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Abstract: Recent advancements in the field of in vitro transcribed mRNA (IVT-mRNA) vaccination
have attracted considerable attention to such vaccination as a cutting-edge technique against infec-
tious diseases including COVID-19 caused by SARS-CoV-2. While numerous pathogens infect the
host through the respiratory mucosa, conventional parenterally administered vaccines are unable to
induce protective immunity at mucosal surfaces. Mucosal immunization enables the induction of both
mucosal and systemic immunity, efficiently removing pathogens from the mucosa before an infection
occurs. Although respiratory mucosal vaccination is highly appealing, successful nasal or pulmonary
delivery of nucleic acid-based vaccines is challenging because of several physical and biological
barriers at the airway mucosal site, such as a variety of protective enzymes and mucociliary clearance,
which remove exogenously inhaled substances. Hence, advanced nanotechnologies enabling delivery
of DNA and IVT-mRNA to the nasal and pulmonary mucosa are urgently needed. Ideal nanocarriers
for nucleic acid vaccines should be able to efficiently load and protect genetic payloads, overcome
physical and biological barriers at the airway mucosal site, facilitate transfection in targeted epithelial
or antigen-presenting cells, and incorporate adjuvants. In this review, we discuss recent developments
in nucleic acid delivery systems that target airway mucosa for vaccination purposes.

Keywords: DNA vaccine; mRNA vaccine; mucosal immune response; intranasal delivery; pulmonary
delivery; nanoparticles

1. Introduction

In recent decades, nanotechnologies for the production of high-quality nucleic acids
and efficient in vivo delivery systems have revolutionized the field of vaccine develop-
ment [1–4]. Lauded as “third-generation vaccines”, DNA and in vitro transcribed messen-
ger RNA (IVT-mRNA) harbor huge potential to offer pioneering solutions for clinically
unmet needs [5,6]. Instead of using inactivated or live, attenuated viruses synthesized
through time-consuming and demanding production procedures, vaccine developers now
adopt simpler, rationally designed DNA constructs or IVT-mRNA to instruct cells of the
recipient to express antigenic proteins that imitate parts of the target bacteria or viruses
in order to generate antigen-specific humoral and cellular immunity to eliminate the real
pathogens containing said antigen when they invade the host. Since host cells are respon-
sible for antigen production, correct folding of the protein and natural glycosylation are
guaranteed [7]. However, successful transfer of these antigen-encoding genetic materials
to the target site (i.e., the nucleus for DNA transcription or ribosomes in the cytoplasm
for mRNA translation) within host cells is a prerequisite to achieve this goal. Apart from
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several exceptional cases [8–10], delivery vehicles or devices are imperative because of
limited cellular uptake and the instability of naked DNA and IVT-mRNA [2,11–13]. Nu-
cleic acid-based vaccines (NA-vaccines) utilize affordable and well-established standard
manufacturing processes that can scale up rapidly in response to outbreaks of infectious
diseases, avoiding the complex procedures of repeated culture and inactivation of infectious
pathogens or purification of recombinant antigens [5,14]. Furthermore, these genetic vac-
cines offer several distinct advantages over conventional vaccines (Table 1). NA-vaccines
are highly flexible, capable of encoding virtually any type of protein. The successful imple-
mentation of these vaccines would prevent or treat, at least theoretically, any disease with
effective and well-characterized antigen targets. Indeed, several NA-vaccines encoding
viral antigens have been tested in clinical trials to investigate their protective potency and
immunogenicity [15–20]. The range of diseases that could be addressed by NA-vaccines
even extends to cancer [21–23]. The emergence of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has turned the field’s spotlight towards the prevention of
coronavirus disease 2019 (COVID-19). Since then, research institutions and companies
have raced to develop COVID-19 vaccines [24]. IVT-mRNA vaccines turned out to be
the “biggest winner” of this vaccine competition, as they not only enabled an unimagin-
able speed of vaccine development but displayed extremely high protection rates against
COVID-19. After the viral genome sequence was publicly released, it took just sixty-six
days for Moderna’s 1273-mRNA vaccine candidate to enter phase I clinical trial [25]. Both
Moderna’s 1273-mRNA vaccine and BioNTech’s 162b2-mRNA vaccine finished phase III
clinical trials with 94–95% effectiveness in protection against COVID-19 and obtained
emergency use authorization within one year from the outbreak of the virus [26,27].

Table 1. Advantages of NA-vaccines compared with conventional vaccines.

Category DNA Vaccines RNA Vaccines

Design

Rapid design with the coding
sequence of antigens
A single formulation with
multiple antigens is possible

Rapid design with the coding
sequence of antigens
A single formulation with
multiple antigens is possible

Production

Rapid and reproducible
production based on in vitro
bacterial culture
Large-scale manufacture
without inactivation of
infectious pathogens or
purification of
recombinant antigens
Antigens with proper folding
are produced in vivo

Rapid and reproducible
production based on
in vitro transcription
Large-scale manufacture with
“cell free” process
Antigens with proper folding
are produced in vivo, with the
cytosol as its target, only
transiently expressed

Stability
Depends on the formulation
Ease of storage and
transportation in most cases

Depends on the formulation
Cold chain transportation is
generally required

Immune responses Both cellular and humoral
immune responses

Both cellular and humoral
immune responses without
risk of genome integration

One key obstacle on the path of developing advanced vaccines relates to the vacci-
nation route and mucosal immunity. Many pathogens, including SARS-CoV-2, infect the
host through the respiratory mucosa, so the interaction between the virus and the immune
system first occurs in the mucosa of the respiratory tract. The mucosal immune system
plays a key role in the host’s resistance to pathogen invasion [28,29]. However, most clinical
available vaccines employ invasive parenteral routes when inoculated, such as intramuscu-
lar, subcutaneous, and intradermal injections [30]. The modality of vaccine administration
could have an enormous impact on the efficacy of a vaccine, as it affects the accessibility
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of immune cells for priming and the extent of consequential effects (systemic and local
immune responses) after the vaccination. In addition to a few reports using retinoic acid as
an adjuvant to induce immunoglobulin A (IgA) secretion at mucosal cites [31,32], vaccines
inoculated via the conventional intramuscular route exclusively induce a systemic immune
response characterized mainly by serum immunoglobulin G (IgG) antibodies but barely
induce a mucosal immune response. The ability of serum IgG to eliminate virions at the
mucosal site might be very limited [33]. Mucosal routes of administration (specifically,
nasal or pulmonary delivery) are still considered by the research community to be the
ideal and most straightforward approach to inducing potent immune responses against
respiratory infections. This is particularly important for prophylactic vaccines to prevent
respiratory diseases, such as SARS-CoV-2, RSV, and influenza [34–36]. NA-vaccines admin-
istered to the mucosal layers, such as the nasal and pulmonary mucosa, could travel to
the draining mucosal lymph nodes (LNs) via lymphatic systems under the airway epithe-
lium [37–39]. Importantly, the activated mucosal immune system causes the production
of pathogen-specific secretory immunoglobulin A (sIgA), which efficiently blocks and
neutralizes invading pathogens in mucus at an early stage of infection and acts in the
front line of defense against infection [40,41]. Immune cells stimulated by antigens in the
respiratory mucosa are also able to produce corresponding specific immune responses to
protect against infectious diseases in other mucosal parts of the body (e.g., the gastroin-
testinal and reproductive tract), which are facilitated by the common mucosal immune
system [42]. Moreover, delivery of vaccines to mucosal surfaces can induce systemic immu-
nity with levels similar to those induced by counterparts administered via the conventional
parenteral route [43,44]. In addition to expanding immune protection to mucosal sites,
mucosal vaccination also brings other advantages. Being an inherently needle-free delivery
approach, mucosal vaccine delivery addresses various problems associated with needle
injection, such as the risk of needle reuse, which may lead to cross-infections; low patient
compliance due to the pain caused by injection; and the necessity of medical staff for the
vaccine injection [45].

