation of neural time series; it failed to match the performance 
of dynamical discrimination. Additional scrutiny found evidence for task-positive and task-negative dynamical 
regimes, both in patterns of reliability for deflection responses and linear-stability analysis of the ODE models, 
thus demonstrating the value of ODEs as compact representations of neural time-series for testing the attractor 
network paradigm. We validated dynamical discrimination in increasingly complex neuron models driven by 
Lorenz dynamics to understand the sources of error and best-possible performance.

Ultimately, dynamical discrimination connects model discovery25,29 to latent variable discovery11,30,31, and 
exemplifies machine learning to test scientific hypotheses because its level of performance depends on the extent 
to which attractor networks underlie responses to drifting grating stimuli. Thus, it enables new methods of quan-
tifying attractor network principles in the primary visual cortex16,17 and single-neuron intracellular recordings. 
More fundamentally, dynamical discrimination establishes proof of principle that intracellular recordings have 
hitherto unrealized potential as tools to investigate population neural code.

Main text
Dimensionality expansion captures dynamically rich neural trajectories from single neu-
rons.  Synaptically driven transmembrane electrotonic fluctuations contain rich information about network 
activity (Fig. 1c) but it is not clear how to get that information. If behavioral responses to stimuli are consistent, 
then fluctuations of neural activity following stimulus presentation should also be consistent at some level of 
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abstraction. The abstraction proposed by the attractor network computational paradigm12–15 are attracting sets. 
The concept of tuning curves presumes that neural responses are stereotyped according to a single summary 
value, such as the mean spike rate or mean deflection, thus removing the information contained in fluctuations.

Recordings were placed into 10 categories according to signal type and characteristics of drifting grating 
stimulus (Fig. 1c), because it is important to demonstrate how our analyses perform in various conditions. 
Elucidating the biological impact of altering drifting grating parameters and contrasting them between signal 
types is beyond the scope of this paper. This paper is focused on demonstrating that more stimulus information 
arrives at the soma than tuning curves would suggest, and that this information evinces population dynamics. For 
details of drifting grating stimulus see the visual stimulation section of experimental methods. Types of recording 
and stimulus characteristic are denoted with left-superscripts above I for voltage-clamp recordings and V for 
current-clamp recordings (Fig. 2a). The two categories I,OI, and E,OI feature transmembrane current recordings 
of synaptic inhibition (I) and excitation(E) respectively, and drifting grating orientation (O) was varied. The two 
categories I,SI, and E,SI are the same, but size (S) was varied. For I,CI, and E,CI, contrast (C) was varied. For the 
categories R,SV, and K,SV the recording apparatus was in current clamp mode and size was varied and spikes were 
removed (R) or kept (K), respectively. For two more membrane potential categories contrast was varied R,CV and 
K,CV. Figures show only data with spikes removed because of minimal difference in outcome. There are 20–121 
recordings for each cell (median is 68) with 3–21 examples of each stimulus (median is 11).

Figure 1.   The context of a dynamical trajectory is represented in governing equation parameters. (a) A 
pendulum governed by Lorenz equations after changing variables from spherical coordinates (θ, ϕ, r) to abstract 
coordinates (X, Y, Z)20. Our interpretation of “context” is illustrated by the parameters: constant torque τ, bob 
mass M, rod length L, Stoke’s Law coefficient λ, and friction μ. (b) A chaotic Lorenz attractor (σ = 10, β = 8/3, 
ρ = 28. (c) An illustration of our data. Source: Intracellular recordings from single neurons in mouse V1. The 
context of recorded dynamics is influenced by visual stimulation. We have three stimulus categories: eight 
drifting grating orientations (top), six logarithmically spaced sizes (center), and six logarithmic contrast levels 
(bottom). This original composite image includes an adapted brain atlas from The Gene Expression Nervous 
System Atlas (GENSAT) Project, NINDS Contracts N01NS02331 & HHSN271200723701C to The Rockefeller 
University (New York, NY). (d) We identify context through modified Sparse Identification of Nonlinear 
Dynamics (SINDy). We illustrate a context modulated sparse dynamical systems coefficient matrix, Ξ, with the 
Lorenz system (see a). V is a time-delay embedding of a single dynamical variable (e.g. membrane potential). Θ 
contains all polynomial combinations of V up to cubic terms. dV is a derivative estimate. Ξ, is learned through 
linear regression to regress Θ onto dV. Ξ represents our data compactly enough to train classifiers to predict 
context (e.g. stimulus) with few examples. A genetic algorithm finds Ξ by picking different sets of nonzero 
elements at each generation. The best set of nonzero elements is chosen based on whether Ξ leads either to the 
best stimulus classification performance or best trajectory reconstruction while maintaining sparseness.
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To employ attractor networks in intracellular recordings from mouse primary visual cortex responding to 
visual stimulation, we used time-delay dimensionality expansion22,23 of 500 ms recording snippets to project 
transmembrane current and potential fluctuations onto intermediate dimension neuronal trajectories (Fig. 2b). 
The observed trajectories form oscillations confined to conical, cylindrical, or spherical regions (Fig. 2c and sup-
plemental Fig. S10). Trajectories appear limited to regions of phase space according to recording context (Fig. 2c 
and supplemental Fig. S10). Patterns include nesting conic trajectories inside one-another, and displacement of 
oscillation centers. As evinced by Maximum Likelihood Estimation (MLE) (see analysis methods: maximum 
likelihood estimation), trajectories were distinctive but the simple difference formula effect size for comparison 
with deflection-based discrimination according to a one-tailed Wilcoxon sign-rank test was rSDF = 0.1351, which 
has a p-value of p = 0.263 (no difference, see supplemental S4). The MLE method we used computes the prob-
ability of a stimulus condition given the state-space occupied by a trajectory. Therefore, we eliminated the simpler 
hypothesis that projecting to a higher dimension state-space alone without dynamical systems characterization 
is sufficient for stimulus classification.

Dynamical discrimination allows more precise stimulus discrimination than tuning curve 
methods.  We draw direct comparison with tuning curve methods which are a venerable way to characterize 
the impact of drifting grating stimuli on intracellular recordings. When changing a single parameter of a simple 
visual stimulus (e.g. changing size, contrast, or orientation of a drifting grating) the deflection from baseline of 
transmembrane current or potential (see Fig. 2a) or firing rate of a neuron will smoothly increase or decrease, 
but this is only true for cross-trial averages. The plot of cross-trial average deflection or firing rate for different 
stimuli is called a tuning curve. We decoded stimulus from deflections by dividing the range of possible deflec-
tions into smaller intervals (see analysis methods: deflection-based decoding). Each interval corresponds to one 

Figure 2.   Time-delay embedding of intracellular recordings reveals varied dynamical trajectories and equations 
are fitted to them. (a) Excitatory (red) and inhibitory (blue) transmembrane current, and potential (green). Gold 
bars: stimulus on/off times. Outlined boxes: periods defining on response (early box) and off response (late box). 
Stimulus on time through the end of the off response defines the full response. Gray: periods defining deflection 
as the difference between early and late period means. (b) Left column: Time-delay embeddings illustrated 
with every 20th one-millisecond delay of recordings from panel a. Right column: Neural trajectories visualized 
after singular value decomposition of 100 one-millisecond delays. (c) Two trajectories coinciding with the most 
(gold) and least (aqua) preferred stimuli (largest/smallest mean deflection respectively) for one cell from eight 
recording categories. Fig. S10b succinctly characterizes all trajectories. Central axes (gold/aqua bars) are parallel. 
Trajectory characteristics include: axial displacement of densest regions (see R,SV, I,SI, I,OI), opposed directions of 
divergence (R,SV), and nesting (I,OI, E,OI, I,CI, E,CI, I,SI). Most cell’s trajectories occupy conic regions (see Fig. S10), 
but some (R,CV, E,SI, R,SV) are cylindrical or spheroid when plotted together.
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best-guess stimulus feature. The most and least preferred stimuli for a neuron are defined as those which evoke 
the largest or smallest (respectively) deflections on average for that neuron and are usually very dissimilar. When 
decoding only the most and least preferred stimuli, tuning curve methods excel32. We find correct classification 
rates (CCR) often exceed 0.9 (see supplemental Fig. S1 and Table S2). However, when decoding small changes 
in stimuli tuning curve methods are imprecise. Deflection-based discrimination failed to perform better than 
chance in for I,OI, E,OI and E,SI. However, it was better than chance overall with a 0.2281 median CCR (CCR​med) 
and was distinguishable from chance for the remaining categories. This is summarized in Fig. 3a and Table 1. 
Sample tuning curves for size are plotted in Fig. 3c along with error bars that demonstrate the challenges for 
deflection-based discrimination. All tuning curves are provided in the supplemental S7 (Figs. S13–S18).

The impact of changes in stimulation were more sensitively quantified by examining the coefficient matrices, 
Ξ, of polynomial Ordinary Differential Equations (ODEs) fitted to single-neuron trajectories (see Fig. 2b,c) by 
an augmented version of Sparse Identification of Nonlinear Dynamics (SINDy)25 (see analysis methods: genetic 
algorithm modification of SINDy, Fig. 1d). A genetic algorithm selected binary template matrices BΞ, that marked 
the location of nonzero coefficients in Ξ, numerosity varied from 7–20 (median is 12). We developed two genetic 
algorithms, identical except for their utility functions which judge the fitness of each BΞ. In the genetic algorithm 
version we called “dynamical discrimination”, stimulus classification (decoding) ability is emphasized (see analysis 
methods: classification objective function for genetic algorithm). We train MATLAB’s random forest classifiers 
at each generation and use the F1 score as fitness. Dynamical discrimination is more consistent with important 
prior work22,33, but less intuitive and potentially less insightful than the second version. The second version of 
the genetic algorithm, we called “best-fit Ξ based discrimination”, replaced classification ability with the good-
ness of fit (see analysis methods: goodness of fit objective function for genetic algorithm). For both dynamical 
discrimination and best-fit Ξ based discrimination the ultimate classification is made by an ensemble of 45 

Figure 3.   Discrimination performance of multiple methods across categories and compared with deflection 
for individual cells. (a) Red shading shows box and whisker plots of correct classification rates (CCR) based 
on deflection, with red lines indicating medians. Gray shading shows chance level. Columns separate all data 
by categories containing the same recording type and stimulus characteristic. * indicates significantly greater 
than chance performance in that category. Discriminating orientation and size (E,SI) fails with deflection. 
Barely visible above the gray region in some data groups is a lavender shading that indicates intrinsic 
overfitting tendency as measured with random surrogate testing. Overfitting is negligible for deflection-based 
discrimination. (b) Dynamical discrimination retains superiority after out-of-sample testing which eliminates 
the effect of any intrinsic overfitting tendency (which is shown in Fig. S2a). Distinguishability from chance, 
deflection, and best-fit results are indicated with *, †, and ‡ respectively. Orientation and size (I,SI, E,SI) can be 
discriminated better than with deflection. (c) Average deflection (purple, error bars indicate standard deviation) 
and discriminability (dark red, F1 score of dynamical discrimination) as a function of drifting grating property. 
The least and most preferred stimuli are indicated with * and * respectively. Left: Membrane potential with 
spikes removed (mV), Center: inhibitory transmembrane current (pA). Right excitatory transmembrane current 
(pA).
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random forest classifiers, each based on one of the 45 highest utility BΞ matrices (see analysis methods: ensemble 
classification and out-of-sample generalization). Overfitting was directly measured and was negligible for all 
methods except dynamical discrimination (see Fig. 3a, S2) where it is controlled for in final results (Fig. 3b) by 
using additional 20-fold hold-one-out out-of-sample generalization. Details of our algorithm, stability analysis 
of ODEs, and hyperparameter optimization, and more is in supplemental S2. The ODEs usually captured the 
central axis and direction of divergence, though Ξ used for best-fit Ξ based discrimination were less sparse and 
better than Ξ used for dynamical discrimination at resembling original trajectories (Fig. 4a,b).

