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Abstract: It has recently been recognized that inflammatory cytokines, such as tumor necrosis
factor-α (TNF-α), upregulate the secretion of matrix metalloproteinase-9 (MMP-9) from cancer cells
and thereby promote peritoneal dissemination. In this study, we found that TNF-α also stimulated
peritoneal mesothelial cells to secrete MMP-9 as assessed by zymography. MMP-9 gene expression
in mesothelial cells induced by TNF-α was confirmed by quantitative RT-PCR analysis. We then
utilized the reconstituted artificial mesothelium, which was composed of a monolayer of mesothelial
cells cultured on a Matrigel layer in a Boyden chamber system, to examine the effects of TNF-α on
carcinoma cell invasion. The transmigration of MKN1 human gastric carcinoma cells through the
reconstituted mesothelium was promoted by TNF-α in a dose-dependent manner. The increased
MKN1 cell migration was partially inhibited by the anti-α3 integrin antibody, indicating that the
invasion process involves an integrin-dependent mechanism. Finally, we observed that the invasion
of MMP-9-knockdown MKN1 cells into Matrigel membranes was potentiated by the exogenous
addition of purified proMMP-9. These results suggest that TNF-α-induced MMP-9 secretion from
mesothelial cells plays an important role in the metastatic dissemination of gastric cancer.

Keywords: TNF-α; matrix metalloproteinase; peritoneal mesothelial cell; gastric cancer;
metastatic dissemination

1. Introduction

Metastatic peritoneal dissemination causes a poor prognosis for patients with advanced gastric
cancer. Cancer metastasis depends on multiple interactions between cancer cells and various factors
derived from the host microenvironment, including cytokines, motility factors, cell adhesion molecules,
and matrix-degrading enzymes. On the other hand, many recent studies have suggested the relevance
of inflammation to cancer progression. In particular, tumor necrosis factor-α (TNF-α) and other
inflammatory cytokines have been shown to participate in the initiation and progression of cancer [1–5].
TNF-α is a multifunctional cytokine that modulates various aspects of cancer cell phenotypes, such as
cell proliferation, migration, invasion, and metastatic potential, in addition to causing the death of
cancer cells. TNF-α, either alone or in combination with transforming growth factor-β, has also been
shown to induce so-called epithelial-mesenchymal transition (EMT), which includes changes in both
morphological and invasive phenotypes [6,7]. It has been well established that TNF-α induces the
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production of matrix metalloproteinases (MMPs) by carcinoma cells originating from various tissues,
and these MMPs facilitate cancer cell invasion and metastasis [8–13]. A recent clinical study of patients
with gastric cancer indicated that TNF-α expression was significantly different between patients with
and those without peritoneal metastasis and was one of the risk factors for peritoneal metastasis of
gastric cancer [14].

We have studied the interaction of gastric carcinoma cells with the extracellular matrix (ECM)
deposited by peritoneal mesothelial cells and found that MKN1 human gastric carcinoma cells secreted
MMP-9 accompanied by enhanced invasion through Matrigel-reconstituted basement membranes
when these cells adhered to ECM containing laminin-332, a major component of submesothelial
basement membranes [15]. Moreover, the phenotype of MKN1 cells was found to be more invasive
in the presence of TNF-α derived from tumor-associated macrophage-like cells in association with
enhanced MMP-9 secretion [16]. In the present study, we co-cultured MKN1 cells with mesothelial
cells isolated from murine peritoneum and examined the effects of treatment with TNF-α on MMP-9
production by these cells. The TNF-α treatment of these cells resulted in the induction of MMP-9
secretion not only from MKN1 carcinoma cells but also from mesothelial cells. This result prompted us
to characterize the enhanced MMP-9 production by mesothelial cells upon TNF-α treatment. We also
present evidence showing that MMP-9 secreted from mesothelial cells plays a significant role in the
invasion of gastric carcinoma cells. For this purpose, we used a reconstituted mesothelium consisting
of peritoneal mesothelial cells and Matrigel basement membranes in a Boyden chamber system.