Although mucosal vaccination is highly appealing, successful delivery of nucleic acids
within the airway is extremely challenging because of the complex structures and the
harsh microenvironment of the respiratory tract which has evolved to proficiently remove
foreign particles (Figure 1B). Compared with that of parenterally administered vaccines,
the number of successful mucosal vaccines is very limited. Currently, there is only one
nasally-administered vaccine (i.e., Flumist®) that has obtained market approval [46], and it
is based on live attenuated viruses for the reason that, currently, only virus-based delivery
systems (such as attenuated viruses or adenoviruses) have been able to achieve strong
respiratory mucosal immune responses [36,47,48]. However, such virus-based vaccines
still have many drawbacks, such as safety issues (virulence restoration) and preexisting
immunity [46]. Biomaterials-based nonviral delivery systems (Figure 1A), on the other
hand, have the advantages of excellent biocompatibility, ease of production, and high
flexibility in structure modification and can hence be tailor made for the mucosal delivery
of DNA- and IVT-mRNA-based therapeutics [49]. Another advantage of the nonviral
delivery platform is its ability to enhance vaccine efficacy by acting as an adjuvant itself or
codelivering adjuvants. However, the in vivo delivery efficiency of nonviral materials is
usually inferior to that of viruses, impeding the induction of sufficient mucosal immune
responses. Successful nasal or pulmonary delivery of NA-vaccines is challenging because
of physical and biological barriers at the airway mucosal site. Nevertheless, the field
is still developing and evolving, with numerous efforts dedicated to the exploration of
various materials for successfully mediating mucosal immunity. Based on our research
interest in the airway delivery of genetic payloads, this review highlights recent advances
in NA-vaccines inoculated via the nasal or pulmonary routes. We discuss the role of their
delivery platforms and summarize crucial factors for the development of successful DNA-
or IVT-mRNA-based vaccines that work efficiently in the respiratory mucosa (Figure 1).
A successful pDNA or IVT-mRNA delivery system should not only confer protective
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capacity and efficient mucosal delivery function by overcoming the barriers but improve
the translation of antigens from their payload pDNA/mRNA in specific antigen-presenting
cells (APCs) or epithelial cells (Figure 1C). This review also covers several relevant topics
including the structure of the airway and other barriers to mucosal vaccine delivery and
the associated immune system that processes vaccine antigens upon respiratory delivery.
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Figure 1. Overview of nucleic acid-based (NA-) vaccines administrated via the respiratory tract using
nanotechnologies. (A) Schematic view of different nanoparticles used for intranasal and pulmonary
vaccinations. (B) Physical and biological barriers at the airway mucosal site and mechanism of
immune responses in the respiratory tract mediated by mucosal-associated lymphoid tissues (MALTs).
NA-vaccines transcytose from the mucus layer into the epithelial tissues by microfold cells (M cells) or
passively diffuse through epithelial cell junctions. Other NA-vaccines are captured and internalized
by APCs, such as DCs, from their extension through epithelial junctions. APCs that have been
transfected with genetic antigens migrate to the nearest lymph node to activate T cells and B cells.
Activated B cells proliferate in the lymph node and enter the systemic circulation to the mucosal
effector sites. B cells locally differentiate into antibody-secreting plasma cells to produce IgA dimers.
IgA dimers are secreted via pIgR at the mucosal surface. Antigen-specific systemic IgG is also
produced. (C) NA-vaccines are taken up by epithelial cells (a), and pathogen-derived antigens are
then transcribed and translated from plasmid DNA or IVT mRNA and secreted into the extracellular
space, where they can be taken up by professional APCs such as DCs. (b). APCs then present antigens
to naïve T cells for activation and differentiation, promoting humoral and cell-mediated immune
responses against the encoded antigen.
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2. Barriers of Vaccines Inoculated via Respiratory Route

The respiratory system is critical for mammalian to maintain their life. It carries out the
physiological function of exchanging gases between the organism and the environment. Un-
avoidably, it is subject to the presence of unwelcome foreign substances, such as pollutants
and pathogens [50]. One important defense system is the mechanical–physical barrier, con-
stituted by a layer of epithelial cells adhered on the luminal surface of the respiratory tract
with tight junctions, preventing the trespassing of inhaled particles [51,52]. Among these
epithelial cells, goblet cells secrete a dense, protective mucus that traps foreign particles
and pathogens while also disrupting bacterial aggregation (Figure 1). The mucus, carrying
trapped foreign substances, is continuously expelled via coordinated movement by the
mucociliary “escalator” [53,54]. This mucociliary clearance removes large foreign materials
(>5 µm) from the upper respiratory tract (URT). However, pathogens often escape this
mechanical–physical barrier, reaching the pulmonary alveoli within the lower respiratory
tract (LRT), which may lead to pulmonary inflammation [55]. To prevent such infections,
another important line of defense is available. The airway and alveolar fluids contain a
variety of soluble substances such as antimicrobial proteins (e.g., lysozymes, lactoferrins,
and defensins), microbial opsonins (e.g., complement proteins and surfactant-associated
proteins), and enzymes (e.g., proteases and nucleases), building up a robust antiinfection
environment within the luminal surface along the entire airway [56].

Because of its important roles in protecting the host from inhaled pathogens, the
mechanical–physical barrier poses huge obstacles to vaccines inoculated via the respira-
tory tract. Since vaccines are also perceived to be exogenous pathogens, intranasally or
intratracheally administered vaccines are prone to being expelled via “mucosal clearance”.
This, combined with nonspecific binding with positively-charged proteins and enzymatic
degradation within the mucus, makes it difficult for NA-vaccines to reach the airway ep-
ithelium to activate the mucosal immune system, resulting in limited immune response. To
overcome these barriers, a safe and efficient delivery system is imperative for NA-vaccines
to be administered via the respiratory tract.

3. Mucosal Immune Systems of Respiratory Tract against Infection
3.1. The Upper Respiratory Tract

The highly vascularized URT is the primary route of ingress of inhaled pathogens. A
dense network of mucosal-associated lymphoid tissues (MALTs) is in the mucosal tissues
to help induce pathogen-specific immune responses, reducing occurrences of infections.
Peyer’s patches in the small intestine, bronchus-associated lymphoid tissues (BALTs),
larynx-associated lymphatic tissues (LALTs), and nasopharynx-associated lymphoid tissues
(NALTs) in the rodent nasal cavity are all subsets of MALTs [57,58]. The NALT, commonly
regarded to be equivalent to the Waldeyer’s ring in humans [59], also plays a potentially
unique role in the initiation of mucosal immune responses based on well-organized local
lymphoid structures [60]. Through antigens presented by dendritic cells (DCs) from the
parenchyma of nonlymphoid organs and distal sites, the NALT has an important role in
generating T helper 1 and T helper 2 cells as well as IgA-secreting B cells in lymph nodes
(LNs) [61].

While mucosal DCs capture antigens directly from the luminal side of the airway tract
by extending DC dendrites through the tight junctions between the epithelial cells [62], M
cells, a group of specialized cells located in the epithelium-overlying follicles of the MALT,
are responsible for efficiently transporting antigens from the lumen to the underlying mu-
cosal lymphoid tissues in a process termed “transcytosis” [63]. On their basolateral surface,
the membranes of M cells are deeply invaginated, forming pocket structures holding DCs
and/or lymphocytes. M cells are perfect antigen-transporting devices, and their reduced
lysosome function enables antigen particulates entered from the airway lumen to be ef-
fectively delivered to DCs for further processing with minimal modification [63]. Apart
from antigen transport, M-cells also aid immune response induction to the transported
antigen by releasing a costimulatory signal for T- and B-cell proliferation [64]. Thus, M-cell
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targeting strategies in the development of mucosal vaccines have grown in popularity as
means of improving efficacy in priming mucosal and systemic immune responses.

When captured antigens are transported to draining lymphoid nodes, they are pro-
cessed into peptides following DC maturation for presentation to antigen-specific CD8+ or
CD4+ cells in the form of major histocompatibility complex (MHC) class I or class II, respec-
tively. Facilitated by costimulatory molecules and cytokines, the priming of CD8+ or CD4+

cells initiates programmed cell proliferation and differentiation within draining lymph
nodes, accelerating the formation of corresponding antigen-specific effector T cells [65,66].
With the help of cytokines such as IFN-γ, IL-2, and IL-10 secreted by CD4+ T helper cells,
CD8+ effector cells migrate from lymphoid tissues to the site of infection, inducing lysis
in infected cells via Fas–FasL interactions or exocytosis of granule-associated proteases
containing perforin and granzymes [67,68]. Moreover, a potent and long-term antibody
response is built with help from T follicular helper (TFH) cells, which provide relevant
cytokines and costimulatory molecules for the affinity maturation of B cells, despite the
presence of a T cell-independent mechanism for antibody production [69–71]. Following
isotype switching and the selection of B cells in the germinal center, antigen-specific dimeric
immunoglobulin A (dIgA) is generated [72]. Subsequently, transcytosis of dIgA is mediated
by polymeric immunoglobulin receptors (pIgRs) expressed on the basolateral surface of
the epithelium [73]. Endoproteolytic cleavage of pIgR on the luminal side results in the
release of secretory IgA (sIgA) into the lumen [74]. Unlike serum IgA, sIgA is resistant
against proteases, thereby being able to protect mucosal surfaces against pathogens despite
the protease-rich environment on the nasal mucosa surface [74]. After complete clearance
of infectious pathogens, the majority of effector T and B cells undergo apoptosis, leaving
behind a small population of memory cells [75,76].