Dynamical discrimination and best-fit Ξ based discrimination both outperformed deflection-based discrimi-
nation and are reported in Table 1 and Fig. 3b, S2b. No method outperformed dynamical discrimination in any 

Table 1.   Summary of results for discrimination methods presented in main text figures. This table supports 
the claims and figures about dynamical discrimination (Fig. 3b), deflection-based discrimination (Fig. 3a), and 
dynamically stable state discrimination (Fig. 5e). Comparative algorithm performance is broken down by data 
category. Rows are grouped by data category as named in the first column. The next column lists algorithm 
names. The next column gives the median correct classification rate (CCR). The next four columns are in 
two groups. The columns within each group show either the effect size (rsdf) or the p-value for a one-tailed 
Wilcoxon signed rank test of the hypothesis that CCR was greater for the algorithm named on the row than 
either deflection-based discrimination or chance (which was 1/8 for orientation and 1/6 for size or contrast).

Algorithm and data groups Median CCR​

One-tailed Wilcoxon signed rank test that 
CCR is greater than that of…

Deflection-based 
discrimination Chance

rsdf p-value rsdf p-value

All data groups pooled

Dynamical discrimination 0.2875 0.2022 3.60E−08 0.2385 5.49E−27

Deflection-based discrimination 0.2281 – – 0.2218 5.85E−14

Dynamically stable state discrimination 0.2833 0.1912 2.73E−06 0.2377 8.28E−24
I,OI

Dynamical discrimination 0.1437 0.1905 0.1875 0.2429 0.03125

Deflection-based discrimination 0.1353 – – 0.1619 0.1094

Dynamically stable state discrimination 0.1375 0.1333 0.5313 0.2143 0.08594
E,OI

Dynamical discrimination 0.2562 0.2571 0.01563 0.2 0.01563

Deflection-based discrimination 0.1431 – – 0.1429 0.4688

Dynamically stable state discrimination 0.2062 0.2571 0.01563 0.1905 0.03125
I,CI

Dynamical discrimination 0.3167 0.1753 0.1174 0.2581 3.05E−05

Deflection-based discrimination 0.3253 – – 0.2581 3.05E−05

Dynamically stable state discrimination 0.35 0.1989 0.03296 0.2581 3.05E−05
E,CI

Dynamical discrimination 0.2917 0.1591 0.2271 0.2581 3.05E−05

Deflection-based discrimination 0.249 – – 0.2559 6.10E−05

Dynamically stable state discrimination 0.3167 0.1914 0.0535 0.2581 3.05E−05
R,CV

Dynamical discrimination 0.275 0.1571 0.3125 0.2238 0.02246

Deflection-based discrimination 0.2463 – – 0.2524 2.93E−03

Dynamically stable state discrimination 0.2042 0.08571 0.8389 0.2143 0.04492
I,SI

Dynamical discrimination 0.3625 0.2372 3.36E−04 0.2297 7.63E−06

Deflection-based discrimination 0.2605 – – 0.2387 2.67E−04

Dynamically stable state discrimination 0.3125 0.2252 1.68E−03 0.2568 3.81E−06
E,SI

Dynamical discrimination 0.2833 0.2417 1.64E−04 0.2568 3.81E−06

Deflection-based discrimination 0.1819 – – 0.1727 0.1061

Dynamically stable state discrimination 0.2667 0.2222 2.35E−03 0.2282 1.53E−05
R,SV

Dynamical discrimination 0.3 0.2364 0.09375 0.2545 0.0625

Deflection-based discrimination 0.2077 – – 0.2727 0.03125

Dynamically stable state discrimination 0.2 0.2182 0.1563 0.2727 0.03125
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category, and it was distinguishable from chance in all categories except R,SV with CCR​med = 0.2875 overall, a 26% 
overall improvement over deflection-based discrimination. Both dynamical discrimination and best-fit Ξ based 
discrimination were distinguishable from deflection-based discrimination for the categories E,OI, I,SI and E,SI. 
Deflection-based discrimination performed poorly in these categories with dynamical discrimination showing an 
average 58% improvement in CCR​med across these categories. To understand the differences between dynamical 
discrimination and deflection-based discrimination we plot the F1 score (discriminability) for each of the six 
drifting grating sizes shown for R,SV, I,SI and E,SI. Performance with different dimensions, types of ODEs, and 
different epochs of visual stimulation are included in supplemental S2. For the membrane potential categories 
R,CV, and R,SV, median performance was better for dynamical discrimination but there were too few data points 
and too much variability to draw any conclusions.

Dynamical discrimination performance varies by data source, emphasizing differences 
between single neuron and population encoding and decoding.  One of our key points, that neu-
rons receive more fine-grained information than they are able to pass on through action potentials is evinced by 
scrutinizing discrimination of orientation. Prior research has found orientation tuning in excitatory thalamic 
input synapses to mouse V1, layer 426. Observing a large set of elements with unique tuning (such as these syn-
apses) is one basis for understanding population code34. However, it is a step removed because we record from 
neurons in layer 2/3. If dynamical discrimination was limited to the same information neurons use to compute 
deflection it would have the same limitations. Instead there is a 79% improvement in CCR​med for dynamical 
discrimination compared to deflection-based discrimination for E,OI. Importantly there is much less improve-
ment for I,OI even though E,OI and I,OI performed similarly for deflection-based discrimination. Only excitatory 
input has been identified as having orientation tuning. If dynamical discrimination was a needlessly complicated 

Figure 4.   Time-delay embedding of intracellular recordings reveals varied dynamical trajectories and 
equations are fitted to them. (a) A Ξ matrix optimal for trajectory modeling (best-fit Ξ). Left: Ξ coefficients. 
Right: A neural trajectory (blue) and reconstructions (magenta/yellow). (b) This Ξ is optimized for stimulus 
discrimination (dynamical discrimination Ξ). Same plotting style as a.
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method redundant to deflection then we would expect to preserve the relative performance between E,OI and I,OI. 
We do not see this for orientation tuning, indicating that dynamical discrimination is sensitive to the differences 
in upstream populations whereas deflection-based discrimination is not.

Tuning curves are different based on the different parameters being varied when generating them. The shape 
of the curves themselves may explain why deflection-based discrimination fails35 and helps to emphasize that 
dynamical discrimination and deflection-based discrimination are not based on the same information. When 
varying orientation, tuning curves are classically modeled as Gaussian. A Gaussian is not an invertible function. 
There are at least two possible orientations for every cross-trial averaged level of deflection, except for the most 
preferred orientation (peak of the Gaussian). When varying drifting grating contrast or size, our tuning curves 
were frequently found to be “ramp functions” (roughly linear) or sigmoidal (a flat-S-shaped curve). These are 
plotted in supplemental S7 (Figs. S13–S18). Sigmoid functions are roughly flat near both the most and least 
preferred stimuli with a relatively rapid change for some intermediate stimuli. The flat tails of sigmoid functions 
are difficult to invert if there is any variability, while ramp functions are the easiest to invert. Thus, we expect less 
room for improvement over a ramp-function tuning-curve decoding than for a sigmoid-function tuning-curve 
decoding. For transmembrane current we find little difference in the shape of size and contrast tuning curves. 
Thus, if dynamical discrimination was based on the same dynamics behind tuning curves, we would expect I,SI, 
and E,SI to show the same improvement as I,CI, and E,CI. Yet dynamical discrimination showed a much larger 
improvement for I,SI, and E,SI than for I,CI, and E,CI. The correct classification rates of dynamical discrimination 
for groups I,SI, and E,SI showed a 47.5% improvement over deflection-based discrimination. While there were 
no significant differences for I,CI, and E,CI, this is not the trend we would expect if dynamical discrimination was 
based on the same dynamics behind tuning curves.

Dynamical discrimination is linked to distinct and reliable presynaptic population dynam-
ics.  Having clarified the extent to which dynamical discrimination and deflection-based discrimination are 
based on different information, we then identified what they have in common. To do that we compared the 
discriminability of stimuli by dynamical deflection directly to deflection-based tuning curves and the reliabil-
ity of evoked deflection responses. We found that the most and least preferred stimulus tends to be the most 
discriminable for every signal source and stimulus type (see the U-shape of Fig. 5a). We defined reliability as 
the mean deflection divided by the standard deviation and found that reliability was greater for deflections 
evoked by the most and least preferred stimuli as seen in the U-shape of Fig. 5b. Because deflections are small-

Figure 5.   Single trial discriminability depends on dynamical states associated with stimulus selectivity. (a) The 
U shape of normalized discriminability vs normalized mean deflection indicates least and most preferred stimuli 
are more discriminable. For each decile of normalized mean evoked deflection, its median is plotted against the 
median normalized discriminability (F1 score of dynamical discrimination). The legend right of panel b maps 
color and end-point marker to data categories. Dashed line indicates pooling of all categories. (b) Deflection 
reliability (inverse coefficient of variation) shows a more prominent U trend (same style as a). (c) Stimuli are 
roughly separable on a scatter plot of reliability and mean deflection across all data points. Stimuli are re-labeled 
and colored by their rank of average evoked deflection (color bar is right of panel d) (d) A plot of trial-by-
trial predictions of cross-trial means. Predictions are from random forest regressors trained on Ξ matrices 
re-appropriated from dynamical discrimination. What separability remains now extends to a trial-by-trial 
basis. (e) Same as in Fig. 3b except now the context (original stimulus label) is inferred using only the predicted 
state variables (reliability and deflection) from panel d. Distinguishability from chance is denoted with *, from 
deflection with †, and § indicates significantly worse performance than Fig. 3b (the reverse was never true). The 
key results from Fig. 3b are reproduced despite stripping information down to just two understandable variables: 
reliability and deflection. Furthermore I,CI was distinguishable from deflection which did not occur for Fig. 3b.
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est for the least preferred stimuli (though rarely with a mean near zero), this means that the standard deviation 
of deflections decreases even faster than the mean deflection for least preferred stimuli, but not intermediate 
stimuli. We needed to demonstrate that the U-shapes of Figs. 4b and 5b are not apophenia. We define the term 
“key-distance” as the ordinal-number distance to either the least preferred stimuli or the most (whichever is 
smallest, see analysis methods: tuning curve reliability). Then, to validate the U-shapes we calculated the cor-
relation between key-distance and the F1 score of dynamical discrimination (Fig. 5a) to be 0.26 (Pearson correla-
tion coefficient) with p = 5.04 × 10–12, and the correlation between key-distance and reliability (Fig. 5b) was 0.60 
(Pearson correlation coefficient) with p value p = 3.45 × 10–67. Two factors are important to note. First, we know 
that population dynamics evoked by the most and least preferred stimulus are distinct from each other because 
the average deflection is so different (see also Fig. S1b). Second, because reliability is much higher for these most/
least preferred stimuli we know they evoke more consistent population dynamics than the intermediate stimuli.

