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Mitochondria play an essential role in the generation of steroid hormones including the
female sex hormones. These hormones are, in turn, able to modulate mitochondrial
activities. Mitochondria possess crucial roles in cell maintenance, survival and well-
being, because they are the main source of energy as well as of reactive oxygen
species (ROS) within the cell. The impairment of these important organelles is one
of the central features of aging. In women’s health, estrogen plays an important role
during adulthood not only in the estrous cycle, but also in the brain via neuroprotective,
neurotrophic and antioxidant modes of action. The hypestrogenic state in the peri-
as well as in the prolonged postmenopause might increase the vulnerability of elderly
women to brain degeneration and age-related pathologies. However, the underlying
mechanisms that affect these processes are not well elucidated. Understanding the
relationship between estrogen and mitochondria might therefore provide better insights
into the female aging process. Thus, in this review, we first describe mitochondrial
dysfunction in the aging brain. Second, we discuss the estrogen-dependent actions
on the mitochondrial activity, including recent evidence of the estrogen—brain-derived
neurotrophic factor and estrogen—sirtuin 3 (SIRT3) pathways, as well as their potential
implications during female aging.

Keywords: neurodegeneration, female brain aging, mitochondria, estrogen, protection, bioenergetics, SIRT3,
BDNF

INTRODUCTION

Mitochondria play crucial roles in different aspects of cellular physiology, including calcium
homeostasis, metabolism, apoptosis and ATP production (Rizzuto et al., 2012). At the electron
transport chain (ETC), especially at the respiratory complexes I and III, mitochondria produce
reactive oxygen species (ROS; Quinlan et al., 2013). Mitochondrial respiration via ETC generates
a flux of electrons that is coupled to a gradient of protons. During the oxidative phosphorylation
(OXPHOS), electrons are neutralized to water upon reaction with oxygen at complex IV
(cytochrome c oxidase (COX)), while the gradient of protons is necessary for the ATP synthesis via
complex V (ATP synthase; Velarde, 2014).

Mitochondria are also essential sites for steroid hormone biosynthesis including estrogen, the
main female steroid hormone (Vest and Pike, 2013). Estrogen is involved in many physiological
functions such as modulation of the effects of the trophic factors in the brain, enhancement of
the cerebral blood flow, and prevention of atrophy of cholinergic neurons (Castellani et al., 2010).
The estrogen family (E2) includes the hormones estrone, estradiol (17β-estradiol) and estriol,
all of them playing a role in the estrous cycle. Regarding to the estrogenic effect, estradiol is the
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FIGURE 1 | Potential sequence of pathological events occurring at the mitochondrial level during aging and «the critical time period» of decline in estrogen (E2) in
female brain. During the premenopause, high levels of estrogen are paralleled by a normal mitochondrial activity with a balanced redox homeostasis and a high brain
energy metabolism. At the beginning of the reproductive senescence, or perimenopause, a decrease of estrogen levels is accompanied with an increase of oxidative
stress (ROS levels) and, consequently, hypometabolism. During aging, alterations of the mitochondrial membrane lipid profile are also reported. Cells possess
compensatory mechanisms, as antioxidant defenses, to keep the system in balance. In case the compensatory system is exhausted, metabolic impairments may
occur, such as a decrease of ATP levels, glucose hypometabolism and mitochondrial respiration (e.g., cytochrome c oxidase (COX) activity) as well as myelin
impairments. In parallel, an increased expression of genes involved in fatty acid oxidation and the ketogenic pathway were reported as an alternative fuel for cells.
The “critical period” (represented by the blue arrow) indicates a fast drop of estrogen levels in a relatively short time period, suggesting a period of women’s life where
they are more vulnerable and more likely to develop age-related brain disorders such as Alzheimer’s disease (AD). Estrogen replacement therapies (ERT) may be
beneficial before women reach a critical threshold of cellular damage during perimenopause and early after menopause. ROS, reactive oxygen species.

predominant form of estrogen and ten times as potent as estrone
and about 80 times as potent as estriol. During reproductive
senescence, a hormonal deficit occurs in menopausal women,
characterized by a sudden decline in circulating estrogen level
(Figure 1; Vest and Pike, 2013). Menopause officially marks
the end of female reproduction. Postmenopause represents the
years after the menopause while the transitional stage leading
from reproductive years to permanent infertility that occurs
immediately before menopause is termed perimenopause (Dalal
and Agarwal, 2015). Perimenopause or ‘‘menopause transition’’
can begin 8–10 years before menopause, when the ovaries

gradually produce less estrogen. It usually starts in the fourth
decade of woman’s life. In the last 1–2 years of perimenopause,
the drop in estrogen accelerates (Figure 1; Dalal and Agarwal,
2015). As a result of a lower level of estrogen, postmenopausal
women seem to be at higher risk for a number of diseases, such
as osteoporosis, heart disease and dementia (Dalal and Agarwal,
2015).