2. Results

2.1. Mesothelial Cells Secreted MMP-9 in Response to Stimulation with TNF-α

We first examined the effects of TNF-α on MMP-9 secretion in the co-cultures of MKN1 and
peritoneal mesothelial cells. Zymographic analysis of the conditioned medium of the co-culture of
these cells revealed that MMP-9 secretions from both MKN1 and murine peritoneal mesothelial cells
were markedly increased in the presence of TNF-α (10 ng/mL) (Figure 1). Since murine MMP-9 has
a slightly higher molecular mass (105 kDa for proMMP-9) than its human counterpart (92 kDa) due
to the presence of an extra amino acid sequence in murine MMP-9 [17], the two molecules can be
distinguished from each other by zymography. By contrast, the MMP-2 level was not significantly
changed in the conditioned medium after TNF-α treatment. The upregulation of MMP-9 secretion
from both types of cells by TNF-α treatment (10 ng/mL) was confirmed when TNF-α was added to
the separate cultures of MKN1 and mesothelial cells (Figure 2A). We observed low-level secretion of
MMP-2 from both cell types in the absence of TNF-α, and the secretion was not substantially influenced
by TNF-α treatment in either case. We then examined the dose-response of the potentiation of MMP-9
secretion by TNF-α. In the zymographic analysis, we detected MMP-9 activity in the conditioned
medium of mesothelial cell culture in the presence of TNF-α (1 ng/mL) for 24 or 48 h, and the MMP-9
secretion was dose-dependently increased (up to 100 ng/mL) (Figure 2B). In the kinetic analysis, we
detected MMP-9 activity after the culture with TNF-α for 12 h, and MMP-9 secretion was increased at
24 and 48 h (Figure 2C). These results clearly indicated that TNF-α treatment induced MMP-9 secretion
from mesothelial cells, in addition to enhancing MMP-9 secretion from MKN1 gastric carcinoma cells.

We next conducted RT-qPCR to measure mRNA levels for MMP-9 in mesothelial cells after TNF-α
treatment. The results shown in Figure 3A indicated that the mRNA level in mesothelial cells was
elevated at 6 h after the stimulation by TNF-α (10 ng/mL) and reached the maximum level at 12 h,
where it remained until 24 h after the stimulation. The increase in MMP-9 mRNA expression was
found to be dose-dependent within the range of 1–100 ng/mL of TNF-α (Figure 3B), which was in
good agreement with the results of the zymographic analysis (Figure 2B). However, the mRNA for
MMP-2 exhibited no significant change after TNF-α treatment.
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Figure 1. Zymographic analysis of MMPs in the conditioned medium of the co-culture of MKN1 and 
mesothelial cells after TNF-α treatment. A suspension of MKN1 cells (5 × 104 cells/0.2 mL) in ASF104 
medium was added to a monolayer of murine peritoneal mesothelial cells in a 96-well culture plate 
and the cells were cultured with/without TNF-α (10 ng/mL) for 48 h. The culture supernatant was 
analyzed by gelatin zymography. 

 
Figure 2. Effects of TNF-α on the secretion of MMP-9 from peritoneal mesothelial cells as assessed by 
zymography. (A) Monolayers of peritoneal mesothelial cells and MKN1 cells were separately 
cultured in ASF104 serum-free medium with/without TNF-α (10 ng/mL) for 48 h. (B) Mesothelial 
cells were cultured with TNF-α (0, 1, 10 or 100 ng/mL) for 24 or 48 h. (C) Mesothelial cells were 
cultured with TNF-α (10 or 100 ng/mL) for 6, 12, 24 or 48 h. 

Figure 1. Zymographic analysis of MMPs in the conditioned medium of the co-culture of MKN1 and
mesothelial cells after TNF-α treatment. A suspension of MKN1 cells (5 × 104 cells/0.2 mL) in ASF104
medium was added to a monolayer of murine peritoneal mesothelial cells in a 96-well culture plate
and the cells were cultured with/without TNF-α (10 ng/mL) for 48 h. The culture supernatant was
analyzed by gelatin zymography.
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Figure 2. Effects of TNF-α on the secretion of MMP-9 from peritoneal mesothelial cells as assessed by
zymography. (A) Monolayers of peritoneal mesothelial cells and MKN1 cells were separately cultured
in ASF104 serum-free medium with/without TNF-α (10 ng/mL) for 48 h. (B) Mesothelial cells were
cultured with TNF-α (0, 1, 10 or 100 ng/mL) for 24 or 48 h. (C) Mesothelial cells were cultured with
TNF-α (10 or 100 ng/mL) for 6, 12, 24 or 48 h.
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Figure 3. RT-qPCR analysis of mRNA for MMP-2 and MMP-9 in mesothelial cells after treatment 
with TNF-α. (A) Mesothelial cells were cultured in ASF104 serum-free medium containing TNF-α (10 
ng/mL) at 37 °C for 0, 6, 12 or 24 h. Total RNA was then isolated, and RT-qPCR for the genes for 
MMP-2 (open bar) and MMP-9 (closed bar) was carried out as described in Section 4. (B) Mesothelial 
cells were cultured in ASF104 medium containing TNF-α (0, 1, 10 or 100 ng/mL) for 6 h. The gene 
expressions of MMP-2 (open bar) and MMP-9 (closed bar) were analyzed by the relative standard curve 
method using Gapdh as an internal control. Experiments were performed in triplicate, and the data 
are presented as the mean ± SEM. Statistical data analysis was conducted using the Student’s t-test. 
*** p < 0.005 vs. control. 