We consider two possible explanations for the U-shaped reliability pattern (Fig. 5b). The simplest explanation, 
the “random process explanation”, is that transmembrane current or potential has relatively bigger fluctuations 
or has more noise about the cross-trial average for intermediate stimuli. The other explanation, the “dynamical 
regimes explanation”, is that the least and most preferred stimuli each consistently evoke a different highly stereo-
typed response and that intermediate stimuli inconsistently evoke one or the other. To test whether fluctuation 
size or noise is responsible we defined fluctuation size as the coefficient of variation for single recordings and 
defined noise as the mean of fractional response residuals (see analysis methods: tuning curve reliability). Fluc-
tuation size and noise both simply decreased with increasing average deflection and did not exhibit a U-shaped 
trend, suggesting neither are responsible for increased response reliability, alone or in combination (see sup-
plemental S3, Fig. S9).

Having eliminated the random process explanation, we investigated the dynamical regimes explanation. 
We devised two partial tests. The first test employs linear stability analysis to find evidence for bifurcations in 
the ODE models directly, however they are crude approximations. The second test assumes that if there are 
two distinct regimes and reliability and deflection are latent variables identifying the regime then dynamical 
discrimination Ξ matrices should be able to predict reliability and deflection on a single trial basis, and we 
should be able to discriminate stimuli using these predictions without a large performance decrease. Linear 
stability analysis19 defines dynamical systems regimes through analytical properties of real-valued zero-gradient 
solutions to the ODE, called “fixed-points” (see analysis methods: Linear stability analysis). We found that the 
most preferred stimulus stood out. Stimuli dissimilar to the preferred stimuli produced a dissimilar number of 
fixed-points (see supplemental S3, Fig. S8). Additionally, the fraction of net-convergent fixed-points inversely 
correlated with dissimilarity to the preferred stimulus (Fig. S8). The fact that the preferred stimuli tend to have 
the most or the fewest fixed points provides some confidence for proceeding to the next test. We re-analyzed 
ensembles of Ξ matrices with random forest regression to estimate reliability and average deflection (Fig. 5d) 
then fed the estimates to a third random forest classifier to predict the stimulus labels (see Fig. 5e). While there 
was a small 1.6% decrease in performance overall with CCR​med = 0.283. The simple difference formula effect 
size for comparison with dynamical discrimination was rSDF = 0.141, which has a Wilcoxon sign-rank p-value 
of p = 0.0061. This was the second-best method of classification, retaining most of the key results with better 
than chance classification of E,OI and better than deflection performance in E,OI, I,SI, E,SI, and even I,CI (see sup-
plemental Table S1). The failure of the random process explanation and qualified success of a dynamical regimes 
explanation for the U-shaped trends in Fig. 5a,b reveals some common ground between a dynamical systems 
approach and a deflection-based approach to analyzing the visual system. Deflections may be more reliable, and 
dynamical discrimination may perform better for the least/most preferred stimulus because repeated presenta-
tions of the least and most preferred stimuli are more likely evoke dynamics along the same attracting set than 
presentations of intermediate stimuli.

Dynamical discrimination is corroborated by biologically plausible modeling.  Because dynami-
cal discrimination is based on estimating the coefficients of ODEs, it is incumbent on us to test it with the 
coefficients of known ODEs. Our overall strategy, illustrated in Fig. 6, is to challenge dynamical discrimination 
by using resampling and neuron models to degrade data generated from a known system. Instead of using Ξ 
matrices to predict a label from a small set of possible labels, the genetic algorithm used regression to accurately 
estimate small changes to a parameter of the Lorenz system, ρ, as we varied it between the integers 20 to 40.

The Lorenz system is:

We chose ρ to include a Hopf bifurcation at ρ =
σ(σ+β+3)
(σ−β−1) ≈ 24.7 and to explore chaotic regimes. We used 

the X dimension of the Lorenz system but resampled each trial X ′(t) = X(t/τ) where τ is chosen such that 90% of 
the signal power was in Fourier modes below 300 Hz for each trial (see analysis methods: single neuron modeling, 
Fig. 6b). As seen in Fig. 6d our approach excels at predicting the value of ρ from a sample of time series data. 
Median absolute percent error between the predicted value of ρ and the real value has a median of 1.79% with 
a 25th percentile, P25 = 0.87% and a 75th percentile P75 = 3.46%, verifying the identification of ρ for nearly ideal 

dX

dt
= σ(Y − X)

dY

dt
= X(ρ − Z)− Y

dZ

dt
= XY − βZ
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Figure 6.   Modeling tests confounding factors for dynamical discrimination and matches experimental results. 
(a) Our modeling paradigm, illustrated. Left: We tested regressing Ξ onto integer values of the Lorenz system 
parameter ρ from 20 to 40 (spanning a Hopf bifurcation and chaos). Center: a single-compartment neuron 
(X as current injection). Right: a multi-compartment model with dendritic spines (NEURON shape plot, 
X governs synapse transmission probability). (b) Simulated membrane potential. Top: multi-compartment 
model (dark green). Middle: single-compartment neuron (medium green). Bottom: X from Lorenz system 
(light green). (c) Examples of possible confounds. Top: two traces showing differences associated with synapse 
numerosity. Bottom: two traces showing action potentials dominating Lorenz dynamics. (d) Regressions of 
Ξ onto ρ plotted against true ρ values. Left: Fitting Ξ to X performed well (light green). Center: Fitting Ξ to 
membrane potential of single-compartment neurons moderately reduced accuracy (medium green). Right: 
Multi-compartment models significantly degraded regressions (dark green). Performance is similar whether 
spikes are removed (filled) or not (open). (e) Correct classification rate (CCR) vs possible confounds. Ξ matrices 
trained for regression are reappropriated for classification and ρ is limited to22,25,28,32,35,38 (chance 1/6≈0.167). 
Left: Dynamical discrimination is robust to spiking for single-compartment models (medium green). Center: 
Spiking also has limited impact for multi-compartment models (dark green). Right: Synapse numerosity (model 
complexity) is impactful (dark green). Arrow ticks indicating median CCR for data in Fig. 3b evince modeling 
and experiment agreement but higher potential for dynamical discrimination with continuous dynamics.
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conditions. Integration of the model ODEs reproduces the Lorenz trajectories much better than experimental 
neural trajectories, as shown in supplemental S6 (Fig. S12).

We followed up by distorting X ′(t) with successively more complex neuron-like transformation. We fed the 
resampled X dimension from the Lorenz equation into a single-compartment neuron model by shifting and 
rescaling to be consistent with injected current (no synapses) on the order of nano amps I(t) = α1(X

′(t)− ζ1) 
where ζ1 and α1 are chosen to produce the desired amount of spiking (see analysis methods: single neuron mod-
eling, Figs. 5c, 6b). Median error was 5.45% with P25 = 2.52% and P75 = 9.18% (Fig. 6d). All values reported in 
the text come from data where spikes were removed (median filter with a five millisecond window) which made 
little difference for any model. The still good performance shows that transformation by membrane dynamics 
does little to interfere with our methods.

In a biologically plausible attractor network, the dynamics govern a point process with inputs to a neuron 
arriving as discrete events. Therefore we fed the single resampled dimension, X from the Lorenz equation into 
a morphologically complex multi-compartment neuron model36 by shifting and rescaling it to be consistent 
with the instantaneous event probability of an inhomogeneous Poisson process P(t) = α2(X

′(t)− ζ2) where 
ζ2 and α2 are chosen to produce the desired amount of spiking (see analysis methods: single neuron modeling, 
Fig. 6b). Models with fewer (excitatory only) synapses results in a membrane potential time series that has large 
and sporadic synaptic potentials (impulses). Initially adding more synapses produces a signal that better visually 
approximates the input time series, but eventually increases dynamical complexity and spiking unpredictability 
(Fig. 6c). Integration of the model ODEs varied greatly in how well they reproduce trajectories from neurons 
driven by Lorenz-governed synaptic input as shown in supplemental S6 (Fig. S12). This more complex type of 
model yielded a median error of 12.02% with P25 = 8.11% and P75 = 19.99% (Fig. 6d). Thus, synaptic type distor-
tions have degraded ODE fitting approaches but not left them unworkable.

To directly compare with experimental dynamical discrimination results we treated the ρ values22,25,28,31,34,37 
as if they were distinct stimuli labeled one through six and re-analyzed the corresponding Ξ matrices by train-
ing classifiers to predict the labels. Chance level is 1/6 ≈ 0.167. We also categorize model trials according to the 
number of spikes and synapses because they may be confounding factors. Single-compartment neuron data 
formed 12 categories according to similar spiking levels (see analysis methods: single neuron modeling). Multi-
compartment models yielded 18 spiking categories (limited to models with 245–290 synapses for Fig. 6e) and 
35 synapse numerosity categories (limited to trials with four or fewer spikes for Fig. 6e). The impact of spike 
rate and synapse numerosity is shown in Fig. 6e where an arrow indicates overall CCR​med = 0.2875 for dynamical 
discrimination in-vivo (for comparison). For single-compartment data (spikes removed) CCR​med ranged from 
0.563 to 0.778 and was indifferent to the level of spiking. For the multi-compartment spiking categories, CCR​
med was low and inconsistent ranging from 0.05 to 0.5, but also showed no association with spiking. However, 
synapse numerosity categories did show a trend; CCR​med values ranged between 0.05 and 0.393 peaking at 
around 162 synapses. For in-vivo dynamical discrimination, CCR​med ranged from 0.144 to 0.363. Thus we see 
our results for in-vivo data are near the ceiling for this implementation of dynamical discrimination and in line 
with expectations for synaptic impulses that are completely governed by a dynamical system being manipulated 
through a bifurcation and chaos.