A study on severe acute respiratory syndrome coronavirus (SARS-CoV) showed that
memory T cells remain for a long time in patients who have recovered from SARS-CoV
infection, conferring a long-term immune protection effect [77]. Memory T cells can be
roughly divided into two classes. After clearance of infected pathogens, central memory T
cells (TCM) typically remain in circulation within lymphoid organs, while effector memory
T cells (TEM) generally circulate through the red pulp of the spleen and nonlymphoid
tissues [78,79]. Both TCM and TEM possess strong capabilities to proliferate and differentiate
into effector T cells after encountering a reinfection. TEM in the airway can rapidly remove
and act on respiratory pathogens at the early stage of the reinfection [80,81]. However,
TCM has to undergo multiple steps, such as activation and differentiation, to initiate sig-
nificantly delayed effector responses upon encountering pathogens compared to those of
TEM [82]. Another population of activated memory T cells does not return to circulation
and is therefore known as resident memory T cells (TRM). Compared with TEM, TRM pro-
vides a first line of defense in nonlymphoid tissues against infectious pathogens and limits
further spread of infection in the host [83]. Lung TRM seems more effective in promot-
ing a long-term mucosal immune response against airway-transmitted pathogens [84,85].
Respiratory route inoculation has also been suggested to be necessary for generating of
TRM cells in the lung [86]. As shown in a previous study, Sendai virus-specific CD4+ TRM
persists in lung tissues and the airway for several months after infection in C57BL/6 mice,
mediating a substantial degree of protection against secondary virus infection [87]. Thus,
TRM levels constitute another important indicator of mucosal vaccine efficacy. Given that
the mucosal surface is the primary route of ingress of most pathogens, mucosal vaccines
providing longer immunity against inhaled pathogens via eliciting robust effector memory
populations in mucosal tissues is of great promise.

3.2. The Lower Respiratory Tract

Most pathogens that are smaller than 1 µm tend to be able to bypass the mucosal
layer on the URT luminal surface, reaching the terminal regions (bronchioles and alveoli)
of the LRT. In the lung, the dominant cell population, alveolar macrophages (AMs), ac-
counts for approximately 95% of airspace leukocytes, engulfing most of the antigens [56,88].
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Macrophages play an important role in the first line of defense, while CD11c+F4/80− DCs
seem to be the major APC population in the lung responsible for presenting antigens to pul-
monary T cells after infection in mice [89], demonstrating that DCs play an important role
in adaptive immune response and in determining the magnitude of pulmonary vaccines’
immune responses.

In alveoli, the recruitment and differentiation of CD11b+ DCs can be facilitated by pro-
ducing type I immune mediators in alveolar epithelial cells (AECs) and immune cells [90].
Pulmonary surfactant (PS)-biomimetic liposomes encapsulating 2′,3′-cyclic guanosine
monophosphate-adenosine monophosphate (cGAMP) enter AMs by means of lung specific
surfactant protein-A- and -D-mediated endocytosis, after which cGAMP is released into
the cytosol and fluxes from AMs into AECs by way of gap junctions [90]. cGAMP, an
agonist of the stimulator of interferon genes (STING), stimulates the production of type
I interferons in both AECs and AMs, which in turn promotes rapid DC recruitment and
differentiation. Through this mechanism, influenza-specific humoral and CD8+ T cell
immune responses were vigorously augmented in mice after intranasal immunization with
PS-cGAMP-adjuvanted H1N1 vaccines [91]. Taken together, these findings suggest that the
respiratory delivery of cGAMP as adjuvant might be an alternative strategy for developing
pulmonary vaccines.

The antigen-presenting ability of different types of DCs in the respiratory system is
also suggested to be different. Although there are relatively larger populations of DCs
located in the lung parenchyma and alveolar spaces of the LRT, airway mucosal myeloid
DCs are more endocytic and efficient than their aforementioned counterparts for presenting
peptide antigens to naive CD4+ T cells [92]. Similarly to NALTs, well-developed bronchus-
associated lymphoid tissues (BALTs) have been found at branching sites of the bronchial
tree in rabbit and feline lungs, while this type of lymphoid structure in human and mice is
called inducible bronchus-associated lymphoid tissue (iBALT). The iBALT is induced only
by inflammatory stimulation or infection and represents an inducible secondary lymphoid
tissue for respiratory immune responses [93]. However, the biological outcomes of the
immune response mediated by the iBALT could be beneficial or harmful. In some cases, the
persistent exposure of antigens to iBALT during allergic reactions, chronic inflammation,
or autoimmune disease may lead to exacerbation of inflammation [94]. Although the local
immune mechanism of iBALT is poorly understood, the design of pulmonary vaccines
aiming to trigger the formation of iBALT with subsequent protective immunity should
be considered. For instance, pulmonary administration of a protein cage nanoparticle
promoted the development of iBALT in the lung, resulting in enhanced viral clearance,
accelerated induction of viral-specific antibody production, and significantly decreased
morbidity and lung damage [95].

In conclusion, nasal and pulmonary administration are the most effective ways to elicit
a substantial local immune response in addition to a systemic immune response. Mucosal
immunisation stands out for its rapid and comprehensive activation of various immune
subsystems in addition to its relatively fewer side effects.

4. DNA Vaccines

The first proof of concept for in vivo protein expression with nucleic acids was re-
ported in 1990 by injecting DNA or RNA molecules into mouse skeletal muscle for the
expression of chloramphenicol acetyltransferase, luciferase, and galactosidase [96]. It was
thereafter demonstrated that the production of cytotoxic T lymphocytes for influenza
could be induced by injecting plasmid DNA (pDNA) encoding influenza A nucleopro-
teins into the quadriceps of BALB/c mice [97]. These pioneer studies confirmed sufficient
immunogenicity of DNA vaccines in animal models, providing evidence of this immu-
nization platform’s promising ramifications. DNA vaccines are generally constructed by
inserting gene fragments encoding immunogenic antigens into a bacterial plasmid vector,
forming pDNA. After pDNA is delivered into the host cell nucleus, antigenic proteins
are subsequently expressed. Generally, APCs are the primary targets to be transfected
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with the genetic material. Following effective presentation in APCs, foreign antigenic
proteins initiate specific immune responses [98]. DNA vaccines offer several advantages
over conventional vaccines (e.g., live-attenuated, inactivated, or subunit vaccines), as sum-
marized in Table 1. Also, DNA vaccines are generally stable at room temperature (though
this may vary between formulations), avoiding the need for an uninterrupted cold chain
during storage and transport [99]. Large-scale manufacturing of DNA vaccines primarily
involves synthesis of relevant nucleic acids followed by standard cloning into plasmid
vectors, avoiding the time- and labor-intensive culturing procedures required by traditional
subunit and virus-based vaccines [100]. In contrast to subunit vaccines, DNA vaccines have
been demonstrated to induce more potent cytotoxic T cell responses without severe side
effects [101]. Although the potential possibility of genome integration remains the primary
theoretical safety concern with DNA vaccines, this scenario has not been realized across
large numbers of studies and reports [101]. Numerous clinical investigations have also
demonstrated DNA vaccines to be largely safe in humans [3,16,102]. All these advantages
make DNA vaccines an ideal candidate for rapid responses in the event of epidemic and
pandemic outbreaks. Indeed, the first DNA vaccine to be approved for human use was a
COVID-19 DNA vaccine (ZyCoV-D) developed in India. It was found to be 67% protective
in clinical trials [103], providing evidence that DNA vaccines can be effective in controlling
the pandemic [104].

In past decades, DNA vaccines have been studied for the prevention and treatment
of a variety of diseases, such as infectious diseases, cancer, autoimmune diseases, and
allergies. However, the immunogenicity of DNA vaccines in humans is not as sufficient
as that in mouse studies to elicit significant clinical benefits [3]. The poor transport of
pDNA into the nucleus of host cells results in low antigen synthesis, limiting the protective
immunological responses in the recipient. Several approaches have been explored in recent
years to address this issue, including the optimization of codon sequences/transcriptional
elements, the incorporation of adjuvants, and enhancing delivery technologies. In this
section, we discuss several well-studied delivery vehicles used for DNA vaccines that are
administered via nasal or pulmonary routes (Table 2).

4.1. Delivery of DNA Vaccines via Respiratory Routes

Intranasal and pulmonary administration of DNA vaccines have attracted widespread
attention recently because of various enticing properties. Early reports on inhaled DNA
vaccines combined plasmids encoding ovalbumin, hepatitis B surface antigen, and HLA-
A*0201-restricted T cell epitopes of Mycobacterium tuberculosis (M. tuberculosis), which re-
sulted in enhanced immunity as indicated by antibodies and cytokine production [105,106].
These pioneering investigations suggested that mucosal immune responses can be more
effectively elicited when DNA vaccines are delivered directly to mucosal sites. However,
there are still many obstacles that need to be overcome to more effectively utilize mucosal
DNA vaccines. Vaccines must penetrate the mucus layer, translocate into target cells, and
avoid extracellular and intracellular degradation in order to be effective (Figure 1). For
example, delivery via the nasal cavity exposes DNA vaccines to being trapped by the nasal
mucus, resulting in enzymatic breakdown. The viscosity and pore size of the mucus layer
markedly affect the effective diffusivity of particles on the airway surfaces. Mucociliary
clearance from cilia cells also significantly determines the fate of entrapped DNA vaccines.
It continuously pushes mucus outwards, expelling mucus from the nasal channel and
limiting residence time at the mucosal surface. The dilution effect in bulk mucosal fluids
can also impede successful deposition onto the epithelium.