2.2. TNF-α Potentiates MKN1 Cell Invasion through the Reconstituted Mesothelium 

Because the above experiments indicated that mesothelial cells secreted MMP-9 in response to 
TNF-α treatment, we designed an artificial, reconstituted mesothelium where a monolayer of 
mesothelial cells was cultured on a Matrigel layer in a Boyden chamber system (Figure 4A) and 
examined the effects of TNF-α on carcinoma cell invasion. Mesothelial cells isolated from the murine 
peritoneum grew as a monolayer with polygonal morphology after 4–5 days (Figure 4B). The 
transmigration of MKN1 cells through the reconstituted mesothelium was promoted by TNF-α in a 
dose-dependent manner (Figure 4C). 

We previously found that the interaction between α3β1 integrin on cancer cells and laminin in 
the mesothelium played an important role in the cancer cell adhesion and invasion [15,18]. Next, we 
examined the effects of the anti-α3 integrin antibody on the transmigration of MKN1 cells through 
the reconstituted mesothelium. The cell invasion potentiated by TNF-α was significantly inhibited 
by the anti-α3 integrin antibody (Figure 5A), suggesting the importance of an α3β1 
integrin-dependent process in the invasion. The adhesion of MKN1 cells to a monolayer of 
mesothelial cells was also increased after the TNF-α treatment of mesothelial cells and was partially 
inhibited by the anti-α3 integrin antibody (Figure 5B). Mochizuki et al. [19] reported that the 
treatment of mesothelial cells with TNF-α induced their morphological change followed by an 
increase in the areas of intercellular gaps. This process may cause exposure of the submesothelial 
extracellular matrix (ECM) in the intercellular gaps. Because laminin-332, a counter-ligand for α3β1 
integrin, is a major component of submesothelial ECM, TNF-α treatment might facilitate the 

Figure 3. RT-qPCR analysis of mRNA for MMP-2 and MMP-9 in mesothelial cells after treatment
with TNF-α. (A) Mesothelial cells were cultured in ASF104 serum-free medium containing TNF-α
(10 ng/mL) at 37 ◦C for 0, 6, 12 or 24 h. Total RNA was then isolated, and RT-qPCR for the genes for
MMP-2 (open bar) and MMP-9 (closed bar) was carried out as described in Section 4. (B) Mesothelial
cells were cultured in ASF104 medium containing TNF-α (0, 1, 10 or 100 ng/mL) for 6 h. The gene
expressions of MMP-2 (open bar) and MMP-9 (closed bar) were analyzed by the relative standard curve
method using Gapdh as an internal control. Experiments were performed in triplicate, and the data
are presented as the mean ± SEM. Statistical data analysis was conducted using the Student’s t-test.
*** p < 0.005 vs. control.

2.2. TNF-α Potentiates MKN1 Cell Invasion through the Reconstituted Mesothelium

Because the above experiments indicated that mesothelial cells secreted MMP-9 in response
to TNF-α treatment, we designed an artificial, reconstituted mesothelium where a monolayer of
mesothelial cells was cultured on a Matrigel layer in a Boyden chamber system (Figure 4A) and
examined the effects of TNF-α on carcinoma cell invasion. Mesothelial cells isolated from the
murine peritoneum grew as a monolayer with polygonal morphology after 4–5 days (Figure 4B).
The transmigration of MKN1 cells through the reconstituted mesothelium was promoted by TNF-α in
a dose-dependent manner (Figure 4C).

We previously found that the interaction between α3β1 integrin on cancer cells and laminin in
the mesothelium played an important role in the cancer cell adhesion and invasion [15,18]. Next, we
examined the effects of the anti-α3 integrin antibody on the transmigration of MKN1 cells through
the reconstituted mesothelium. The cell invasion potentiated by TNF-α was significantly inhibited by
the anti-α3 integrin antibody (Figure 5A), suggesting the importance of an α3β1 integrin-dependent
process in the invasion. The adhesion of MKN1 cells to a monolayer of mesothelial cells was also
increased after the TNF-α treatment of mesothelial cells and was partially inhibited by the anti-α3
integrin antibody (Figure 5B). Mochizuki et al. [19] reported that the treatment of mesothelial cells with
TNF-α induced their morphological change followed by an increase in the areas of intercellular gaps.
This process may cause exposure of the submesothelial extracellular matrix (ECM) in the intercellular
gaps. Because laminin-332, a counter-ligand for α3β1 integrin, is a major component of submesothelial
ECM, TNF-α treatment might facilitate the adhesion of MKN1 cells to the mesothelium via α3β1
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integrin/laminin-332 interaction. In RT-qPCR analysis, we observed a slight increase in expression of
the γ2 subunit of laminin-332 after TNF-α treatment of mesothelial cells (Figure S1), and this might
also have caused the increased adhesion of MKN1 cells.
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moderate effect (~30% inhibition) (Figure 6A, B). The addition of MMP-9 to the culture potentiated 
the invasion of MMP-9-knockdown cells in a dose-dependent manner (Figure 6B). These results 