Discussion
This work presented compelling observations of the ability to access population dynamics through single intra-
cellular recordings. First, membrane potential and transmembrane current recorded from neurons in mouse 
primary visual cortex underwent dimensionality expansion. This yielded neural activity trajectories which appear 
to be stimulus modulated. Second, motivated by attractor network principles12–17, ordinary differential equa-
tion models (Ξ matrices) were fitted to individual trajectories. Ξ matrices described each trajectory compactly 
enough to enable classifiers to decode the stimuli from limited neural data. Called dynamical discrimination, 
this algorithm more accurately predicted fine changes in orientation, contrast, and size of drifting gratings 
than predictions made from firing rate substitutes (deflection) and alternatives. Furthermore, only dynamical 
discrimination had the fidelity to confirm findings about orientation selectivity differences between excitatory 
and inhibitory synaptic mechanisms. None of these findings would be possible if the attractor network theory 
motivating dynamical discrimination was not applicable to V1 dynamics. Third, stimuli evoking extremes of 
average deflection also evoked the most reliable deflections but not the smallest fluctuations, or least noise. 
An explanation came by way of re-analysis of Ξ matrices which provided evidence for coherent and distinct 
dynamical regimes like task-positive and task-negative dynamical regimes31,37, which intermediate stimuli may 
alternately evoke. Lastly, modeling validated the level of accuracy. Dynamical discrimination excelled with 
continuous nonlinear transformations of underlying dynamics but transforming dynamics into a point process 
(like synaptic transmission) degraded performance to the experimentally observed levels. These four results 
show that: (i) Dynamical discrimination is a powerful method for general time series and trajectory classifica-
tion with limited data. (ii) Attractor network principles can be applied to primary visual cortex and to single 
neuron recordings, and (iii) dimensionality expansion and dynamical discrimination lets researchers patch into 
upstream network by intracellularly recording from single neurons.

The general principle of dimensionality expansion is familiar to neuroscience (e.g. separating a signal into 
time-varying oscillatory modes) though attractor reconstruction is still emerging23,33. Time-delay embeddings 
(Fig. 2) may be rare in neuroscience but are trusted for time-series analysis24 and counterpoints the commonly 
used dimensionality reduction of population activity38. Dimensionality reduction to abstract spaces is used even 
with advanced population recording methods39–41, and methods for isolating and grouping single units by func-
tional and anatomical relevance36,42,43. Thus dimensionality expansion on single neurons can offer comparable 
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insights about attraction to neuronal manifolds31 but the grouping is naturally defined to be all presynaptic 
neurons1,44,45.

Researchers have tried many ways to map synaptic activity recorded at the soma to population events and 
dynamics1,2,46–49. Machine learning algorithms are sensible options but often don’t permit scientific inference 
beyond their predictions themselves5,30,. Hypothesis-dependent methods leverage computational assets to fit a 
model to data and exploit the model for a new purpose25,29,50,51. If the model is fitted poorly or not applicable the 
algorithm performs poorly, thereby testing the hypothesis motivating the choice of model. This is why ground 
breaking earlier works22,23,25,52 inspired us to develop dynamical discrimination.

For experimental data, dynamical discrimination had limited classification accuracy. However, this is expected 
and exceeds all compared methods. Modelling showed that synaptic transmissions completely governed by a 
simple dynamical system produced the same levels of classification accuracy, while displaying high accuracy 
in more ideal scenarios. Dynamical discrimination was further corroborated by recapitulating historical find-
ings such as differential tuning among excitatory and inhibitory populations21,53. Furthermore, we gained new 
information regarding patterns of response reliability37. Performance may improve since this was a simplistic 
version of the algorithm. Classification algorithms work best (avoid overfitting) with both fewer original features 
and fewer model parameters than the number of examples used for training. Single cells yielded too few trials 
(median is 68) for deep learning sequence classification. Fitting ODE models reduced trajectories with thousands 
of time points to tens of coefficients (median is 12). Existing deep-learning approaches like LFADs11 are neither 
human readable nor sufficiently parsimonious for low-data multi-label classification, but are a promising route 
to great improvement. Thus, we conclude that limited accuracy is expected for this first version of dynamical 
discrimination and belies its other virtues as an analytical tool (e.g. it provides an ODE model).

This work advances physics and neuroscience in several ways. We must specify and isolate relevant parts of 
the brain before we can elucidate their interactions. The brain has natural partitions such as layers, nuclei, and 
cortical columns, but imaging fields and electrode arrays often overlap or partially cover them. We offer proof 
of concept for exploiting single neurons as deeply and naturally integrated sensors of population dynamics 
within an elementary natural brain partition and bottleneck: the neurons synapsing onto a neuron of interest. 
The fundamental concept is to apply dimensionality expansion to intracellular recordings, yielding trajectories 
akin to those from dimensionality reduction on hypothetical high-dimensional recordings of these popula-
tions. Excitatory thalamic projections bring orientation information to V126, but tuning-curve based methods 
(deflection) missed fine distinctions while dynamical discrimination more fully utilized the afferent projecting 
population dynamics. Because this works on a trial-by-trial basis48 not an average over trials, we have a versatile 
tool for investigating neural representation. Dynamical discrimination’s power to identify latent factors11,30,31 
(i.e. context) may advance traditional single-neuron topics like orientation tuning27,28 and interplay between 
excitatory and inhibitory populations21,44. The relation to population dynamics and to functional specificity and 
connectivity43,51 may be further clarified by combining our (or similar) methods with multiple simultaneous 
intracellular recording and/or concurrent electrical stimulation, or cell staining and tracing. An advance for 
machine learning is our incorporation of a hypothetical paradigm (attractor networks) into the core apparatus of 
a classifier. Consequently, dynamical discrimination connected stimulus tuning to attractor network principles. 
Because of these demonstrations, machine learning for science can escape the black-box, decades of single-
neuron intracellular recordings can be re-analyzed for population insights, and the attractor network paradigm 
has come to primary visual cortex.

Methods and materials
Experimental methods.  The experimental data was originally gathered to support another publication21. 
The methods are covered there and relevant details are repeated here54.

Statement of ethical approval.  All procedures were approved by the University of California, Berkeley ACUC 
and were performed in accordance with relevant guidelines and regulations. Wild-type (C57;B6 × ICR white), 
emx1-IRES-Cre, and SOM-IRES-Cre mice were used. Mice of both sexes were used equally, and no differences 
were observed between sexes. For in vivo recordings mice were 5–14 weeks old.

Animals: surgery and electrophysiological recording.  Mice were headplated under isoflurane (1.5–2%) anesthe-
sia with a small stainless-steel plate, attached to the skull with Metabond. The skull was protected with cyanoacr-
ylate glue and dental cement (Orthojet). 1–7 days post-surgery, Mice were habituated to run freely on a small, 
6″ diameter rotating disc during head fixation. On the day of surgery mice were anesthetized with 1.5%–2% 
iso-flurane and a small craniotomy was made over V1 by removing the dental cement and slowly thinning the 
skull until it was transparent with a 0.25 mm carbide burr. A small stainless-steel needle (27G) was used to 
open a hole 150–500 um in diameter over V1 with no or minimal bleeding. The dura was always left intact. The 
craniotomy was covered with sterile saline and the animal was allowed to recover under fixation for 15–30 min 
prior to whole-cell recording. Animals typically began running on the treadmill immediately upon arousal, and 
either continuously or intermittently thereafter. Under these experimental conditions mouse move their eyes 
only infrequently, and most ocular deviations are too small to significantly impact neuronal responses55, and the 
pupil was not tracked.

Electrophysiology.  Prior to intracellular experiments, a patch pipette filled with ACSF (in mM: NaCl 119, KCl 
2.5, MgSO4 1.3, NaH2PO4 1.3, glucose 20, NaHCO3 26, CaCl2 2.5) was lowered slowly into the L2/3 under visual 
guidance (Leica MZ6 stereomicroscope). Using multiunit activity and the LFP as a guide, the visual receptive 
field of the corresponding location for subsequent whole cell recording was mapped via a hand-controlled small 
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circle (5 degrees) of changing contrast on the visual stimulus monitor (more details below). This electrode was 
then removed, and patch pipettes were then inserted in same manner for intracellular recording containing: 
CsMeSO4 (for voltage clamp) or KGluconate (for current clamp) 135 mM, NaCl 8 mM, HEPES 10 mM, Na3GTP 
0.3 mM, MgATP 4 mM, EGTA 0.3 mM, QX-314-Cl 5 mM (voltage clamp only), TEA-Cl 5 mM (voltage clamp 
only). Although the cells were patched with the blind approach, the conditions used have been reported to 
strongly bias recording to regular-spiking putative pyramidal cells56. Nevertheless, the data reported here is likely 
to come from a mix of cell types, dominated nevertheless by excitatory neurons, which make up the majority of 
L2/3 cells.

Under these conditions, in voltage clamp, the mean series resistance, prior to any compensation, was 18 ± 1 
MΩ across the recording sessions, and fairly stable21. It is now well established that locomotion and/or brain state 
influence spontaneous activity and sensory responses in V157–60, although the exact mechanisms underlying these 
changes remain a matter of debate61–63. Consistent with prior findings, during locomotion64, visually evoked E 
and I were significantly increased (E: not running: 70 ± 6 pC/s, running: 81 ± 8 pC/s, n = 39 cells, p < 0.005; I: not 
running: 114 ± 12 pC/s, running: 159 ± 20 pC/s, n = 39 cells, p < 0 0.005, Wilcoxon sign rank test21). Conversely, 
spontaneous excitation and inhibition, as well as the mean input conductance in the absence of a stimulus showed 
no significant change (E: p = 0.9; I: p = 0.4, input resistance: p = 0.93, n = 39 cells, Wilcoxon sign rank test21).