As a result, a safe and effective DNA delivery mechanism must be designed to over-
come these obstacles. A suitable delivery system should target mucosal APCs for antigens
processing, resulting in selective B and T cell activation. The ultimate goals of DNA
delivery systems are to promote uptake of DNA into target tissues and cells, protect
DNA from enzymatic breakdown, extend residence time at the target site, boost antigen
expression, and optimize immune response, all without sacrificing safety. Section 4.2 dis-
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cusses in detail several DNA vaccine delivery technologies that have been evaluated for
respiratory administration.

4.2. Delivery Systems for DNA Vaccines via Respiratory Routes

The most prevalent technologies in the delivery of DNA constructs, such as electro-
poration, particle bombardment, and jet injectors, have exhibited improved transfection
efficiency and huge potential in clinical trials when compared to traditional intramuscular
injection of naked pDNA [107,108]. However, these attractive methods are inapplicable for
the respiratory route, necessitating the use of a potent delivery strategy to overcome the
barriers in the respiratory system. Advancements in nanotechnologies and material science
have proven to be beneficial in the effective delivery of pDNA by the synthesis of DNA
nanoparticles with diverse structures. Nanoparticles can better pass cell membranes via
endocytosis while preventing premature degradation of pDNA and subsequently promote
intracellular trafficking into the nucleus following endosomal escape, increasing immuno-
genicity in animal models and humans. Most importantly, sustained and controlled release
of pDNA from nanocarriers at the delivery site recruits APCs, resulting in an improved
antigen-specific immune response. The immunogenicity of DNA by vaccines can be further
enhanced employing additional adjuvants. Currently, cationic lipids and polymers are two
of the most employed nanomaterials for DNA vaccines.

4.2.1. Liposomes and Niosomes

Liposomes and some other vesicular systems are widely used as delivery systems for
DNA vaccines. Liposomes generally consist of aqueous cores surrounded by phospholipid
bilayers. For antigen delivery, two approved liposomal vaccine formulations used to be
available: Inflexal® V (influenza vaccine) and Epaxal® (hepatitis A vaccine). Both of these
formulations use virosome-based technology in which viral proteins are bonded to the
surface of a liposome carrier similarly to how viral particles are bound [109]. The goal is to
imitate a safe viral-like particle capable of eliciting significant protective immune responses.
Although both examples have been discontinued, comparable technology could be used
to increase the immunogenicity of DNA vaccines. To achieve this, pDNA could be either
electrostatically complexed on the surface of cationic liposomes or encapsulated in the
aqueous core by a dehydration–rehydration procedure. In general, cationic liposomes have
shown higher in vitro transfection efficiency, while nonionic or anionic counterparts have
shown enhanced antibody responses in animal models [110,111]. Surface modifications
with antigenic components or targeting ligands further enhance immune responses of
liposome-based vaccines [111]. It has been shown that liposomes coated with glycol
chitosan are mucus adhesive and immune system stimulating [112]. Surface-modified
cationic liposomes such as phosphatidylcholine (PC), dioleoyl phosphatidylethanolamine
(DOPE), and cholesterol (Chol) elicited stronger humoral, mucosal, and cell-mediated
immune responses post intranasal administration in mice against hepatitis than uncoated
counterparts [111]. Liposomes containing noncoding pDNA have also been shown to
exhibit adjuvant-like behavior, inducing elevated antibody levels and T cell immunity in
mice and nonhuman primates [113].

Liposomes have been used as DNA vaccine carriers for intranasal delivery in sev-
eral investigations to induce efficient immune responses against respiratory pathogens.
To induce immune protection against M. tuberculosis, D’Souza et al. adopted pDNA en-
coding antigen 85A formulated with a (+/−)-N-(3-aminopropyl)-N,N-dimethyl-2,3-bis
(dodecyloxy)-1-propanaminium bromide (GAP-DLRIE):DOPE liposome [114]. After in-
tranasal immunization in mice, a positive splenic Th1-type cytokine response was induced
in GAP-DLRIE:DOPE formulations, but this response was still weaker than that obtained
from intramuscular administration with the same dosage. However, the combination of
intranasal and intramuscular injections elicited even stronger Th1 type immune responses
in the lungs [114]. Another study, performed by Rosada et al., described how a single
intranasal immunization with liposome-based formulations of pDNA encoding HSP65



Nanomaterials 2022, 12, 226 10 of 28

against M. tuberculosis led to a remarkable reduction in the amount of bacilli in lungs
of mice [115]. The authors employed egg phosphatidylcholine (EPC), DOPE, and 1,2-
dioleoyl-3-trimethylammonium-propane (DOTAP) to formulate the delivery system. This
formulation also increased the production of IFN-γ and lung parenchyma protection to
a level similar to that in mice vaccinated intramuscularly four times the dosage of naked
pDNA encoding HSP65 [115]. In addition, intranasal immunization with liposome-based
DNA vaccine provided complete protection against influenza after a viral challenge as-
say [116]. Mice immunized intranasally with liposome-encapsulated pDNA encoding
hemagglutinin (HA) protein, but not naked plasmid, were found to produce strong serum
IgA/IgG responses and increased IgA titers in bronchoalveolar lavage fluid (BALF) [117].
T cell-proliferative responses were also successfully induced in both intranasal and in-
tramuscular administration [117]. These studies demonstrated the ability of liposomes
in the delivery of DNA vaccines inoculated via the intranasal route to confer significant
immune protection against respiratory infections in animal models. However, widespread
adoption of liposome-based vaccines remains stunted by their relatively lower physical
and chemical stability in aqueous dispersions during long-term storage [118]. Accordingly,
numerous methods to improve the stability of liposome formulations during storage have
been investigated, including freeze-drying, spray-drying, supercritical fluid technology,
and lyophilization [119–121].

Niosomes, which are nonionic surfactant-based vesicles, have been developed as
alternative delivery systems to liposomes because of their advantages such as cost-effective
manufacturing, large-scale producibility, and stability [122,123]. Because of their structural
similarities to liposomes, niosomes were also applied as vehicles for pDNA, small inter-
ference RNAs (siRNAs), and aptamers in target cells [124]. Cationic niosomes, containing
cationic lipids, made an effective vector for pDNA delivery and achieved ~95% transfection
efficiency in vitro [125]. Later, the same research team reported successful transfection
of human tyrosinase gene (pMEL34) and the stability of developed cationic niosomes
in transdermal delivery [126]. Perrie et al. reported that niosomes carried with H3N2
influenza virus resulted in enhanced immune response after subcutaneous administra-
tion in mice [127]. Mannolysated niosomes encapsulated with pDNA encoding HBsAg
were reported to provoke protective immunity against hepatitis B as both a DNA vaccine
carrier and adjuvant for oral immunization [128]. However, there have been no reports
utilizing niosomes as a mucosal delivery platform in the respiratory tract as far as we
know. Their efficacy for the intranasal and pulmonary delivery of DNA vaccine needs
further investigation.

4.2.2. Polymers

One of the most appealing characteristics of polymer-based DNA delivery technolo-
gies is their flexibility in structure design and modification. Electrostatic interactions allow
cationic polymers to form complexes (polyplexes) with DNA vaccines. Polymer synthesis
is also relatively inexpensive and simple to scale up. To maximize cellular uptake and
transfection effectiveness, the size and surface characteristics of polymeric particles can
be adjusted by employing different polymers and methods of preparation [129,130]. It has
been found that alveolar macrophages are particularly effective in absorbing particles with
diameters ranging from 300 to 600 nm, so the particle size should be less than 3 µm (prefer-
ably under 500 nm) for DC-targeted absorption in the respiratory tract [131]. Aside from
particle size, particle charge also influences cellular absorption in APCs in the respiratory
tract. Where both DCs and macrophages are substantially present, preferential uptake of
DNA vaccines into DCs is desirable. DCs can produce large quantities of peptide–MHC II
complexes, which are then presented on the cellular surface to initiate T cell activation and
differentiation [132]. It has been found that macrophages have higher phagocytic activity
than DCs, but also that absorption in DCs can be increased by imparting positive charge to
the particle [133]. Polymeric particles can also be modified with functional groups or lig-
ands to improve the cellular uptake of DCs. DCs can preferentially uptake ligand-modified
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nanoparticles via receptor-mediated endocytosis using C-type lectin receptors or mannose
receptors [134].