Figure 4. Cell invasion assay using a reconstituted artificial mesothelium in a Boyden chamber
(Transwell) system. (A) The inner chamber with a membrane (8.0 µm pore) was composed of a
monolayer of peritoneal mesothelial cells on a Matrigel layer and was utilized to examine the migration
of MKN1 cells. The outer chamber was filled with ASF104 medium supplemented with HT1080
serum-free conditioned medium as a chemoattractant. (B) Microscopic observation of a monolayer
of mesothelial cells (scale bar = 20 µm). (C) After mesothelial cells were treated with TNF-α (1, 10 or
100 ng/mL) and washed with ASF104 medium, MKN1 cells (1 × 105 cells/0.2 mL) were placed in the
inner chamber and incubated at 37 ◦C for 16 h. The cells migrating into the outer chamber through
the membrane were counted under a microscope after staining with Diff-Quik. Experiments were
performed in triplicate, and the data are presented as the mean ± SEM. Statistical data analysis was
conducted using the Student’s t-test. *** p < 0.005 vs. the control.

2.3. The Exogenous Addition of MMP-9 Promotes MKN1 Cell Invasion

Because our experiments demonstrated that TNF-α potentiated MMP-9 secretion from both
mesothelial cells and cancer cells, we next addressed the effect of the exogenous addition of MMP-9
on the invasive behavior of cancer cells. When MMP-9 purified from human THP-1 leukemic cells
(Figure S2) was added to the culture of MKN1 cells, their invasion into Matrigel basement membranes
was increased by approximately 29% (Figure 6A). To exclude the contribution of secretion of MMP-9
and MMP-2 from cancer cells, we established MMP-knockdown cells by the RNA interference
procedure (Figure S3). The silencing of MMP-9 expression in MKN1 cells resulted in marked
impairment of the invasion (~90% inhibition), whereas MMP-2 silencing exhibited only a moderate
effect (~30% inhibition) (Figure 6A,B). The addition of MMP-9 to the culture potentiated the invasion
of MMP-9-knockdown cells in a dose-dependent manner (Figure 6B). These results suggest that the
invasion of cancer cells is influenced by MMP-9 secreted from TNF-α-stimulated mesothelial cells.
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Figure 5. Invasion and adhesion of MKN1 cells and effects of the anti-α3 integrin antibody.
A monolayer of mesothelial cells was stimulated with TNF-α (10 ng/mL) for 6 h. (A) MKN1
cells (1 × 105 cells/0.2 mL) in ASF104 serum-free medium were added to the inner chamber of the
reconstituted mesothelium and incubated at 37 ◦C for 16 h. The cells that had migrated into the outer
chamber through the membrane were counted under a microscope. (B) Fluorescently labeled MKN1
cells were added to the monolayer of mesothelial cells in a 96-well culture plate, and incubated at
37 ◦C for 40 min. After non-adherent cells were removed by washing, adherent cells were lysed with
1% Nonidet P-40 and measured with a fluorescence spectrophotometer (Ex = 490 nm, Em = 520 nm).
For the inhibition experiments, MKN1 cells were treated with the anti-α3 integrin antibody (SM-T1,
10 µg/mL) at 0 ◦C for 30 min. Experiments were performed in triplicate, and the data are presented
as the mean ± SEM. Statistical data analysis was conducted using the Student’s t-test. ** p < 0.01,
*** p < 0.005.
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Figure 6. Potentiation of the invasion of MMP-9-knockdown MKN1 cells by exogenous MMP-9.
MMP-2- or MMP-9-knockdown MKN1 cells were prepared by RNA interference as described in the
Materials and Methods section. (A) The MMP-9-knockdown MKN1 cells (right) and parent cells (left)
were assayed for in vitro invasion using Matrigel basement membranes in the presence or absence of
MMP-9 purified from THP-1 cells. After culturing for 16 h, the cells that had migrated into the lower
chamber were microscopically observed (40×). (B) MMP-2- or MMP-9-knockdown MKN1 cells were
subjected to an invasion assay, and the migrated cells were counted under a microscope (Left). The
invasion assay was performed in the presence of purified MMP-9 (2.5–10 µg/mL) (right). Experiments
were performed in triplicate, and the data are presented as the mean ± SEM. Statistical data analysis
was conducted using the Student’s t-test. *** p < 0.005.