In males, estradiol is known to be an active metabolic product
of testosterone. The serum levels of estradiol in males are about
14–55 pg/ml and are comparable to those of postmenopausal
women <35 pg/ml. Testosterone freely enters the brain and
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might be converted to estradiol by local aromatase enzymes
before acting at the cellular level (Gillies and McArthur, 2010).
In the central nervous system (CNS) of men and women,
specific estrogen receptors (ER) have been shown to localize
in mitochondria in the frontal lobe and the hippocampus,
confirming an implication of estrogen in controlling memory
processes and cognitive functions via energy supply (Genazzani
et al., 2007). Further studies have shown that estrogen plays
an important neuroprotective role during the aging process, in
particular through their beneficial impact upon mitochondrial
metabolism (Grimm et al., 2012). Moreover, females live
longer than males. This sex difference in life longevity can
be attributed in part to the antioxidant effect of estrogen and
the up-regulation of life longevity-related genes (Viña et al.,
2013).

Normal cellular function can be disrupted by mitochondrial
impairment which represents a key feature of the aging process
(Balaban et al., 2005; Wanagat et al., 2010). The brain is our most
energy-consuming organ and the age-dependent dysregulation
in cerebral redox homeostasis and bioenergetics might therefore
be able to trigger the development of neurodegenerative
disorders.

MITOCHONDRIAL IMPAIRMENTS IN
BRAIN AGING: INSIGHT INTO THE ROLE
OF ESTROGEN

Aging is characterized by a progressive decline in physiological
functions, often accompanied by neurodegenerative diseases
and mitochondrial dysfunction is one of the main factors
contributing to the aging process (Figure 2; Cui et al., 2012).

During aging, energy production in the brain is reduced and,
in parallel, the redox status is switched from an antioxidant to
pro-oxidant state, partly due to the mitochondrial production
of O2− and H2O2 (Yin et al., 2014). Globally, a reduction
in mitochondrial functions, including the activity of ETC
complexes, the level of the antioxidant glutathione (GSH) as well
as the antioxidant defense enzymes such as superoxide dismutase
(SOD), was observed with increasing age (Figure 2; Leuner et al.,
2012; Grimm et al., 2016a).

We recently reviewed the age-dependent modifications in
redox homeostasis and brain bioenergetics, both hallmarks of
normal brain aging, with a specific focus on sex differences
(Grimm et al., 2016b). We highlighted the tight relationship
between the age-related decrease in sex steroid levels and the
age-related increase in brain oxidative insults. Especially, women
experience a drastic loss of estrogen at the menopause that may
be correlated with a decrease of antioxidant defenses (GSH levels)
and increased oxidation in the brain (Figure 1; Mandal et al.,
2012; Rekkas et al., 2014; Grimm et al., 2016b). Strikingly, women
are more armed against oxidative stress before the menopause
due to their elevated antioxidant defense mechanisms compared
to men (Viña and Borrás, 2010). Healthy young females (mean
age: 26 years) showed higher GSH levels in the frontal and
parietal cortex compared to young men (Mandal et al., 2012),
with a progressive decrease during aging from young to old

women (mean age: 56 years). One of the relevant sources of ROS,
the monoamine oxidase A (MAO-A) was found to be higher in
the brain of perimenopausal women (41–51 years old) compared
to young women (21–40 years old; Rekkas et al., 2014). In
perimenopausal women who underwent bilateral oophorectomy,
the serum estrogen levels were decreased and an increase of
oxidative stress was observed. This effect was prevented by a
treatment with estrogen (Bellanti et al., 2013).