Polyethylenimine

Polyethylenimine (PEI) is one of the most well-studied polymers with high transfection
efficiency and has been extensively applied for mediating in vitro and in vivo transfection
of DNA molecules [135]. Compared to lipid-based formulations, DNA complexed with
PEI has shown improved stability and higher levels of pulmonary transfection, even after
nebulization [136,137]. For intranasal immunization, PEI/pDNA complexes encoding
SARS-CoV spike proteins induced higher antigen-specific Th2 dominant IgG and IgA
antibodies in BALF than naked plasmid counterparts [138]. Cellular immune responses
were also detected in a PEI/pDNA treated group, with increased B cells and higher numbers
of IFN-γ-, TNF-α-, and IL-2-producing T cells in the lungs [138]. A H5N1 intranasal
vaccine with DNA encoding HA formulated with PEI induced potent mucosal and systemic
immune responses and elicited both full protection against the parental strain and partial
cross-protection against a distinct highly pathogenic strain [139]. Pulmonary immunization
of DNA vaccines formulated with PEI also induced robust systemic and CD8+ T-cell
responses in the gut and vaginal mucosa [140]. Furthermore, mice inoculated via the
intratracheal (i.t.) route elicited higher levels of interleukin-2 than those inoculated by
intramuscular immunization in lung-associated antigen-specific CD4+ T cells [140]. These
robust T cell responses, which were induced by i.t. but not intramuscular administration,
protected mice from a lethal recombinant vaccinia virus challenge [140]. A similar study also
reported that robust pulmonary CD8+ T cell populations effectively mediated protective
immunity against influenza respiratory challenges after pulmonary immunization with
PEI/pDNA [141].

Although PEI appears to be a promising delivery vector for airway inoculated DNA
vaccines, one remaining major limitation is its toxicity due to its highly positively-charged
and nondegradable nature. Immunization with PEI vaccine was found to provoke the
activation of genes with apoptosis, stress responses, and oncogenesis [142]. As a result,
biodegradable PEI derivatives with low-toxic profiles have been developed for DNA deliv-
ery. A less toxic form of PEI called deacylated PEI (dPEI) with potent transfection efficiency
was applied in delivering pDNA encoding HA [143]. Essentially, dPEI is a completely
hydrolyzed linear PEI with 11% more free protonatable nitrogen atoms than conventional
PEI. Following intranasal administration, dPEI-complexed pDNA vaccine formulations
were capable of generating strong systemic and mucosal humoral responses, activating
cellular responses, and mediating a higher degree of protection in a challenge study against
influenza [143]. Other strategies using covalent modification or electrostatic neutralization
of PEI’s cationic group to reduce zeta potential have also been investigated. Poly-lactic-
co-glycolic acid (PLGA), a synthetic biodegradable copolymer, has been approved by the
Food and Drug Administration (FDA) for human use in delivering therapeutic agents such
as proteins and nucleic acids [144]. The negative charge and hydrophobic nature of PLGA
could be used to neutralize the positive charge of PEI for safe nucleic acid delivery. Bivas-
Benita et al. developed PLGA nanoparticles bearing PEI on their surfaces. Internalization
of the DNA-loaded PLGA–PEI nanoparticles was also studied in the human airway submu-
cosal epithelial cell line, Calu-3 [145]. The results suggested that DNA could be detected in
the endolysosomal compartment after 6 h incubation with Calu-3 cells and that and the
optimal cell viability was achieved when the weight ratio of PEI to DNA was between
1:1 and 0.5:1 [145]. A similar study reported the formulation of PLGA–PEI microparticles,
in which 10% PEI (w/w) efficiently adsorbed DNA and protected DNA from enzymatic
degradation [146]. Intramuscular immunization of mice with such PLGA–PEI formula-
tions loaded with pDNA encoding immunodominant antigens of Listeria monocytogenes
demonstrated that the formulation had an adjuvant effect [146]. These studies indicated
that PEI has a favorable profile to be a nonviral gene carrier for DNA vaccines delivered
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through the respiratory tract, but also that further optimization is still necessary to realize
their full potential.

Chitosan

Chitosan is a biodegradable and biocompatible polysaccharide derived from chitin
and has been frequently employed as a DNA delivery vector because of its biodegradability
and biocompatibility [147]. Furthermore, chitosan and its derivatives possess substan-
tial mucoadhesive properties, making them ideal for intranasal administration [148,149].
Chitosan has also been reported to be immune stimulating by enhancing macrophage
accumulation and activation, increasing cytokines’ resilience against infections, and pro-
moting cytotoxic T cell response [150,151]. To assess its potential in mediating mucosal
immunization, chitosan was used to complex with pDNAs encoding nine different antigens
(NS1, NS2, M, SH, F, M2, N, G, and P) from respiratory syncytial virus (RSV) [151]. A single
intranasal administration of chitosan–pDNA resulted in a significant reduction of viral
titers and viral antigen load in the lungs after an acute RSV infection [151]. In addition,
significantly elevated levels of serum RSV-specific IgG antibodies, nasal IgA antibodies,
cytotoxic T lymphocytes, and IFN-γ production in the lung and splenocytes were detected
in comparison with controls [151]. However, when pDNA encoding the M2 proteins of RSV
antigens was formulated with chitosan, virus-specific CTL responses in BALB/c mice were
induced only at a level that was comparable to those induced via intradermal immuniza-
tion [152]. Nonetheless, aerosolized pDNA–chitosan nanoparticles induced higher levels of
IFN-γ through pulmonary administration than counterparts immunized by intratracheal
and intramuscular administration [106].

In order to achieve targeted delivery of antigen to DCs, biotinylated chitosan nanopar-
ticles loaded with pDNA encoding the nucleocapsid (N) protein of SARS-CoV were de-
veloped by Raghuwanshi et al. [153]. Chitosan was modified with bifunctional fusion
protein (bfFp) consisting of truncated core-streptavidin fused with anti-DEC-205 single
chain antibody (scFv) [153]. The core-streptavid in the arm of bfFp bonded with biotiny-
lated nanoparticles, while anti-DEC-205 scFv imparted targeting specificity to the DCs’
DEC-205 receptors. Intranasal administration of such targeted formulations led to the
detection of an enhanced number of N protein-specific systemic IgG and nasal IgA an-
tibodies [153]. In another study, mannosylated chitosan (MCS) formulated with DNA
vaccine encoding a multi-T-epitope was employed to facilitate airway delivery and antigen
targeting to the APCs in the alveoli [154]. Following intranasal immunization, HSP65-
specific sIgA in the BALF was significantly elevated. A modest antigen-specific Th1 (IFN-γ,
TNF-α, and IL-2) response and a potent polyfunctional CD4+ T response were induced
for enhancing mucosal immune protection against M. tuberculosis in the spleen and lung,
respectively [154].

Thiolated chitosan derivatives have been found to improve the transfection efficiency
of chitosan for intranasal delivery. In a study performed by Bernkop-Schnürch et al.,
thiol-bearing moieties were introduced on the polymeric backbone of chitosan in order to
prepare thiolated chitosan that could interact with mucus glycoproteins via the formation
of disulfide bonds [155]. The results indicated that thiolated chitosan improved mucosa
adhesiveness to the mucus layer 6- to 100-fold compared to the unmodified counterpart,
resulting in enhanced mucus permeation. Simultaneously, increased penetration at the
mucosal surface was also observed in chitosan-coated PLGA nanoparticles encapsulating
macromolecules [156,157]. Based on this fact, an emulsion–diffusion–evaporation technique
was employed to prepare cationic nanospheres composed of biodegradable and biocompat-
ible copolyester PLGA, with a PVA–chitosan blend stabilizing the PLGA nanospheres [158].
Despite the charge on the nanospheres being sufficient to bind the negatively charged DNA,
the immunity of DNA vaccines complexed by this formulation remains to be illuminated.
In one study, chitosan-coated PLGA was employed to deliver pDNA encoding foot-and-
mouth disease (FMDV) capsid protein and bovine IL-6 to protect mice against FMDV
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infections [159]. This chitosan/PLGA/pDNA vaccine formulation provided enhanced
protective immunity against FMDV post-intranasal immunization [159].

In a recent publication, chitosan was adopted to coat star-shaped gold-nanoparticles
to yield a gold-nanostar chitosan (AuNS–chitosan) nanoformulation for intranasal delivery
of a DNA vector expressing S protein of SARS-CoV-2 [160]. Six-time repeated dosing of
AuNS–chitosan DNA vaccine induced high levels of S protein-specific IgG, IgM, and IgA
antibodies in serum up to 8 weeks in both BALB/c and C57BL/6 mice as assessed using
an ELISA assay [160]. IgG and IgA sustained their levels until week 8, then rose back to a
high level with a single 7th dose in week 14. The serum neutralization IC50 (serum dilution
factor) for infectivity inhibition concentrations were determined to be 1:83.8, 1:47.5, and
1:150 (collected in week 18 of the study) for pseudoviruses engineered with S proteins from
SARS-CoV-2-Wuhan, SARS-CoV-2-beta mutant, and SARS-CoV-2-D614G mutant variants,
respectively [160]. With the help of immunophenotyping and histological analyses, the
authors further revealed chronological events involved in the recognition of S antigen by
resident DCs and alveolar macrophages in the lungs of DNA vaccine transfected mice [160].
These APCs further primed the draining lymph nodes and spleen for peak antigen-specific
cellular and humoral immune responses. Although this proof-of-concept study suggested
the capabilities of the AuNS–chitosan DNA vaccine to elicit potent mucosal immune
responses, further development with a reduced dosing regimen and more key evidence
(e.g., sIgA levels in BALF samples, details in the subsets of effector T cells and memory T
cells, the protection efficiency of SARS-CoV-2 challenge studies, etc.) will be required to
validate its potential for clinical translation.