3. Discussion

It has recently been recognized that inflammatory cytokines such as TNF-α play crucial roles in
metastatic dissemination. For example, TNF-α treatment of human gastric cancer cells was shown
to increase MMP-9 mRNA and protein expression levels [20]. In the present study, we demonstrated
that peritoneal mesothelial cells also secreted MMP-9 in response to TNF-α (Figures 1 and 2) and
that the enhanced secretion of MMP-9 was associated with upregulation of MMP-9 transcription
(Figure 3). In addition, we suggested the importance of the MMP-9 secreted by host mesothelial cells
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in gastric carcinoma invasion by utilizing a reconstituted mesothelium consisting of a monolayer
of peritoneal mesothelial cells layered on a Matrigel basement membrane (Figure 4). The increase
in cell invasion was shown to partly involve an integrin-dependent process (Figure 5). In addition
to matrix-degrading enzymes secreted by the cancer cells themselves, MMP-9 derived from the
host microenvironments, including peritoneal mesothelial cells, appeared to contribute to the cancer
cell invasion into submesothelial matrices (Figure 6). Although mesothelial cells were thought to
play a structural role in maintaining the smooth surface of the peritoneum and possess rather static
properties, recent studies have shown that mesothelial cells produce various growth factors (e.g.,
vascular endothelial growth factor, basic fibroblast growth factor, epidermal growth factor, hepatocyte
growth factor, and transforming growth factor-β) and ECM components (e.g., cytokeratin, vimentin
and type I and III collagen) [21]. Therefore, peritoneal mesothelial cells are considered to be potentially
active cells that dynamically respond to environmental changes. Chen and co-workers reported that
TNF-α induced MMP-9 synthesis in human pleural mesothelial cells associated with Mycobacterium
tuberculosis infection and that this process might be implicated in the pathogenesis of tuberculous
pleuritis [22]. TNF-α is a strong activator for NF-κB, and MMP-9 expression is known to be upregulated
via activation of NF-κB signaling in various types of cells [23,24]. The signaling pathway involved in
the enhanced MMP-9 expression in mesothelial cells should be clarified in future studies.

The origin of TNF-α involved in the stimulation of mesothelial cells is unclear at present.
Considering that micrometastasis in the early stage of peritoneal dissemination takes place mainly in
the omentum, where many small lymphoid tissues called milky spots are present [25,26], macrophages
and lymphoid cells accumulated in milky spots are likely to secrete TNF-α. Another candidate
would be the macrophages infiltrating into tumors, which are collectively called tumor-associated
macrophages (TAMs) and are known to produce various cytokines depending on the stage and types
of tumors [16,27,28].

A recent clinical study on patients with gastric cancer indicated a positive correlation between
TNF-α expression and peritoneal metastasis [14]. The results showed that the TNF-α expressions
were significantly different between the metastatic group and non-metastatic group, and the logistic
regression analysis indicated that TNF-α expression was a risk factor for peritoneal metastasis of
gastric cancer. TNF-α has been shown to deteriorate malignant phenotypes of cancer cells, including
cell proliferation, migration, epithelial-mesenchymal transition, and productivity of cytokines and
growth factors. In addition to these effects on cancer cells, it seems important that the phenotypic
changes of mesothelial cells induced by TNF-α, especially the enhancement of MMP-9 secretion,
may cause peritoneal metastasis, and thus a poor prognosis for patients with gastric cancer. The
relationship between the level of MMP-9 in the gastric carcinoma environment and the malignant
invasive phenotypes of gastric carcinoma, including lymph node metastasis, has been extensively
studied, and the data suggest that MMP-9 plays important roles in the progression of gastric
cancer [29–31]. Therefore, it would be feasible that MMP-9 and its endogenous inhibitors (tissue
inhibitors of metalloproteinases, TIMPs) are preventive and therapeutic targets for cancer metastasis.