Both extracellular and intracellular experiments employed an Axopatch 200B amplifier. All data were acquired 
with custom software written in MATLAB using a National Instruments PCIe-6353 card. Glass pipettes (Sutter 
instruments) containing either a potassium based internal (for measurements of membrane potential and spik-
ing) or cesium (with added QX-314-Cl, and tetraethy-lammoniaum-Cl) for voltage clamp recording, were used. 
Pipettes were pulled on a Sutter P1000 puller in a two stage pull to a long taper pipette of a resistance between 
3 and 5 MOhm. To insert the electrode into the small craniotomy, the ACSF on the skull was removed and the 
craniotomy briefly dried with compressed air. The electrode was mounted on a Sutter MP285 manipulator, low-
ered until it nearly reached the brain surface, then the chamber formed by the headplate and cement was re-filled 
with ACSF, all under visual guidance. The pipette resistance was checked via an oscilloscope and a constant 5 mV 
voltage step in voltage clamp. High positive pressure (150 mbar) was applied to the pipette, and it was lowered 
until a brief and rapid increase in pipette resistance was observed, indicating contact with the dura. The pipette 
was zeroed to obtain an accurate measurement of recording depth, and then the pipette was advanced quickly 
through dura, and only pipettes that quickly returned to their baseline resistance were advanced further, other-
wise they were exchanged for a fresh pipette and the process was repeated. Once inside the brain the pressure 
was quickly lowered to 10–30 mBar to search for L2/3 neurons via abrupt, ‘bounce’ like changes in pipette resist-
ance indicating contact with a plasma membrane, using pulsatile steps of the manipulator (1–2 microns). Upon 
apparent contact, pipette pressure was released, and slight positive pressure was used to obtain a gigaohm seal. 
Pipette capacitance was then neutralized, and the membrane ruptured by brief suction pulses. Upon rupture the 
whole cell access was optimized by either slow negative or (more typically) positive pressure and locked off. In the 
first 2–4 min the receptive field of the cell (either via membrane potential, spiking, or excitatory current, com-
mand potential = − 70 mV) was remapped in the same manner as above, to center the stimulus on the recorded 
cell’s receptive field (almost always aligned with the previous measurement from extracellular recording). The 
orientation of the stimulus was also optimized for each cell. After spontaneous and evoked responses stabilized 
(typically 2–4 min) experiments were commenced. Membrane potential was obtained in voltage following mode 
(current clamp) with no current injection. For voltage clamped cells, cells were clamped either at − 70 mV to 
measure synaptic excitation (approximate reversal potential for inhibition), or at + 10 mV to measure synaptic 
inhibition (approximate reversal potential for excitation), uncorrected for the junction potential. Series resist-
ance was monitored on every trial with a negative voltage step. Cells were only included if their series resistance 
stayed within 20% of their initial value, passively or by adjusting pipette pressure.

Visual stimulation.  Visual stimuli were generated with Psychophysics toolbox65 using custom software in 
MATLAB (MathWorks) and presented on a gamma corrected 23-inch Eizo FORIS FS2333 LCD display with a 
60-Hz refresh rate. Stimuli consisted of drifting square wave gratings with contrast, size, or orientation varied, 
while all other parameters remained fixed, at 0.04 cycles per degree and 2–2.5 cycles per second. In experiments 
with varying contrast, size was fixed at 12 degrees, and the orientation fixed at the preferred orientation of the 
cell (measured via spike rate, Vm depolarization, or mean synaptic excitation). In 7/15 cells contrast was varied 
in six log increments from 1%–100%, and in 8/15 cells from 10–100%. In experiments with where size varied in 
six log increments from 2.4 to 59.4 degrees, contrast was set at 100% at the orientation set as above. In experi-
ments with varying orientation, size was fixed at 12 degrees, contrast was set at 100% and orientation was varied 
in eight different directions spaced by 45 degrees from 0 to 315 degrees. The grating drifted immediately upon 
display, and lasted 0.6–1.5 s. Inter-trial-intervals (gray screen) lasted from 1.5–3 s.

Analysis methods.  Tests and measures.  For making claims about whether one algorithm performed sig-
nificantly better than another set we used the Wilcoxon signed-rank66 method implemented with MATLAB. 
This tests whether the median difference between two matched sets is significant. When comparing whether 
synaptic excitation or inhibition performed better for the same algorithm while limiting the comparison to just 
one stimulus variable (orientation, size, contrast) we used the Wilcoxon signed-rank test because each cell was 
recorded from in both modes. If we were making the same comparison across multiple stimulus variables, or 
comparing membrane potential to other recording modes we used the Wilcoxon rank-sum66 test because the 
comparison includes different sets of cells. We used exclusively one-tailed tests chosen based on the difference 
of medians. The significance level was kept at 0.05 for figure annotations. There were 10 data categories often 
including data from the same cell but with a different recording mode (voltage clamp at either the excitatory or 
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inhibitory reversal potential). We reinforced comparisons across experiments (algorithm versions) by pooling 
data and assessing the discriminating statistic overall. Thus we were interested in the comparison wise error rate 
and did not need to adjust for multiple comparisons because we did not claim that one algorithm was better than 
another on the basis of an individual category67. We highlighted individual comparisons on categories across 
and within algorithm versions to make specific claims about those categories. The notion of significance being 
open to interpretation67, we elected to simply publish the P-value as well as the number of categories and let the 
reader make the final judgment. The effect size is the simple difference formula68, chosen because it is a normal-
ized measure weighting the median difference between two matched sets against the size and frequency of cases 
that contradict the median difference and helps evaluate the meaningfulness of a judgment about significance.

We used two measures of performance, the fraction of trials for which the co-occurring stimulus was cor-
rectly predicted, the correct classification rate “CCR” and also the F1 score69. The correct classification rate is the 
fraction of data points that were assigned the correct label. In our case labels were the ordinal rank, or index, 
of a drifting grating property as the stimulus label. The F1 score is widely used throughout machine learning. It 
applies to binary classification and is useful in cases with skewed class sizes. This makes it a useful measure of 
discriminability for individual stimuli. The F1 score is defined with respect to a specific stimulus label. F1 = 2⋅TP/
(2⋅TP + FP + FN) where Tp are the number of true positives regarding that stimulus label, FP are the false positives, 
and FN are the false negatives. This value ranges between zero and one. We used the average F1 score across all 
stimulus labels as the objective function error measure because it penalizes cases where the classifier learns to 
predict one or two stimuli correctly at the expense of predicting others. The CCR is not resilient to this error but 
is familiar to a broader audience.

Characterizing recorded responses with deflection and epoch.  All experimental signals were recorded at 20 kHz 
and downsampled to one kilohertz by means of 20 ms averaging. When removing spikes from membrane poten-
tial recordings the downsampled signals were further processed with a median filter with a five millisecond 
window. Simulated data was produced at 10 kHz and downsampled to one kilohertz by 10 ms averaging.

We calculated deflection by obtaining a baseline and subtracting that from the average signal during an 
epoch of choice (see Fig. 2a). The baseline was found for individual trials by identifying a period of minimum 
variance that was 100 ms long and had a start time between 200 and about 100 ms before the onset of stimulus 
response. No baseline ever included a portion of a stimulus response in its estimation. The exact timing that the 
monitor displayed the stimulus was the “on” timing in Fig. 2a. It was not recorded, instead we made a conserva-
tive estimate to mark a time before any stimulus response was likely to reach V1 given retina to V1 latencies (see 
below). For the purpose of stimulus discrimination, we tested different lengths and positions for interval used 
to define deflection. We used a 166 ms window which contained the peak in average response during the epoch 
of choice (see below) and began either 66 ms before the peak, or halfway between the peak and the epoch start 
time if the peak was within 66 ms of the epoch start time. The deflection for each trial was the average value of 
the baseline subtracted from the average value within this window. This formulation gave the highest ability to 
classify stimulus by using the deflection. Therefore, this was the fairest definition of deflection to use for com-
parison to dynamical discrimination. In previous work with this same data, the term “response” was used21. The 
key difference being the length and location of the second window. The researchers integrated the difference from 
baseline without dividing by the length (i.e. it was not a mathematical average but proportional). This was tested 
and compared against our use of deflection. The absolute value of deflection was used in analysis.

We identified the timing of stimulus onset as follows. For each cell and type of recording (excitatory current, 
inhibitory current, and membrane potential) we averaged all recordings and applied a 50 ms running average 
to the mean recording. We then identified the largest extrema in the first half of the mean recording. The mean 
recording was then binned by 50 ms intervals and a first order derivative estimate computed. The largest deriva-
tive immediately prior to the extrema denoted the bin in which the response began on average. Because it takes 
70 -150 ms for activity to propagate from the retina to V1 L2/3 neurons70 we subtracted 100 ms and rounded 
to the nearest half bin-width, 25 ms. This was finally defined as the “on” timing and occurs well before stimulus 
response. Therefore, we captured the full response even allowing for variability in time of onset. The length of 
the stimulus presentation also varied, from 500 to 1000 ms. So, the “off ” timing also varied.

The response to stimuli is commonly categorized into three distinct epochs with much study and debate 
about their role in sensory processing34,71–81: the “on response” coinciding with the activation of a stimulus, the 
“steady-state” response which captures what follows the on response while the stimulus is still active, and the “off 
response” which is a widely observed perturbation or lingering effect after the stimulus has ceased. We did not 
know which epoch would allow the best discrimination. Some evidence pointed toward fast attractor dynamics 
in the on response16,34, but we treated stimulus response epoch as a hyperparameter and captured differences 
in the performance of our dynamical discrimination algorithm (see supplemental S2). Referencing both the on 
and off timings as t0 and tf respectively we defined the “on response” as [t0, t0 + 250 ms], the “full response” as 
[t0, tf + 250 ms], and the “off response” as [tf − 70 ms, tf + 250 ms]. The discriminability of trajectories from these 
three epochs have some scientific merit in their own right and are reported in the supplemental S2. These choices 
allow us to examine performance under different circumstances and thereby optimize classification performance 
by using domain specific insights.

Deflection‑based decoding.  To create a decoder using deflection from baseline we used a random forest clas-
sifier (MATLAB’s default parameters). Each decision tree within a random forest classifier divides the range of 
possible deflections into smaller intervals. Each interval corresponds to a best-guess stimulus. Each decision tree 
uses a slightly different portion of data to select intervals. Therefore, each decision tree is affected by outliers 
differently and has a slightly different set of intervals. They then vote on a classification. This was done individu-
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ally for each cell in each data group. For membrane potential data groups, spikes were always removed prior to 
calculating deflection as described above.

Single neuron modeling.  We used models of a single-compartment Hodgkin-Huxley type neuron and a mor-
phologically complex pyramidal neuron implemented with the NEURON environment. The morphologically 
complex pyramidal neuron was developed for other research36 and extensively explained. It is available for gen-
eral use from model dB82. It was modified to allow experimental manipulations of the number of synaptic spines 
distributed across the various compartments and having one synapses for each spine and to allow each synapse 
to be driven with independent signals. Consult our model data generation scripts for model form and parameter 
details.