Table 2. Summary of DNA vaccines inoculated via respiratory tract.

Disease Nanoparticle Coding Antigens Experimental
Animal Administration Immune Response 1 Ref.

Hepatitis PC/DOPE/Chol S protein mice i.n. HIR(+)/MIR(+++)/CIR(+) [111]
Tuberculosis GAP-DLRIE:DOPE 85A mice i.n. Th1 CIR(+) [114]
Tuberculosis EPC/DOPE/DOTAP HSP65 mice i.n. Th1 CIR(++++) [115]
Tuberculosis MCS HSP65 mice i.n. MIR(+++)/CIR(++) [154]
Tuberculosis Chitosan Multiantigens HLA-A2 i.t. CIR(++) [106]

Influenza DODAC/DOPE/PEG HA mice i.n. HIR(++)/MIR(+) [116,117]
Influenza PEI HA mice i.n. HIR(+++)/MIR(++) [139]
Influenza dPEI HA mice i.n. HIR(++++)/MIR(++++)/CIR(+) [143]

SARS-CoV PEI S protein mice i.n. HIR(+++)/MIR(+++)/CIR(++) [138]
SARS-CoV Chitosan N mice i.n. HIR(++++)/MIR(++++) [153]

HIV PEI HXBc2 gp120 mice i.t. CIR(++) [140,141]
RSV Chitosan Multiantigens mice i.n. HIR(++++)/MIR(++++)/CIR(+) [151]
RSV Chitosan M2 mice i.n. CIR(+) [152]

COVID-19 Chitosan–gold S-protein Mice i.n. MIR(N.A.)/HIR(++)/CIR(+) [160]

1 Responses are geometric means of postvaccination increases in specific antibodies versus control in vaccine
recipients: ++++, >10-fold; +++, 5- to 10-fold; ++, 2.5- to 5-fold; +, 1.5- to 2.5-fold. RSV: respiratory syncytial
virus; HA: hemagglutinin protein; HIV: human immunodeficiency virus; HIR: humoral immune responses; MIR:
mucosal immune responses; CIR: cellular immune responses; SARS-CoV: the severe acute respiratory syndrome
coronavirus; i.n.: intranasal administration; i.t.: intrathecal administration; N.A.: not available.

5. IVT-mRNA Vaccines

In 2019, the outbreak of COVID-19 caused by SARS-CoV-2 spread throughout the
world, developing into a global pandemic. Application of safe and effective vaccines is
expected to be the most efficient medical approach in controlling and stopping the pandemic
of COVID-19. BNT162b2 (BioNTech/Pfizer, Mainz, Germany/New York, NY, USA) and
mRNA-1273 (Moderna, Cambridge, MA, USA) are both lipid nanoparticle-formulated,
nucleoside-modified IVT-mRNA vaccines that received approval for emergency use by
the FDA with extremely high protection rates against COVID-19 [25–27,161]. The area
of IVT-mRNA vaccines is rapidly evolving; a considerable amount of clinical evidence
has been gathered over the last several years, widely establishing IVT-mRNA vaccines as
a highly promising medical strategy [162]. The design and synthesis of IVT-mRNA and
associated delivery technologies are key to the success of IVT-mRNA vaccines (Figure 2).
IVT-mRNA encoding specific proteins of interest (POI) is transcribed in vitro according to a
linearized DNA template. Once delivered into host cells, IVT-mRNA utilizes the translation
machinery of the host to produce corresponding POI in cytoplasm without the need to
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enter the nucleus to be functional [5]. If the POI is an appropriate antigen, the resulting
POI induces antigen-specific immune responses following effective antigen presentation
by APCs. Currently, two major classes of IVT-mRNA have been investigated broadly as
vaccines: conventional nonreplicating mRNA and self-amplifying mRNA (saRNA). Both
share elements of a eukaryotic mRNA that are essential for translation and stability: i.e., a
cap structure (m7Gp3N), 5′- and 3′- untranslated regions (UTRs), an open reading frame
(ORF), and a poly(A) tail. Compared with conventional nonreplicating mRNA, saRNA
has the potential to produce more antigen protein with the viral replication machinery.
The design and development of saRNA vaccines with validated immunogenicity and
efficacy has been recently reviewed elsewhere [163]. For IVT-mRNA-based therapeutics,
robust delivery systems are generally necessary for the successful transport and uptake
of IVT-mRNA into target organs. The instability, innate immunogenicity, and inefficient
in vivo delivery to organs beyond the liver and spleen are major problems that need to be
solved in the future applications of IVT-mRNA. As a result, a wide range of in vitro and
in vivo delivery systems have been designed. Some vaccine formulations contain adjuvants
proven to potentiate subunit vaccines [164–166], while others generate strong responses
despite the absence of known adjuvants. Furthermore, highly effective RNA carriers with
low toxicity have been produced, allowing for sustained antigen expression in vivo in
some instances [11,12,167]. Apart from that, rational design of RNA sequences has also
greatly improved the potential of IVT-mRNA. In this section, we briefly summarize the
recent advances in conventional IVT-mRNA vaccines regarding their structure optimization
and specifically focus on the delivery system of IVT-mRNA vaccines inoculated via the
respiratory tract route (Table 3).
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mRNA vaccines via the respiratory route. IVT-mRNA structural elements, including elongation
of the poly(A) tail, the 5′ cap, the structure of UTRs, and the ORF with optional incorporation of
modified nucleotides, are optimized to enhance the stability and reduce the innate immunogenicity.
Nanoparticle-based carriers are designed to facilitate the delivery of IVT-mRNA across the barriers in
the airway. Liquid aerosol or dry powderformulations are then developed with the identification
of a suitable inhalation device (nebulizer or powder inhaler) for clinical applications. The aerosol
performance, IVT-mRNA stability after aerosolization, immunogenicity, and vaccine efficacy of the
inhaled formulation should be thoroughly characterized and evaluated.
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5.1. Structural Optimization of IVT-mRNA

Because of mRNA’s susceptibility to nuclease degradation and its high innate immuno-
genicity, optimization of IVT-mRNA structural elements is crucial to enhance the expression
of POI. Over the past decades, a great deal of effort has been given to modifying the struc-
tural elements of IVT-mRNA in order to improve its stability and translation efficiency.
As extensively discussed in previous reviews [1,5], a functional 5′-cap structure required
for the initiation of translation can be added in vitro via either post- or cotranscriptional
processes. Vaccinia virus capping enzyme (VCE) is the most widely used commercially
available reagent for posttranscriptional addition. First, IVT-mRNA can be modified with
a Cap 0 (m7GpppN) structure using VCE. Then, using 2′ O-methyltransferase, Cap 0
can be switched to Cap 1 (m7GpppmN), which enhances the translation efficiency of
IVT-mRNA [161,162]. However, large-scale manufacturing of IVT-mRNA may consume
a huge amount of enzymes using this approach, which would increase the production
costs and limit the approach’s widespread application [5]. Alternatively, the 5′-cap can
be added simultaneously during the in vitro transcription process of IVT-mRNA with
cap analogs (e.g., m7GpppG). However, this method can lead to inefficient capping and
reversed cap orientation (i.e., Gpppm7G) [163,168]. To overcome this problem, anti-reverse
cap analogues (ARCAs; m27,3′-OGpppG) can be introduced into the in vitro transcription
and enhance IVT-mRNA translation efficacy [169,170]. For cotranscriptional mRNA cap-
ping, an ARCAs to GTP ratio of 4:1 in a single reaction is optimal for maximizing both
RNA yield and the proportion of capped transcripts with commercial transcription kits,
yielding up to 100% capping efficiency [171]. Recently, CleanCap®, a method developed
by TriLink Biotechnology, was reported to generate IVT-mRNA with high translational
efficiency, simplifying the production of 5′-capped IVT-mRNA. Based on these advantages,
the approach of CleanCap® has been used for 5′ capping of BNT162b2 and mRNA-1273
vaccines [161,172].