We have previously studied the interaction of gastric carcinoma cells with the mesothelium and
found that the integrin-dependent adhesion of carcinoma cells to the submesothelial matrix promotes
MMP-9 secretion from cancer cells [15]. TNF-α treatment of mesothelial cells has been shown to
induce morphological changes characterized by cell rounding and disruption of the cell–cell contacts,
leading to the expansion of intercellular gaps [19]. It is likely that the adhesion of cancer cells to the
exposed submesothelial matrix is stabilized, which might promote further upregulation of MMP-9
secretion and successive invasion of cancer cells. In conclusion, the present study strongly suggests
that TNF-α-induced MMP-9 secretions from mesothelial cells play an important role in the metastatic
dissemination of gastric cancer.
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4. Materials and Methods

4.1. Reagents

RPMI1640 medium, trypsin, Triton X-100, Brij 35, TriReagent and hexadimethrine bromide were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Nonidet P-40 was from Nacalai Tesque (Kyoto,
Japan). Bovine serum albumin (BSA), gelatin, dimethyl sulfoxide (DMSO), phorbol 12-myristate
13-acetate (PMA) and polyethylene glycol (PEG) 6000 were purchased from Wako Pure Chemical
Industries (Osaka, Japan). Polyethylenimine “Max” was purchased from Polysciences Inc. (Warrington,
PA, USA). Fetal calf serum (FCS) was obtained from Biosera (Boussens, France). ASF104 serum-free
medium was supplied by Ajinomoto (Tokyo, Japan). Matrigel was purchased from BD Biosciences
(San Diego, CA, USA). The PrimeScript RT Reagent Kit and KAPA SYBR FAST qPCR Kit Master Mix
(2×) ABI Prism were obtained from Takara Bio Inc. (Shiga, Japan) and KAPA Biosystems (Boston,
MA, USA), respectively. ViraPower Lentiviral Packaging Mix and puromycin dihydrochloride were
supplied by Life Technologies (Carlsbad, CA, USA). Oligonucleotides were supplied by FASMAC
(Kanagawa, Japan). Recombinant murine TNF-α was a product of Peprotech (Rocky Hill, NJ, USA).
A fluorescent dye, 3′-O-acetyl-2′, 7′-bis(carboxyethyl)-4 or 5-carboxyfluorescein, diacetoxymethyl ester
(BCECF-AM), was obtained from Dojindo Laboratories (Kumamoto, Japan). Gelatin Sepharose 4B was
a product of GE Healthcare (Piscataway, NJ, USA).

4.2. Cells

The MKN1 human gastric carcinoma, HT1080 human fibrosarcoma, and THP-1 human acute
monocytic leukemia cell lines were supplied by the RIKEN Cell Bank (Tsukuba, Japan) and cultured
in RPMI 1640 medium supplemented with 10% FCS at 37 ◦C under 5% CO2. Mesothelial cells
were isolated under sterile conditions essentially as described by Nakashio et al. [32]. Briefly, the
parietal peritoneum and diaphragm excised from ddY mice were washed with phosphate-buffered
saline (PBS) and incubated with 0.25% trypsin in PBS at 37 ◦C for 30 min with gentle mixing every
5 min. After an equal volume of RPMI 1640/10% FCS was added to the cell suspension, the mixture
was centrifuged at 2000 rpm for 10 min. The pelleted cells were suspended and incubated with
ammonium-chloride-potassium (ACK) lysis buffer (150 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA,
pH 7.4) to remove red blood cells at room temperature for 1 min. After 10 volumes of RPMI 1640
medium/10% FCS was added, the mesothelial cells were recovered by centrifugation at 2000 rpm for
10 min. The pelleted cells were resuspended in RPMI 1640 medium/10% FCS and passed through
nylon mesh (40 µm), and an aliquot (2 × 105 cells/0.1 mL) was placed in a 96-well culture plate that
had been coated with 10% Matrigel at 4 ◦C for 16 h. The cells were cultured at 37 ◦C for 4–5 days
until the growth of a monolayer of polygonal mesothelial cells. This procedure was conducted in
accordance with the Guide for the Care and Use of Laboratory Animals of Hoshi University School
of Pharmacy and Pharmaceutical Sciences (accredited by the Ministry of Education, Culture, Sports,
Science and Technology, Japan).

4.3. Gelatin Zymography

MMP activity was assayed by gelatin zymography essentially as described previously [33].
Briefly, MKN1 and/or mesothelial cells were treated with TNF-α (0, 1, 10, 100 ng/mL) in ASF104
serum-free medium for 0–48 h, and the culture supernatants were mixed with sample buffer for
SDS-polyacrylamide gel electrophoresis (Laemmli’s buffer without reducing agent). Specimens were
electrophoresed on a polyacrylamide gel (7.5%) containing 0.15% gelatin. The gel was washed
three times with 1% Triton X-100 for 20 min each, and three times with water for 20 min each.
Then gelatinolytic activity was detected by incubating the gel for 16 h at 37 ◦C in 50 mM Tris-HCl,
150 mM NaCl, 5 mM CaCl2, and 1 µM ZnCl2 followed by staining with Coomassie brilliant blue (CBB)
R-250 (Merck, Darmstadt, Germany).
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4.4. Quantitative RT-PCR (RT-qPCR)