These human data are supported by numerous animal
studies (reviewed in Grimm et al., 2012, 2016b). Namely, Yao
et al. (2010) showed that in the brain of perimenopausal
mice during reproductive senescence, the drop of estrogen and
progesterone (the second female sex hormone) concentrations
was accompanied by an increased expression of genes implicated
in fatty acid oxidation and the ketogenic pathway, especially
at an age between 9 months and 12 months (Figure 1).
Further investigations revealed that, in response to a glucose
deprivation, the fatty acid metabolism was activated in the
perimenopausal mouse brain. This increase was coupled with
myelin degeneration as well as a rise of brain ketone bodies that
were used as an alternative energy fuel (Figure 1; Yao et al., 2010;
Klosinski et al., 2015). Thus, these findings highlighted the role
of estrogen on the brain redox balance and energy metabolism at
the menopause (Figure 1).

A growing body of evidence supports the mitochondrial
theory of aging. The decreased functionality of complex I is
often cited as the most likely site of an ETC impairment
(Figure 2; Sandhu and Kaur, 2003; Petrosillo et al., 2009; Sun
et al., 2016). Indeed, complex I activity is decreased across
the brain in aged mice (Pollard et al., 2016), together with a
decrease of COX (complex IV) activity and an increase of ROS
production (Figure 2; reviewed in Grimm and Eckert, 2017).
Finally, modifications in the fatty acid profile of mitochondrial
membranes that are more prone to peroxidation are induced
by ovariectomy (OVX), and is a feature also reported in aging
(Pamplona, 2008).

Mitochondrial DNA (mtDNA) is close to ROS produced by
complex I and complex III and seems to be more susceptible
to oxidative damage than nuclear DNA (nDNA; Turrens, 2003;
Fang et al., 2016). During normal aging, increased levels of
oxidative modifications are reported in the brain as well as
mutations in mtDNA (Melov, 2004; Vermulst et al., 2007). Of
note, no difference in mtDNA oxidative stress markers was
detected between 10 months old male and female mice in the
liver or the muscle (Sanz et al., 2007). However, since mtDNA
is exclusively maternally inherited, female mitochondria appear
to be better equipped to prevent mtDNA damage and mutation
to reduce the risk of producing inheritable metabolic disorders
(reviewed in Demarest and McCarthy, 2015). In line, estrogen
supplementation was able to improve the transcription levels of
several DNA repair enzymes involved notably in base excision
repair pathway in the dorsal raphe of OVX old female macaques
(Bethea et al., 2016).

Mitochondrial dynamics play an important role in
maintaining a healthy organelle population (Grimm and
Eckert, 2017; Schmitt et al., 2018). Impairments in this
quality control system lead to the accumulation of defective
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FIGURE 2 | Modulation of mitochondrial function in aging by estrogen. Aging is associated with electron transport chain (ETC) impairments leading to decreased
ATP levels, basal respiration and mitochondrial membrane potential (MMP), together with a decrease of antioxidant defenses, and an increase of ROS production by
complex I and complex III (dashed arrows) as well as mitochondrial DNA (mtDNA) oxidative damages. Estrogen (E2) has been shown, to increase ETC activity,
stabilize the MMP, prevent the ROS production, and ameliorate the basal respiration and the production of ATP levels. Sirtuin 3 (SIRT3) and estrogen may converge
on a common pathway to rescue mitochondrial activity in aging by increasing antioxidant defense activity. Estrogen and SIRT3 are suggested to rescue age-related
impairments. ↓: age-related decrease, ↑: age-related increase.

mitochondria, as well as inefficient mitochondrial transport
and distribution. Strikingly, only few studies were focused on
mitochondrial fusion/fission activity in the brain during aging
(see Grimm and Eckert, 2017). Alterations in the expression
of fusion/fission proteins were shown in mice synaptosomal
mitochondria, with namely an increase in dynamin-related
protein 1 (Drp1) expression, a fission protein, between 5 months
and 12 months of age, and a decrease from 12 months to
24 months (Stauch et al., 2014). In parallel, the expression
of mitochondrial fusion proteins, including mitofusins 1/2
(Mfn1/2) and optic atrophy 1 (Opa1), decreased from 5 months
to 12 months and increased from 12 months to 24 months,
suggesting that synaptosomal mitochondria were shifted to a
pro-fusion state in aged animals. Additionally, a pro-fusion
effect of estrogen (increased mRNA and protein level of Mfn1/2)
was shown in MCF-7 breast cancer cell line (Sastre-Serra et al.,
2012). However, to our current knowledge, estrogen effects
on mitochondrial dynamics in the brain remain still under
investigated. An age-related decline in mitophagy (elimination
of damaged mitochondria by autophagy) and mitochondrial
biogenesis have also been previously reported (reviewed in
Grimm and Eckert, 2017), but the precise reason for this
decrease remains elusive, especially in the brain. It has been
suggested that one of the potential mechanisms regulating
mitochondrial biogenesis occurs via hormonal control such as
estrogen (reviewed in Scheller and Sekeris, 2003; Chen et al.,
2009).