In synergy with a 5′-cap, the poly(A) tail regulates translation efficiency and stability of
IVT-mRNA. Incorporation of poly(A) can be introduced by recombinant polymerase or by
direct transcription from a DNA template with a defined length of poly(T) nucleotides [173].
Although the incorporation of modified nucleotides into the poly(A) tail can be introduced
with recombinant poly(A) polymerase to inhibit deadenylation mediated by poly(A)-
specific nucleases, a mixture of mRNAs with inconsistent lengths of RNA poly(A) tail is
the limitation for this approach, especially for clinical applications [174]. Therefore, the
optimal length of the poly(A) tail, around 100–150 nucleotides, is preferably added from
the encoding DNA template [175]. However, poly(T) nucleotides in the plasmid template
are often lost during the passaging of E. coli. Thus, adding a precise length of poly(A) to
IVT-mRNA is still a challenge for IVT-mRNA production.

Optimization of the 5′- and 3′- UTRs is also important to enhance the expression and
stability of IVT-mRNA [176]. UTRs contain regulatory sequence elements usually harbored
by viral or eukaryotic genes, which can be designed via de novo methods or deep-learning
methods [5,177]. Previous studies have shown that optimization on AU-rich elements and
G–C ratios increase the stability of IVT-mRNA and duration of protein expression [178,179].
Furthermore, Steve Pascolo et al. added an eIF4G-recruiting aptamer sequence to the 5′

UTR of IVT-mRNA in order to increase the expression of IVT-mRNA [180]. Recently, a
sequence of IVT-mRNAs was systematically engineered through deep-learning methods,
significantly enhancing the expression of SARS-CoV-2 antigens [177]. However, codon
optimization replacing rare codons with frequently used synonymous codons may not
be necessary. This approach will affect the generation of potent cryptic T cell epitopes for
some IVT-mRNA encoded vaccines [181,182], thus affecting the proper folding of some
proteins that need a slow translation process because of rare codons [183].

IVT-mRNA is inherently immunogenic, it activates pattern recognition receptors
(PRRs) such as Toll-like receptors (TLR-3, TLR-7, and TLR-8) in the endosomal compart-
ments of host cells [184,185]. In some cases, activation of innate immunity by IVT-mRNA is
potentially advantageous for vaccines, as it promotes recruitment of DCs to the administra-
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tion site and subsequent maturation of DCs to elicit potent adaptive immunity. However,
this feature of IVT-mRNA may also lead to improper or excessive activation, resulting
in the inhibition of antigen expression and negative immune responses [186]. Currently,
modified nucleotides (e.g., pseudouridine and 5-methylcytidine) can be incorporated into
IVT-mRNA during transcription, and chromatographic purification methods have been
used to remove contaminating double-stranded RNA after transcription [187–189]. This ap-
proach has been shown to effectively avoid undesired immune stimulation, subsequently
increasing production of POI [190]. This nucleotide modification technology has been
successfully employed in the production of the BNT162b2 (BioNTech and Pfizer) and
mRNA-1273 (Moderna) COVID-19 mRNA vaccines.

5.2. Delivery Systems for IVT-mRNA Vaccine Inoculated via the Respiratory Route

In addition to structural optimization and high-quality manufacturing of IVT-mRNA,
another major technical barrier in the clinical translation process of IVT-mRNA therapeutics
is the development of safe and efficient delivery systems. Whether a potent protective
immunity can be established by an IVT-mRNA vaccine is largely attributed to the choice of
a safe and efficient delivery system. Basically, a safe IVT-mRNA delivery system should at
least condense IVT-mRNA, so that the fragile molecule can be protected from degradation
in extracellular space, and facilitate endosomal escape following cellular uptake in cytosol.
The successful delivery of IVT-mRNA to the lungs at low dosages would reveal a meaning-
ful region for therapeutics or vaccines designed for pulmonary application. This endeavor,
however, remains difficult, because nanocarriers that carry IVT-mRNA to the lungs be-
have differently than counterparts using the parenteral route. For example, the potency
of IVT-mRNA may be significantly compromised by the nebulization process. Despite
the fact that modern nebulizers are designed to gently aerosolize medicine, nanoparticles
are nevertheless subjected to shear force that could compromise the structures of vehicle–
mRNA complexes. Biological aspects of the airway pose other barriers against nebulized
IVT-mRNA administration. The cells, proteins, biomolecules, and physical barriers with
which nanoparticles interact when delivered via nebulization differ from those with which
they interact in bloodstream [191–193]. Airway cells are also highly heterogeneous, which
may further influence delivery properties [194]. Nevertheless, there have already been
several reports on the successful delivery of IVT-mRNA to the airways.

5.2.1. Lipids

Currently, the most successful and frequently used delivery vehicle for the in vivo
application of IVT-mRNA is lipid nanoparticles (LNPs) which consist of distinct compo-
nents with variable proportions [195]. For most LNPs, the ionizable lipid is a key element
responsible for packaging the negatively charged IVT-mRNA and enabling the endosomal
escape of IVT-mRNA molecules into the cytoplasm. A recent publication from Norbert
Pardi et al. suggested that LNP formulations have favorable immunostimulatory pro-
files that promote the induction of strong responses from TFH cells, germinal center B
cells, long-lived plasma cells, and memory B cells that are associated with durable and
protective antibodies in mice. The authors further revealed that the adjuvant activity of
the LNP relied on the ionizable lipid component and IL-6 cytokine induction [196]. The
resulting magnitude and duration of IVT-mRNA expression were favorable for inducing
potent immune responses, as evidenced by a study performed by Tam et al. The authors
found that exponentially increasing dosing profiles led to prolonged antigen retention
in lymph nodes and increased numbers of TFH cells and germinal center B-cells, as well
as eliciting >10-fold increases in antibody production relative to single bolus vaccination
postprime [197]. Apart from ionizable lipids, phospholipids play a structural role in the
formation and disruption of the lipid bilayer. Neutral lipids, such as cholesterol, are usu-
ally used as a stabilizing element for increasing transfection efficiency. Lipid-anchored
polyethylene glycol (PEG) is a biocompatible and inert polymer, sterically stabilizing the
LNPs and reducing nonspecific binding to proteins for increased circulation time in vivo.
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LNPs were originally developed as highly efficient carriers of short-interfering RNAs
(siRNA) to hepatocytes via intravenous administration [198]. Intramuscular, intradermal,
and intratracheal administration of LNP-encapsulated mRNA have been found to produce
higher and more prolonged protein levels at the site of inoculation than those produced
by systemic delivery [195]. However, LNP needs to be specifically designed and opti-
mized for the efficient pulmonary delivery of IVT-mRNA [199]. In one study, cationic
LNPs and mannose-conjugated LNP (Man-LNP) were separately applied to encapsulate
IVT-mRNA encoding the HA gene of the H1N1 influenza A virus. Following intranasal
administration, both formulations induced HA-specific responses with high levels of IgG2a
subtype and enhanced the production of both Th1-associated IFN-γ and Th2-associated
IL-4 [34]. However, Man-LNP induced significantly higher hemagglutinin inhibition titers
than cationic LNP-based counterparts did after boosting immunization [34]. Furthermore,
LNP represents a powerful technology for the respiratory delivery of therapeutic genes.
LNP-carrying chemically modified IVT-mRNA encoding cystic fibrosis transmembrane
conductance regulator (CFTR) was successfully applied for the treatment of cystic fibrosis
following nasal administration in CFTR knockout mice. The chloride response in two
consecutive doses of CFTR-mRNA/LNP-treated mice recovered up to 55% of the levels
observed in wild-type mice and lasted up to 2 weeks posttransfection [200]. Motivated
by the huge unmet needs for lung IVT-mRNA delivery vehicles, as well as by the lack
of established LNP design principles, Lokugamage et al. recently reported an in vivo
cluster-based iterative screening approach to identify LNP chemical traits that promote
IVT-mRNA lung delivery [199]. They discovered that a low PEG molar ratio increased the
performance of LNPs with neutral helper lipids, whereas a high PEG molar ratio improved
the performance of cationic helper lipids, uncovering and optimizing LNPs for low-dose
IVT-mRNA delivery.

The optimized LNP nebulized delivery of an IVT-mRNA generating a broadly neutral-
izing antibody against hemagglutinin protected mice against a fatal challenge of the H1N1
subtype of the influenza A virus and delivered IVT-mRNA more effectively than LNPs
previously tuned for systemic delivery. Several limitations of this study should be kept
in mind: (1) the findings focused on LNPs containing 7C1, but more research is needed
to quantify the link between LNP composition and nebulized delivery; (2) more studies
are needed to quantify the link between payload and delivery efficiency, as the protein
expression kinetics observed may vary depending on the IVT-mRNA payload; (3) these
findings, from mice models, may or may not translate predictably to larger animals, such as
nonhuman primates; (4) LNP size and zeta potential, as well as other altered physiologies
associated with diseased pulmonary tissues, may impede pulmonary LNP delivery.