Total RNA was isolated from mesothelial cells using TriReagent, and cDNA was synthesized
with a PrimeScript RT reagent kit using the total RNA as a template according to the manufacturer’s
protocols. The qPCR reactions were conducted with an Applied Biosystems StepOne system (Life
Technologies) using a KAPA SYBR FAST qPCR Kit Master Mix (2×) ABI Prism under the following
conditions: Denaturation at 95 ◦C for 20 s followed by 40 cycles of 95 ◦C for 5 s, 55 ◦C for 30 s and 72 ◦C
for 30 s. Melting curve analysis and agarose gel electrophoresis of the PCR products were performed to
verify the specific amplification. All samples were analyzed in triplicate and quantified by the relative
standard curve method using the Gapdh housekeeping gene as an internal control. The sequences
of the primers used were as follows: Mmp2, 5′-ATC GCT CAG ATC CGT GGT G-3′ (forward) and
5′-GGA GCT CAG GCC AGA ATG T-3′ (reverse); Mmp9, 5′-ATG TAC CCG CTG TAT AGC TAC C-3′

(forward) and 5′-ATA GTG GGA CAC ATA GTG GGA G-3′ (reverse); Gapdh, 5′-TGA AGC AGG CAT
CTG AGG G-3′ (forward) and 5′-CGA AGG TGG AAG AGT GGG AG-3′ (reverse).

4.5. Cell Invasion Assay Using Reconstituted Mesothelium

Reconstituted artificial mesothelium consisting of a monolayer of mesothelial cells on a Matrigel
layer in a Boyden chamber (Transwell) system was utilized for cell invasion assay. Murine mesothelial
cells were isolated as described above and cultured in a 10% Matrigel-coated inner chamber with a
polyethylene terephthalate (PET) membrane (pore size, 8 µm; Falcon 353097; BD Biosciences) combined
with an outer chamber (Falcon 353504) for 4–5 days until the cells grew as a confluent monolayer.
An MKN1 gastric carcinoma cell suspension (1 × 105 cells/0.2 mL) was placed in the inner (upper)
chamber, and the outer (lower) chamber was filled with ASF104 serum-free medium supplemented
with HT1080 serum-free conditioned medium. The addition of HT1080 conditioned medium (20%)
increased the chemotactic activity, although the conditioned medium contained a moderate level of
MMP-9 secreted by HT1080 cells. After the chambers were incubated at 37 ◦C for 16 h, the cells that had
migrated into the lower chamber through the membrane were stained with Diff-Quik (International
Reagents, Kobe, Japan) and counted under a microscope.

4.6. Cell Adhesion Assay

MKN1 cells were labeled with the fluorescent dye BCECF-AM (3 µM) at 37 ◦C for 40 min [18].
The labeled cells (1 × 105 cells/0.1 mL in 1% BSA containing RPMI 1640 medium) were added to
the monolayer of mesothelial cells in a 96-well culture plate as described above. After the plate was
incubated at 37 ◦C for 40 min, non-adherent cells were removed by gentle washing three times with
PBS. Adherent cells were lysed with 0.1 mL of 1% Nonidet P-40, and the lysates were diluted with 9
volumes of PBS. The fluorescence intensities were measured with a fluorescence spectrophotometer
(Ex = 490 nm, Em = 520 nm). The percent adhesion was calculated as follows: (The fluorescence
intensity of adherent cells/fluorescence intensity of total cells) × 100.

4.7. Flow Cytometry

The expression of α3 integrin in MKN1 cells was measured by a flow cytometer (BD FACSVerse;
BD Biosciences, San Diego, CA, USA), using monoclonal antibodies against human integrin α3 subunit
(SM-T1) [34] and FITC-labeled anti-mouse IgG (Kirkegaard & Perry Laboratories, Gaithersburg,
MD, USA).