For both neuron types we rescaled and resampled the X dimension of the Lorenz system.
The Lorenz system83:

was integrated using MATLAB’s ode45 for 10 K time steps with a nominal step size of dt = 10–4, initial conditions 
were randomly chosen and uniformly distributed between [− 16, 16] for the X and Y dimensions, and [− 56, 56] 
for Z. After generating data, the X dimension was kept and the other dimensions were not. The Hodgkin Huxley 
equations act as a low-pass filter and our single-compartment model distorted input current oscillations above 
333 Hz. Therefore if the integral of the squared absolute value of a fast-Fourier transform of the signal from 0 to 
300 Hz accounted for less than 90% of the total integral then the trial was resampled X ′(t) = X(t/τ) . Resam-
pling was done by regenerating new Lorenz data with a false time step dt′ = dt/τ, where τ (in units of 10–4 s) was 
chosen such that 90% of the signal power was in Fourier modes below 300 Hz. The process was repeated until a 
set of initial conditions and τ were found that satisfy our acceptance criteria. Let χ be the Fourier transform of 
X in the frequency domain, then:

We treat the ρ parameter as a latent variable we were attempting to identify and vary it between the 
integers20,40. This lets us test whether we can predict fine changes in a dynamical parameter (ρ) even after trans-
forming the dynamics into the membrane potential of two classes of model neuron. Our method of attractor 
reconstruction, delay embedding, is robust to arbitrary projections of a dynamical system onto one dimension. A 
weighted adjacency matrix typical of network model is an example of such a projection, except for the additional 
transformation from a continuous time series to a discrete point process which is often used. Nonetheless it has 
been shown that a spiking network can encode Lorenz attractor dynamics which can then be viewed by project-
ing high-dimensional population spiking onto a lower dimensional state-space14. Therefore, it was sufficient to 
project the Lorenz dynamics onto a single dimension and stochastically encode that dimension with discrete 
events if we want to study the representation of network attractor dynamics by single neuron inputs. We did this 
while taking the ρ parameter through values on either side of Hopf bifurcation at ρ =

σ(σ+β+3)
(σ−β−1) ≈ 24.7 and 

into regimes where initial conditions often result in chaotic dynamics.
For the single-compartment neuron we rescaled X’(t) to be within a realistic range for current units [− 0.15 

nA, 0.15 nA], I(t) = α1(X
′(t)− ζ1) . The scaling factors ζ1 and α1 were fine-tuned by a loop which adjusts them to 

produce a desired mean spike rate for a group of 210 trials (21 values of ρ each with 10 initial conditions unique 
to each value of ρ). This produced a range of spiking values and was repeated until there were at least three trials 
for each ρ value for each desired number of spikes [0, 20] per one second trial. This gave us multiple trials for each 
value of ρ at each level of spiking we were interested in testing. This method for generating the desired amount 
of spiking was inexact but preferable to search algorithms that precisely controlled the spiking in every trial. 
These algorithms took a long time to find solutions and often found undesirable solutions, such as scaling the 
inputted current to have a standard deviation near zero. Consult our model initialization scripts for model details.

For the complex morphological neuron we rescaled X’(t) to be consistent with an instantaneous event prob-
ability for an inhomogeneous Poisson process:P(t) = α2(X

′(t)− ζ2) . The factors ζ2 and α2 were further fine-
tuned the minimum and maximum value to get a desired mean spike rate for a group of 210 trials, as with the 
single-compartment model. Initially we set the range and maximum value to be 3 × 10–3. We vary the number 
of synapses between 80 and 300. For each synapse, the probability of firing at any time was P(t) . Thus larger 
P(t) values resulted in greater synchronicity among synaptic events. Synaptic transmission was modeled with 
NEURON’s Exp2Syn function which is a two-state synapse with a rise time of 0.2 ms and a fall time of one-
millisecond. The peak synaptic conductance, gmax (units of μS) was a function of the number of synapses Nsyn 
such that if K% of synapses were active the total peak conductance was independent of Nsyn: gmax(Nsyn) = g0(80/
Nsyn) where g0 = 5 × 10–4 μS.

We employ modeling to test the effect that realistic sources of error may have on the ability to infer the 
dynamics which underlie neural inputs. The two key variables that we controlled for were spiking and synapse 
numerosity in an extended multi-compartment model. To that end we defined 15 logarithmically increasing 
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bins to contain model trials with similar levels of spiking. These bins started with [0,1), ended with the 14th 
bin [39,50) and the 15th bin [50, ∞). Since the single compartment neuron did not feature synapses these bins 
specified all control categories. Not all bins were populated. Each bin contained multiple trials for each value of 
ρ. If there were fewer than three trials for a value of ρ then those trials were ignored and not analyzed. If there 
were fewer than 45 total trials in a spiking rate bin after removal of underrepresented ρ values, that bin was 
ignored and none of the trials in that bin were analyzed. As a result, there were 12 spiking categories that were 
analyzed for single-compartment neuron data. The three unfilled bins were for trials with more than 20 spikes, 
which was our minimum standard when generating data. The morphologically complex multi-compartment 
model neuron has two variables to control for: spiking and synapse numerosity. For each spiking bin we defined 
several synapse bins to categorize trials in two dimensions (spiking and synapse numerosity). There were more 
model trials with low numbers of spiking due to the inexact way we generated the desired amount of spiking 
(by the average spiking rate of 210 trials). Because trials with a small amount of spiking were overrepresented 
it was advantageous to define more synapse bins for the spike bins containing fewer than five spikes per trial. 
Thus, there were 19 synapse bins for each of the first five spike bins going from 80 synapses to less than 125 in 
steps of 10, then 125–305 in steps of 15. There were 16 synapse bins for the remaining spike bins, going from 80 
to 305 in steps of 15. Thus, there were 255 possible bins and 83 were accepted for analysis. Again, each bin had 
to contain more than 45 total trials and each ρ value had to have more than two trials to be included. In the main 
text we plot a sampling of these categories, attempting to show how spiking impacts performance while keeping 
synapse numerosity approximately constant (Fig. 6e). All the resampled Lorenz dynamics inputted to each cell 
were preserved without rescaling and analyzed together as one group.

Dimensionality expansion.  The version of time-delay embedding we perform is described in25,84, a short sum-
mary follows. First, we concatenated the epochs of interest from all recordings from the same cell to make a time 
series with length T. Next, we chose a delay time below or at the approximate smallest relevant time-scale, dt, 
(one-millisecond in our case) and a number of times to repeat the delay Nd = 100 such that the Ndth delay was 
longer than or at the largest relevant timescale (100 ms). We then created a data matrix with Nd + 1 rows, each 
of which were time shifted copies of the data with length T-dt⋅Nd (called a Hankel matrix). Then we performed 
singular value decomposition on this Hankel matrix (we tested other dimensionality reduction algorithms). 
The principal components were now the dimensionality expanded version of the data. Thus, we simply over-
expanded with time-delays then used dimensionality reduction to go back down to moderate dimension. There 
was no clear cut off in the eigenspectra, so we tested keeping between three and seven components by running 
each choice through the analysis program. We did not Z-score the rows of the Hankel matrix but did shift the 
trajectories resulting from dimensionality reduction such that the mean point of the entire set of trajectories 
was at the origin. A delay embedding is guaranteed by the Whitney-Takens delay embedding theorem to be able 
to reconstruct a D dimensional state space from a one-dimensional recording by taking no more than 2D + 1 
delays of the recording and plotting them against each other85. We call this process “dimensionality expansion” 
to provide the intuition that if an analyst can do something after dimensionality reduction of high-dimensional 
data they can at least attempt it on one-dimensional data too. The analyst would simply use SVD on any over-
embedding such as a spectrogram or such as a Hankel matrix like we have demonstrated.

Maximum likelihood estimation.  It is possible that dimensionality expansion alone can improve discriminabil-
ity between stimulus responses without appeal to governing dynamics. This would work because different popu-
lation responses were projected onto somatic responses in a way that overlaps. Hence deflection in the original 
time series confuses these factors but dimensionality expansion may re-separate them. We tested measures of 
deflection in each dimension of the expanded trajectories, but this did not significantly improve classification. 
An alternative is to examine whether different trajectories prefer to spend time in different regions of phase 
space. We used the performance of a Maximum-Likelihood-Estimation-based classifier to quantify this separa-
tion (see supplemental S4).

Since trajectories in three dimensions tended to form oscillations around a long axis, cylindrical coordinates 
(axial z, radial r, and angular θ) were a natural way to describe them. We partitioned axial and radial coordinates 
into discrete bins and ignored the angular coordinate then counted the number of time points that coincided with 
each bin. Thus, each trajectory was described by a histogram of its axial cross-section. We collected the cross-sec-
tion histograms associated with each stimulus, using 75% of the examples for each stimulus. Then we employed a 
two dimensional kernel smoothing density to get a two dimensional probability density map for each trajectory 
Mt(z,r;i) where i is the trajectory index (see supplemental Fig. S10a) and for each stimulus Ms(z,r;j) where j is 
the stimulus index (see supplemental Fig. S10b). Each point (z, r) identifies an axial-radial bin and was assigned 
the probability that a trajectory time point selecting at random will be in its bin. This gives a set of probability 
maps that show the probability for a trajectory to occupy a region of phase space (a cross-section bin) dependent 
on each stimulus. Thus to test whether one of the 25% of trajectories we held out coincided with the presenta-
tion of a particular stimulus we used the probability maps to calculate the joint probability of observing all the 
time points given that stimulus (treating each point as independent), P(i; j) =

∏

z

∏

rMs(z, r; j) ·Mt(z, r; i) , 
for practical application we used the log likelihood L(i; j) =

∑

z

∑

r − (log(Ms(z, r; j))+ log(Mt(z, r; i))) The 
stimulus whose probability map yields the highest joint probability was the stimulus with the highest likelihood 
of co-occurring with the trajectory and thus was the classification, Cj = argmaxiL(i; j) . By repeating this process 
510 times with a different hold-out set each time we can gather sufficient statistics to gauge whether this predic-
tion method was effective.
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A detail essential for reproducibility is that the trajectories co-occurring with each stimulus show some dis-
placement between their central axes and central points. Thus, to get joint probabilities, one must subtract the 
central point of each stimulus-associated trajectory set before computing Ms(z,r;j).