Thus, mitochondrial dysfunction seems to play a central
role in brain aging, leading to decreased bioenergetics (glucose

metabolism, mitochondrial respiration and ATP synthesis)
and increased oxidation (increase of ROS and decrease
of antioxidant defenses). High levels of estrogen, especially
that of estradiol, before the menopause may be involved
in the high energy capacity as well as the control of
redox balance in female brain (Figure 1). Then, the drastic
drop of estrogen levels may disturb this finely controlled
homeostasis, leading to the above-mentioned impairments
(see also Grimm et al., 2016b). The Figure 2 summarizes
where estrogen can potentially act to prevent or rescue
age-related mitochondria impairments (reviewed in Grimm
et al., 2012, 2016b see also section: ‘‘Estrogen and Bioenergetics
in Female Brain: Implications for Estrogen Replacement
Therapy’’).

ESTROGEN IN THE CENTRAL NERVOUS
SYSTEM

Mitochondria, Steroid Synthesis and
Estrogen
Steroid hormones can be synthesized within the nervous
system independently of peripheral steroid glands and are
called neurosteroids (Corpéchot et al., 1981). Mitochondria
play a crucial role during the first step of the steroid hormone
biosynthesis which is the production of pregnenolone, the
common precursor of steroids and neurosteroids (Velarde,
2014). The limiting step during steroidogenesis is the
transport of cholesterol from the outside to the inside of
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mitochondria (Papadopoulos and Miller, 2012). This process
highlights the paramount role of mitochondria in steroid
homeostasis. The interaction between the steroidogenic acute
regulatory protein (StAR) and a multi-component molecular
complex including an 18 kDa translocator protein (TSPO)
regulates the cholesterol transport (Miller, 2013). Once in the
mitochondria, cholesterol is converted to pregnenolone by
the cytochrome P450 side-chain cleavage enzyme (Miller and
Auchus, 2011). Then, pregnenolone can be transferred out of
the mitochondria and converted into the different steroids,
including estrogen, by specific microsomal P450 enzymes
(Miller, 2005).

Estrogen: From Brain Development to
Brain Aging
Today, it is recognized that the action of estrogen is not
limited to the regulation of endocrine functions and behavior.
Estrogen plays predominant roles as pleiotropic factor in the
development and function of the CNS. Numerous evidences
highlighted the influence of both male and female sex hormones
on neural circuit development, sex-specific behaviors and sexual
differentiation of mammalian brain from the fetal-neonatal
period to puberty and adult life (reviewed in Hines, 2011).
For instance, the transition from childhood to adulthood is
marked bymorphological changes in the brain that are associated
with sex hormone levels (Koolschijn et al., 2014). Interestingly,
the structure and function of the brains of female and male
animals as well as humans have been demonstrated to be
markedly different in the number of cells in specific brain
areas (Kruijver et al., 2000). This sexual dimorphism in several
areas of the brain appears to be dependent on the action of
gonadal hormones as variations in the volume of cortical and
sub-cortical regions were correlated to the levels of estrogen and
testosterone during puberty (Kruijver et al., 2000; Herting et al.,
2014).

Interestingly, the group of Shah showed that the conversion
of testosterone to estradiol by the enzyme aromatase is necessary
during the perinatal period for the expression of masculine
sex behavior in the adult, while the absence of testosterone
and estrogen is necessary for normal development of female
brains (Wu et al., 2009). This points out the importance of
brain estrogen synthesis in aromatase-expressing neurons during
fetal male life. Although testosterone is important for male
development and behavior throughout life, it is now recognized
that estrogen plays also important roles in the male brain
(reviewed in Gillies and McArthur, 2010).