5.2.2. PEI

PEI has also been proven to be functional as a potent mucosal adjuvant for intranasal
administration [201]. However, how to maximize its adjuvant effect and how to minimize
its toxicity remain open challenges. Optimizing the chemical structure of PEI seems to
be a practical solution to this problem. Cationic cyclodextrin–PEI conjugate was devel-
oped by Li et al. and complexed with anionic IVT-mRNA encoding ovalbumin (OVA)
through electrostatic interactions [39]. This formulation showed the ability to stimulate
DC maturation and migration after intranasal inoculation in mice, further enhancing both
humoral and cellular immune responses [39]. In addition, a cyclodextrin–PEI-based for-
mulation was further evaluated for its ability to penetrate the airway epithelial barrier
and its paracellular delivery efficiency using IVT-mRNA encoding HIV gp120 [202]. With
prolonged residence in the nasal cavity and excellent intracellular delivery, potent systemic
and mucosal anti-HIV immune responses were induced after intranasal dosing [202].

5.2.3. Other Nonviral Vectors

Chitosan was reported to condense saRNA encoding hemagglutinin and nucleopro-
tein of influenza virus, and it expressed antigen in DCs after SC injection [203]. Recently,
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intranasal delivery of chitosan nanoparticles encapsulating mRNA encoding influenza HA2
and M2e antigens was reported to elicit efficient protective immune responses against avian
influenza in chickens [167]. The aforementioned AuNS–chitosan nanoformulation also
showed robust delivery of IVT-mRNA encoding firefly luciferase (fLuc-mRNA) in the lungs
of mice upon intranasal delivery as measured by bioluminescence imaging [160]. Using a
similar fLuc system, Yingshan Qiu et al. reported that PEG12KL4 (a monodisperse linear
PEG of 12-mers attached to synthetic cationic KL4 peptide) formed nanosized complexes
with fLuc-mRNA and that the intratracheal administration of PEG12KL4/fLuc-mRNA com-
plexes resulted in luciferase expression in the deep lung region of mice 24 h posttransfection
that was superior to expression induced by naked IVT-mRNA and Lipofectamine 2000
based lipoplexes [204]. However, both of these studies using luciferase reporter systems
did not evaluate the antigen-specific immune responses induced by the IVT-mRNA formu-
lations [160,204], making it difficult to affirm whether these delivery systems are suitable
for the application of IVT-mRNA vaccines.

Meanwhile, lipid/polymer hybrid complexes have also been employed for efficient
pulmonary delivery of IVT-mRNA. Compared with single lipid or polymer delivery sys-
tems, a stable IVT-mRNA vaccine particle could be formulated using positively charged
protamine to concentrate IVT-mRNA followed by encapsulation with DOTAP/Chol/DSPE-
PEG [205]. Such liposome/protamine hybrid complexes exhibit stronger capacities to
stimulate DCs’ maturation, which further induces potent antitumor cellular immune re-
sponses after intranasal administration with IVT-mRNA encoding cytokeratin [205].

Some commercial transfection reagents have also been employed for IVT-mRNA
vaccine delivery via the respiratory tract. Intranasal administration of mRNA encoding
HSP65 protein dissolved in Ringer’s lactate solution prompted the specific production of
IL-10 and TNF-α in the spleens of mice, and protected the mice from subsequent challenge
with M. tuberculosis [206]. In both prophylactic and therapeutic immunization models,
IVT-mRNA delivered in nanoparticles prepared with StemfectTM induced tumor immunity
correlated with splenic antigen-specific CD8+ T cells, while naked counterparts failed to
elicit antigen-specific immune responses [207].

Table 3. Summary of RNA vaccines inoculated via the respiratory tract.

Disease Nanoparticle Coding Antigens Model Tested Administration Immune Response 1 Ref.

Influenza LNP HA mice i.n. HIR(+)/CIR(++) [34]
Influenza Chitosan HA and M2 chicken i.n. HIR(++)/MIR(++)/CIR(+) [167]

HIV Cyclodextrin–PEI conjugate gp120 mice i.n. HIR(+)/CIR(+) [202]
Model antigen Cyclodextrin–PEI conjugate OVA mice i.n. HIR(+)/MIR(+)CIR(+) [39]

Aggressive Lewis
lung cancer model Cationic liposome/protamine cytokeratin 19 mice i.n. CIR(+) [205]

Tuberculosis Ringer’s lactate solution HSP65 mice i.n. CIR(++) [206]
E.G7-OVA tumor Stemfect mRNA transfection

reagent OVA mice i.n. CIR(++++) [207]

1 Responses are geometric means of postvaccination increase in specific antibodies versus control in vaccine
recipients: ++++, >10-fold; +++, 5- to 10-fold; ++, 2.5- to 5-fold; +, 1.5- to 2.5-fold. HA: hemagglutinin protein;
M2: matrix protein 2; OVA: ovalbumin; HIV: human immunodeficiency virus; HIR: humoral immune responses;
MIR: mucosal immune response; CIR: cellular immune responses; SARS-CoV: severe acute respiratory syndrome
coronavirus; i.n.: intranasal administration.

6. Conclusions and Perspective

The mucosal immune system provides a first line of defense in the host’s resistance to
pathogen invasion and controls further infections at peripheral tissues. For the delivery
of NA-vaccines, mucosal routes could be as good as or even better than parenteral coun-
terparts. However, the complexity of the pulmonary environment poses huge obstacles
for vaccines in inducing mucosal immunity compared with the parenteral route. This is
especially difficult for NA-vaccines when considering their distinct characteristics, such as
their high susceptibility to degradation by nuclease, negative charge, and high molecular
weight. To overcome the mechanical–physical barriers of the respiratory tract, developing
safe and efficient delivery systems is crucial for the successful clinical translation of NA-
vaccines, as proven by the LNP delivery system in COVID-19 mRNA vaccines. Because of
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their similarity to microorganisms in both size and structure, nanodelivery vehicles play
multifunctional roles in NA-vaccines by acting as a cargo carriers and potentially also as
adjuvants [196]. Such nanosized systems can augment mucosal immune responses via
simulating the natural infection process. For DNA vaccines, efficient delivery systems can
improve immune responses by enhancing pDNA delivery into the nuclei of the host cells,
which increases the expression of antigens. For mRNA vaccines, efficient carriers protect
mRNA from premature degradation while optimizing in vivo expression of antigens, in-
ducing a potent protective immunity. Although evidence has shown that NA-vaccines
inoculated via the respiratory tract could elicit strong and long-term mucosal, humoral, and
cell-mediated immune responses in animal models, there is still no NA-vaccine approved
for mucosal vaccination purposes. As a result, innovative mucosal delivery technologies
that could mediate successful clinical translations are urgently needed. Based on previ-
ous studies and our experiences, an ideal delivery system could provide the NA-vaccine
with further unique features: (1) an electrically neutral structure with a hydrophilic shell,
to bestow an efficient mucus-penetrating ability and to mediate rapid deposition onto
epithelial surfaces; (2) APCs or M-cell targeting, to enhance the uptake of nucleic acids;
(3) structures with protonated ability and/or membrane disruptive properties, which may
facilitate efficient endosomal escape, avoiding enzymatic degradation.

Another interesting but scarcely discussed topic is the determination of the more
advantageous route (between intranasal or intratracheal inoculation) for NA-vaccines. As
shown in Tables 2 and 3, most studies have chosen the nasal route because of its conve-
nient and noninvasive features. Nevertheless, there are still certain concerns regarding
nasal administration. For example, negative perception for nasal vaccines was generated
from reported cases of Bell’s palsy after intranasal dosing of inactivated influenza vac-
cines [208,209]. Thus, neurotoxicity tests are necessary for nasal NA-vaccines in order to
confirm their safety profiles. On the other hand, the intratracheal route also suffers from
limitations. For example, it is not possible to apply intratracheal instillation in humans
because of poor compliance and its invasive characteristics, the latter of which may cause
unnecessary damage to the airway. Alternatively, one of the most appropriate approaches
of delivering NA-vaccines to human airway would be nebulized formulations. Not only
do nebulized formulations tend to be more evenly distributed throughout the respiratory
tract, but the inhalation of aerosolized vaccine is also highly acceptable and tolerable for the
recipient [210]. Unfortunately, nebulization of nucleic acid-based formulations tends to be
inefficient [211]. A previous study found that as little as 10% of the nucleic acid payload in
a nebulization device chamber could be successfully emitted [212]. Advanced nebulization
strategies and optimized formulations have significantly improved the situation; now, even
fragile IVT-mRNA has been successfully utilized in aerosolized formulations for in vitro
and in vivo investigations [213,214]. As a result, nebulized formulations appear to be a
feasible and attractive approach for the pulmonary delivery of NA-vaccines.

In summary, the field of respiratory mucosal vaccine has been bolstered by advances
in novel nucleic acid formulations based on nanotechnologies. Thus, we hope that suc-
cessful clinical nasal or pulmonary administration of NA-vaccines will be on the horizon,
revolutionizing the vaccine development field as IVT-mRNA vaccines did during the
COVID-19 pandemic.
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