Tuning curve reliability.  A tuning curve is defined as mean deflection in response to stimulus. Therefore, we 
recorded the average evoked deflection for each stimulus, Di, where i is the stimulus index out of N stimuli. For 
a single cell and intracellular recording method, the stimulus that evokes the largest deflections on average is the 
most preferred stimulus, and the one that evokes the smallest deflection is the least preferred stimulus. The least 
preferred stimulus is not necessarily the stimulus that is least similar to the preferred stimulus (i.e. not the anti-
preferred stimuli). Since stimuli were continuously and monotonically varied along one parameter (orientation, 
contrast, size) we used the ordinal number difference between two stimuli as a similarity metric. Stimuli were 
indexed by an ordered ranking. Thus, stimuli numbers one and six would be the smallest and largest drifting 
grating if size were varied and they would also be maximally dissimilar, while five and six would be the largest 
and second largest and maximally similar. We defined reliability as the mean deflection in response to the same 
stimulus divided by the standard deviation of deflections in response to that same stimulus, Ri where i is the 
stimulus index out of N stimuli. In order to measure the correlation between reliability and similarity to either 
the most or least preferred stimulus we defined a least/most similarity function, Si as follows. The ordinal values 
of the most and least preferred stimuli were recorded. For all stimuli, the absolute value of the ordinal difference 
between themselves and the least preferred stimulus was noted, then the same was noted for the most preferred 
stimulus. The smallest of these two absolute ordinal differences was kept. Thus, for each stimulus we have 
recorded the absolute ordinal difference between itself and either the most or least preferred stimulus (depend-
ing on which difference was smaller). We then divided by the number of distinct stimuli (either six for size or 
contrast, or eight for orientation). The least/most similarity function was then: 
Si = min({|i − argmin

0<j≤N
(Dj)|, |i − argmax

0<j≤N
(Dj)|})/N . We also have the reliability measure as defined above. We 

measured the Pearson Correlation between reliability, Ri, and this least/most similarity score Si. Because this 
measure was applied individually to each cell it quantifies whether the U-shaped trend in Fig. 5b was a property 
of cells individually. If Di tended to be proportional to Ri for some cells and inversely proportional for other cells, 
then Fig. 5b may still appear U-shaped but there would be no correlation between Ri and Si.

We also explored possible causes for changes in reliability. These include the coefficient of variation of a 
response and the mean of normalized residuals. The mean of normalized residual is a measure of noise. To cal-
culate it, we first calculated the average response of a stimulus to all repetitions of a stimulus. We subtracted this 
mean response from a single trial, the result was a residual time series. To normalize the residual time series, we 
divided by the mean response time series from the first step. Therefore, each point in the new time series was 
the signed fractional error between the single trial and the mean response. The average value of this time series 
was defined as the mean normalized residual. We also examined a variant where we computed the absolute value 
of the normalized residual time series before computing the average. For any given recording we calculated its 
normalized residual by comparing to the other responses to the same stimuli. We compared noise with fluctuation 
size. We defined fluctuation size as the coefficient of variation, which is the standard deviation of a timeseries 
divided by the mean value of the same time series. Thus, both measures control for average deflection. These 
measures let us test whether decreased noise or decreased fluctuation size was responsible for increased reliability.

Genetic algorithm modification of SINDy.  We used the SINDy algorithm because it is well supported and ame-
nable to modification25. In short, we pre-computed the derivatives, dV, of a singular value decomposition base 
time-delay embedding25,84 (dimensionality expansion),V, of a single time-series. We then pre-computed many 
polynomial combinations of the original data (including a constant term) Θ. A dynamical system was there-
fore captured by a matrix Ξ projecting the polynomial combinations onto the derivatives dV = ΞTΘ. The critical 
insight is to set most of the elements of Ξ to zero so that the dynamical system is readable, tractable, and general-
izes to the rest of state-space. Originally25, elements of Ξ were chosen to be non-zero by identifying thresholds 
through hand tweaking such that only Ξ elements exceeding the thresholds were included in the fit. Instead we 
used a genetic algorithm to automatically decide which elements to set to zero without a threshold. For simplic-
ity we call this “genetic SINDy”. Note that if one specifies the locations but not the values of nonzero elements 
with a binary-valued bitmask Ξ matrix, BΞ, then a BΞ is a template which can generate diverse kinds of Ξ matrices 
because fitting the coefficients specified by BΞ to two different trajectories would produce two different Ξ. The 
original work showed that using time-delay reconstructions of undersampled systems yields Ξ matrices that are 
characteristically non-sparse in the last dimension25. The original work also noted that it requires long periods of 
time in diverse situations to capture the best invariant models of the system. This is a characteristic we exploited 
to get local approximations instead of the invariant models the original work sought to obtain.

In order to avoid numerical error, one must normalize Θ. A key difference is that the original paper25 divided 
by the L1 norm but we had better results by Z-scoring86 each variable (row of Θ) and always including a constant 
term in Ξ. This forced information about the average variable value into the constant term, making it available for 
the classifier in later stages. We tested the inclusion of second order derivatives, d2V/dt2, and inclusion of more 
dimensions, as well as numerous other variations but settled on three dimensions and first order derivatives, 
dV/dt as giving the highest utility with the least complexity and compute time (see supplemental S2). Another 
departure from the original implementation of SINDy25 was the addition of a single three time-step smoothing 
window after estimating derivatives using the fourth order method. We did not rigorously compare the inclu-
sion of non-polynomial forms as performance was good enough that we could test our hypothesis without the 
additional complexity.
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A genetic algorithm must be initialized with a diverse population of individual “guesses” at a solution to the 
problem. In our case an individual solution was a bitmask matrix, BΞ, the same size as Ξ, but consisting only of 
zeros and ones. Ones marked the location of Ξ elements to keep as non-zero when creating an ODE model in 
later steps. To get an initial population we used an unsupervised threshold method to decide which elements 
of BΞ were one and which were zero (included with our software). We treated each trajectory individually and 
used bisection search to find the largest threshold (for each column of BΞ) that resulted in at least one non-zero 
element. This gave a maximally sparse representation and largely reproduced the findings reported elsewhere25 
when used on a fully sampled Lorenz system. The result was a set of unique BΞ that was no larger than the 
number of trajectories.

We used a “mating” (crossover) process to create 300 unique individuals. For each BΞ in this set we obtained 
Ξ matrices for each trajectory. Twenty five percent of the trajectories were held out for testing, the remainder 
were used to find the coefficients of the system of equations. After testing fitness, the best 45 BΞ were “mated” 
and “mutated” to generate 300 new forms of the equation. A “sexual genetic algorithm” requires a method for 
combining possible solutions, a “mating” process. This involves three steps, selecting individuals to combine, 
deciding which attributes to keep in the “offspring”, and a way to mutate the offspring. We kept the best 45 
unique BΞ and ranked their performance (worst is 1 best is 45). We then used 255 tournaments to select parents, 
mate them, and produce 255 new BΞ matrices. One parent was selected by cyclically stepping by one through 
the best 45, the second parent was selected at random with a probability in proportion to its rank. A parent was 
not allowed to mate with itself. The nonzero elements of children were selected by keeping elements which were 
nonzero in both parents and with probability one-half if it was nonzero in only one parent. Finally, mutation 
was implemented by flipping one or more randomly selected elements to its opposite value. Each element of the 
child matrix was subject to mutation with a specific probability called the “mutation rate”. The mutation rate was 
0.15 to produce the initial population. It was set to 0.05 for the first generation and was periodically halved until 
it was set to zero for the last ten percent of generations. The number of halvings depends on the initial mutation 
rate, rmut,and the number of elements in the Ξ matrix, N� , according to Nmut = ⌈log2(rmut · N�)+ 1⌉ and was 
not allowed to be smaller than 2. We tested other methods for mating on small fractions of original and simulated 
data, including: transferring columns or rows to the children intact, selecting half of the elements from each 
parent (either at random or in a structured way), or simply keeping all elements which occur in any parent. The 
choice of mutation rate and halving periods, as well as mate selection, mutation methods, the population size, 
and fraction to keep were selected by hand tweaking on fractions of data and simulated data.

The number of generations to run the algorithm increased by 100 for every three columns of the Ξ matrix 
(which may include second derivatives as well as higher dimensions). If the errors of the 45 BΞ matrices were 
identical or within one one-thousandth of the range of errors in the initial population then the algorithm was 
terminated early. This never happened when the objective function for the algorithm was classification ability 
and happened only rarely when the objective function was goodness of fit. The number of generations was tested 
by hand to be long enough to ensure convergence but not long enough to produce over fitting.

In our case different BΞ represented different possible solutions and we had three objectives to consider. We 
desired a Ξ matrix which can be fed into a classifier and perform well, we desired that this Ξ matrix be sparse (to 
avoid overfitting and improve interpretability) and lastly we desired that the Ξ matrix describes a good model of 
the dynamics. The objective function for classification ability was noisy because the hold-out set was small for 
the generation updates, (see below), therefore we retested the best 45 at each generation.

Classification objective function for genetic algorithm.  In order to for the genetic algorithm to find the best bina-
rized template to fit Ξ matrices, a BΞ matrix (see Genetic algorithm modification of SINDy above), it must have 
a standard to measure against. We compare performance when using two standards: 1) finding the ODE model 
which leads to the best classification performance and 2) finding the ODE model that simply fits the data the 
best without regard to classification. No matter what standard is used to create the BΞ matrices, the BΞ matrices 
are used for stimulus decoding in a later step (see “Ensemble classification and out-of-sample generalization” 
section). For genetic algorithms, the standard used to measure individuals is implemented through an objec-
tive function. An objective function accepts a BΞ matrix and outputs a scalar value which is lower for BΞ that 
are better at satisfying some objective. For predicting the stimulus based on the coefficients of a fitted ODE the 
genetic algorithm objective function started by fitting Ξ matrices to each trajectory using only the coefficients 
specified in the BΞ matrix it accepted as input. Next, for each stimulus, 25% of fitted Ξ matrices were held out for 
cross validation. MATLAB’s default implementation of random forest69,87 was then trained on the remainder (the 
75%) and tested on the cross validation set (the 25%). This was repeated 10 times, selecting a different twenty 
five percent each time (this is sometimes called hold-k cross validation with bootstrapping88). The classification 
performance was the average F1-score for all stimulus labels69. We subtracted this value from one such that good 
performance was a low number that still ranges between zero and one and constituted 80% of the objective func-
tion value. The other 20% of the fitness value was a regularization term: the fraction of possible terms which were 
nonzero (i.e. sparseness). It should be noted that the random forest used is disposable, being recreated for each 
hold out set and uses MATLAB’s default objective function for growing decision trees.