4.8. MMP-Knockdown MKN1 Cells

Knockdown of MMP-2 and MMP-9 was conducted by using lentivirus-mediated RNA interference.
The short hairpin RNAs (shRNAs) of target sequences against MMP-2 (185–203: AGG AGA GCT GCA
TCC TGT T) [35] and MMP-9 (343–361: AAG TGG TAC CAC CAT AAC A) [36] were cloned into the
pSIH-H1 vector (System Biosciences, Palo Alto, CA, USA) according to the manufacturer’s protocol.
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Lentiviral particles were produced in HEK293FT cells after the co-transfection of pSIH-H1 vector and
ViraPower (three packaging plasmids) using polyethylenimine “MAX” [37] for 48 h and concentrated
by the PEG precipitation method. Briefly, the culture medium containing viral particles was mixed
with a one-third volume of 4 × PEG solution (32% PEG, 400 mM NaCl, 40 mM HEPES-NaOH, pH 7.4)
and incubated at 4 ◦C overnight. After centrifugation (3000× g, 30 min), the obtained precipitate
was dissolved in serum-free RPMI 1640 medium. The virus solution was mixed with hexadimethrine
bromide (8 µg/mL at final concentration), and the mixture was added to pre-cultured MKN1 cells
(1 × 105 cells/2 mL in a 6-well plate). The plate was then centrifuged (1800× g, 90 min) at 32 ◦C
and incubated at 37 ◦C for 48 h. The cells were successively cultured for 24 h after the medium was
replaced with RPMI 1640 medium/10% FCS, followed by selection with puromycin (2.5 µg/mL).

4.9. Purification of MMP-9

MMP-9 was purified from the conditioned medium of human monocytic leukemia THP-1 cells
based on the method of Morodomi et al. [38]. THP-1 cells were cultured in ASF104 medium containing
PMA (5 nM) at 37 ◦C for 3–4 days. The conditioned medium was mixed with gelatin Sepharose 4B
which had been equilibrated with TNC buffer (50 mM Tris-HCl, 0.15 M NaCl, 10 mM CaCl2, 0.05%
Brij 35, pH 7.5) and incubated at 4 ◦C for 16 h with gentle agitation. After gelatin Sepharose 4B was
washed three times with TNC buffer, MMP-9 was eluted with DMSO (5%)-containing TNC buffer. The
eluate was then applied to a PD-10 desalting column (GE Healthcare, Piscataway, NJ, USA) to replace
the buffer with ASF104 medium. The purity of MMP-9 was estimated to be >95%, as analyzed by
SDS-polyacrylamide gel electrophoresis followed by CBB and silver staining. The amino acid sequence
of the purified protein was analyzed by peptide mass fingerprinting. The tryptic fragments obtained
from the specimen were applied to MALDI/TOFMS (AXIMA-QIT; Shimadzu/Kratos, Kyoto, Japan) as
described previously [39]. Major mass peaks detected by the MS analysis and the corresponding amino
acid sequences to human MMP-9 were as follows: m/z 1345.74 for 25QSTLVLFPGDLR36, m/z 1184.62
for 43QLAEEYLYR51, m/z 1701.90 for 77QLSLPETGELDSATLK92, m/z 1084.55 for 107FQTFEGDLK115,
m/z 1680.91 for 144AFALWSAVTPLTFTR158, m/z 2350.10 for 163DADIVIQFGVAEHGDGYPFDGK184,
m/z 3175.37 for 185DGLLAHAFPPGPGIQGDAHFDDDELWSLGK214, m/z 2012.89 for
222FGNADGAACHFPFIFEGR239, m/z 2073.87 for 250SDGLPWCSTTANYDTDDR267, m/z 999.47 for
268FGFCPSER275, m/z 997.50 for 325 LFGFCPTR332, m/z 1385.79 for 547GSRPQGPFLIADK559, m/z
739.30 for 560WPALPR565, m/z 873.45 for 579LFFFSGR585, m/z 1532.83 for 586QVWVYTGASVLGPR599,
m/z 1440.80 for 604LGLGADVAQVTGALR618, m/z 823.45 for 624MLLFSGR630 and m/z 1921.91 for
653MFPGVPLDTHDVFQYR668 (UniProt P14780). Based on these results, the purified protein was
confirmed to be MMP-9.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/12/
3961/s1. Figure S1: RT-qPCR analysis of mRNA for the γ2 subunit of laminin-332 in mesothelial cells; Figure S2:
Purification of MMP-9 from THP-1 cells; Figure S3: Zymographic analysis of MMPs in the conditioned medium of
MMP-2- or MMP-9-knockdown MKN1 cells.
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Abbreviations

BCECF-AM 3′-O-acetyl-2′,7′-bis(carboxyethyl)-4 or 5-carboxyfluorescein, diacetoxymethyl ester
CBB Coomassie brilliant blue
ECM extracellular matrix
FCS fetal calf serum
MALDI/TOFMS matrix-assisted laser desorption ionization/time-of-flight mass spectrometer
MMP matrix metalloproteinase
PBS phosphate-buffered saline
PMA phorbol 12-myristate 13-acetate
RT-PCR reverse transcription-polymerase chain reaction
TNF-α tumor necrosis factor-α
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