Goodness of fit objective function for genetic algorithm.  For finding a set of coefficients (specified with BΞ) that 
allowed the highest quality ODE model, the objective function started by fitting Ξ matrices to each trajectory 
using only the coefficients specified in the BΞ matrix it accepted as input. Next it used all the original points on 
the trajectory as initial conditions to integrate the fitted ODE four timesteps. Goodness of fit was 1-R2 (the coeffi-
cient of determination) between the derivatives predicted by integrating the ODE and the derivatives of the data 
shifted by five timesteps. A sparseness regularizer was used such that goodness of fit was 80% of the objective 
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function value and sparseness was 20%. As a final step we evaluate the usefulness of these models for performing 
classification if fed into MATLAB’s default random forest classifier. Performance was evaluated using the average 
F1-score for all stimulus labels69.

Ensemble classification and out‑of‑sample generalization.  The genetic algorithm tested one BΞ matrix at a time, 
however each matrix was pulling out a different set of coefficients and therefore might have been highlighting 
different dynamical attributes. It is often found that an ensemble of independently trained classifiers can coop-
eratively vote on a classification and that doing so often cancels out bias that cropped up during the training of 
any individual89. We found that ensemble methods decreased overfitting tendencies for dynamical discrimina-
tion. Therefore, the 45 BΞ unique matrices which were best in the final generation of genetic SINDy voted on 
making a final classification to complete our process called “dynamical discrimination”. When we were training 
random forest87 regression trees instead of classifiers we used the median of the ensemble. For classifiers we used 
the mode with ties broken by choice with the highest ranked BΞ according to final generation fitness.

Because the cross-validation process was repeated once every generation there was information leakage and 
over-fitting effects were possible for the algorithm as described. To measure overfitting, we re-ran the entire 
genetic algorithm and ensemble process on data where the stimulus labels were scrambled. Performance on 
random surrogates was stable, despite high variability in the performance on the original data (Fig. S2b). Random 
surrogate performance was indistinguishable from chance for deflection and classification based on Ξ that were 
fitted without regard to classification performance (Fig. 3a, S2b).

In order to report values without confusing overfitting for reproducible (out-of-sample) performance we 
encapsulated the entire genetic algorithm and ensemble process in another layer of holdout testing. We held 
out one example of presentations for each of the 6–8 stimuli and ran the entire algorithm, then predicted the 
stimuli for the examples which were never used for training. This was repeated twenty times and the final values 
reported in the main text (Table 1) and in Fig. 3b, are the results of this 20-fold hold-one-out test. Using the data 
from the cell with the most trials, we verified that the final holdout did not perform better than chance when 
trained on random surrogates. Therefore, the final holdout performance is a valid out-of-sample generaliza-
tion. Performance of the ensemble was evaluated using both classification success rate (Table 1, Fig. 3b) and the 
F1-score for individual stimulus labels69 (Fig. 3c, S13–S18).

Hyperparameter optimization.  Augmenting Sparse Identification of Nonlinear Dynamics (SINDy) with a 
genetic algorithm to provide a representation of time-series suitable for a random forest classifier requires many 
choices which can affect outcomes. Research that makes scientific comparisons but does include an account 
of hyperparameter optimization cannot be adequately reproduced or checked for bias. With respect to SINDy 
performed on delay-embedded (dimensionally expanded) data one must decide what size of delays, how many 
delays to include prior to dimensionality reduction, and what dimensionality reduction algorithm to include as 
well as a slew of ODE related choices such as what polynomial order to include, whether to include other non-
polynomial forms such as sinusoids or sigmoids, whether to include a quenched-noise driving term (treating 
extra dimensions as a time-varying input)25, how many dimensions to include, how to get stable numerical esti-
mates of derivatives, whether to use higher-order derivatives, how to normalize the data, and preprocessing steps 
such as detrending, and filtering and what period of the timeseries to fit. A genetic algorithm requires even more 
choices such as methods for mate selection, crossover, mutation, as well as what terms to include in the objec-
tive function, how to weight those terms, and stopping conditions. Even the selection of a classifier algorithm to 
perform the last step presents a set of choices that can alter a scientific comparison.

Few of these choices can be made a-priori, and there were too many to test completely. Choices such as these 
are known as “hyperparameters”. They must be reported on to demonstrate that all effort was made to maximize 
the performance of machine learning algorithms before making claims about comparisons. Most choices were 
made by hand testing on small fractions of data or on simulated data. Some choices made little difference, some 
made the algorithm worse, others could not be justified due to the exorbitant computational time required. 
These choices are important to be aware of for replicating results but are not extensively reported on here, except 
to state them: we chose 100, one millisecond delays and chose Singular Value Decomposition (SVD) to reduce 
from 100 to between three and seven dimensions (and extensively tested this narrowed range). We included only 
polynomial terms up to the third order (because it is the same order as a FitzHugh-Nagumo ODE), and clas-
sification did not benefit from including an additional dimension as a quenched-noise driving term. Derivatives 
were estimated by using a custom algorithm based on standard fourth order derivative methods25 but added 
smoothing (window size three timesteps) as a last step. Derivative estimation methods were chosen to ensure the 
derivatives matched the trajectory when accumulated. Data were not detrended but were downsampled to one 
Kilohertz. After dimensionality expansion the entire set of embedded trajectories was centered at the origin. The 
choice of epoch, number of dimensions and derivative order were tested with a more exhaustive optimization 
approach. For the genetic algorithm, mate selection, crossover method, and mutation method, as well as the size 
of the population and the fraction to keep at each generation were all tested on small fractions of the data (and 
choices stated above). The choice of regularization factors and terms to include in the objective function were 
narrowed by hand on a small fraction of data and then a few remaining options were exhaustively tested. There 
were 51 trees in the random forest algorithm for final results and five trees for evaluating the classifier objec-
tive function in intermediate generations of the genetic algorithm. Alternative methods of classification, such 
as fitting ODEs to the trajectories co-occurring with a specific stimulus and then assessing which ODE best-fit 
a test trajectory, yielded such poor performance or additional complexity that they did not justify inclusion in 
this paper. The inclusion of additional constraints such as a goodness-of-fit constraint in a classifier objective 
function did not perform well enough to justify the testing needed to find the optimum choice. It was found 
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that an early termination stopping condition based on convergence to a narrow range of error values achieved 
the same results as a stopping condition based on a lack of diversity among possible solutions. The choice of 100 
generations for every three columns of BΞ was made by hand testing.

Some choices were selected for exhaustive testing because they either had scientific value: period of stimulus 
presentation to train on, inclusion of second order derivatives, and how many dimensions to include. Others were 
chosen for exhaustive testing because the effect was complexly related to other factors being tested: regularization 
factor, choice of dimensionality reduction (SVD versus independent component analysis), and whether to use an 
ensemble method. These were tested by running genetic SINDy on either all of the data or just on I,OI, or I,SI and 
comparing the cross-validation of the final generation with the same for random surrogate data. The parameter 
set with the best classification ability with the least variability and least overfitting was selected. This was three 
dimensions with a regularization weighting factor of 0.2 and only first order derivatives, using an ensemble clas-
sification method with SVD for dimensionality reduction and the period coinciding with the onset of stimulus 
response was the most informative. These testing results are reported in supplemental S2.

Integration of Ξ matrices.  Because we normalized Θ components by Z-scoring86 them we had to carry out 
a change of coordinates at each step when integrating the ODE models to assess how they captured trajec-
tory details. Let ℰ be the function that creates polynomial combinations of a trajectory, V, such that Θ = ℰ(V). 
When integrating the ODE to create a simulated trajectory, V′(t) = dV′(t−1) + V′(t−1), the derivative term at each 
timestep becomes dV′(t) = ΞT[ℰ(V′(t−1))−μΘ]/σΘ, where μΘ and σΘ are the mean and standard deviations of each 
column of the Θ used to estimate Ξ from the experimental data.

We used points from the initial trajectory and found that our models tend to be difficult to integrate. Even 
with a stiff ODE solver initial conditions frequently “blew up” wherein the derivatives became exceptionally 
large, or the derivatives rapidly extinguished. Therefore, we tested multiple initial conditions and plotted the ones 
that produce trajectories which remain in the neighborhood of the original trajectory for as long as the original 
trajectory was, and that explore a volume similar to the original trajectory. This was done by rejecting initial 
conditions that produce trajectories whose standard deviations (along each dimension) were all less than five 
times the same standard deviations of the original trajectory and exceeded one twentieth of the original trajectory.

Linear stability analysis.  For non-linear dynamical systems such as those approximated with SINDy the behav-
ior in the vicinity of a fixed point is often analyzed through the eigenvalues of a Jacobian matrix evaluated at the 
fixed point. A Jacobian matrix is the matrix of all partial derivatives with respect to the main variables. We can 
evaluate this using the chain rule and our normalization factors. Normalization factors included a translation as 
well as a rescaling. Using MATLAB’s symbolic toolbox, we solved the ODEs for coordinates where the derivatives 
became zero. The translation did not affect the Jacobian but did need to be accounted for when solving for fixed 
point coordinates the same way it was accounted for when integrating (see above). We report on all real-valued 
fixed-points. We evaluated the Jacobian for the best one of the 45 Ξ matrices according to their fitness values on 
the final generation of the genetic algorithm. We evaluated all fixed points for each trajectory individually. If the 
eigenvalues of a fixed point have an imaginary component the dynamics are locally oscillatory, if the real compo-
nent is positive they diverge away from the fixed point, if the real component is negative they converge towards 
it, if the real component is zero the dynamics form a cycle. If the number of fixed points changes when a system 
parameter (such as stimulus label) is changed then that parameter is said to take the system through a bifurca-
tion, likewise if the sign of the real component of the maximum eigenvalue of the Jacobian changes. We report on 
the number of fixed points and the eigenvalues as a function of what stimulus was presented in supplemental S3.

Data and software availability
The data, data analysis software, and modeling software used in this study are freely available on the Open Sci-
ence Framework at https​://osf.io/9xke5​/. The project title is “Precision multidimensional neural population code 
recovered from single intracellular recordings” and readers should begin with the file “Discriminate_visual_
stimulus.m”. It should run on all MATLAB installations that have all the toolboxes installed. All functions and 
scripts necessary to reproduce results are there but the code is organized for a didactic illustration of the methods 
by running through a small amount of data with simple options selected, not a complete run through of the 
pipeline (which would take up to several months on some home computers). The file “Generate_model_data.m” 
contains our code used to generate model data and integrates with python. It is included for the purposes of 
completeness and transparency. Readers may refer to it to clarify methods as they work to replicate our findings. 
Unfortunately, it was set up for a specific software environment that we could not include along with it, it will 
take some work to make run on computers other than the computer it was developed on. A virtual machine 
clone of that computer is available upon request.
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