Estrogen can induce several effects through different
pathways (see also next section). The identification of ER
outside their classical CNS regions like the hypothalamus and
the pituitary gland justifies their role in controlling different
brain functions (Genazzani et al., 2007). This organizational
effect is firstly acting during the fetal-neonatal period where
estrogen modulates neuronal development and the development
of neuronal circuits (Kruijver et al., 2001). Brain plasticity
begins with the formation of the nervous system during early
development and continues through the puberty, reproduction
and adult life (Cooke et al., 1998). Estrogen seems to be

also important for the maintenance and regulation of the
network integrity of brain areas related to cognition, especially
the hippocampus and associated structures (Garcia-Segura
et al., 1994). In peri- and postmenopause, neurosteroids
including estrogen undergo important changes due to the
disturbance of gonadal hormone production and many CNS
functions associated with hippocampal activities deteriorate,
such as memory, cognition and attention (Genazzani et al.,
2005).

Estrogen Pathways: Estrogen Receptors,
BDNF and Sirtuin 3
Different pathways play a role in the pleiotropic effects of
estrogen in the brain. In the following, we discuss the emerging
evidence about the role of ER and the estrogen—brain-derived
neurotrophic factor (BDNF) as well as estrogen—sirtuin 3
(SIRT3) pathways that converge on the mitochondria.

Estrogen Receptors
Among the sex steroid hormone receptors, ERα and ERβ

have been shown to be localized in mitochondria depending
on the cell type and they ensure the mitochondrial function.
The co-localization of ERβ and mitochondrial markers have
been demonstrated in rat primary neurons and a murine
hippocampal cell line suggesting a role of mitochondrial ERβ in
mediating estrogen effects (Yang et al., 2004; Figure 2). Indeed,
ERβ is described as the type of ER that is most frequently
present in mitochondria in most cell types (Vasconsuelo et al.,
2013). ERα seems also to play a role, since estrogen exerted
protective effects in human cerebral endothelium by increasing
mitochondrial cytochrome c protein and mRNA, as well as
reducing ROS through ERα but not ERβ receptors (Razmara
et al., 2008).

In addition, estrogen response elements (ERE) are present
in the mtDNA and allow the binding of steroid receptors.
In fact, ER can bind to ERE located in the mtDNA (Chen
et al., 2004). This association is known to improve the
expression of mitochondrial-encoded genes and the ETC
activity (Figure 2; Arnold et al., 2012). Moreover, sex steroid
hormone receptors have been suggested to bind mitochondrial
proteins. Indeed, the association of mitochondrial ERβ with
mitochondrial respiratory complex proteins was investigated
in a series of co-immunoprecipitation studies showing that
ERβ can interact with the respiratory complex V (Alvarez-
Delgado et al., 2010; Velarde, 2014). In different brain
areas, there is a differential expression of mitochondrial
ERα and ERβ variants suggesting that they can participate
in several functions in the brain during aging (Alvarez-
Delgado et al., 2010). In female rats, mitochondrial ERα

and ERβ were detected in the hypothalamus, cortex and
hippocampus with no difference between young (3 months old)
and aged (18 months old) animals (Alvarez-Delgado et al.,
2010).

Sirtuin 3 Pathway
The function of the sirtuin family consisting of seven members
is important in different aspects of cellular regulation such
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as lipid homeostasis and metabolism (reviewed Houtkooper
et al., 2012), apoptosis resistance (reviewed in Pantazi et al.,
2013) and oxidative stress management (reviewed in Rajendran
et al., 2011). In addition, sirtuins are believed to contribute
to the aging process and may play direct roles in longevity
regulation (Guarente, 2013). Among the sirtuin members,
SIRT3 has received much attention for its role in aging and
neurodegenerative diseases and is reported to affect human
lifespan (Reviewed in Ansari et al., 2017). SIRT3 is one
of the three genomically expressed sirtuins that localize to
mitochondria (Onyango et al., 2002; Schwer et al., 2002) as
well as the primary mitochondrial protein deacetylase (Lombard
et al., 2007). SIRT3 controls energy demand during stress
conditions including oxidative stress conditions related to the
aging process (Figure 2; reviewed in Ansari et al., 2017). In
addition, its over-expression prevented neuronal derangements
in certain in vitro and in vivo models of aging (Anamika et al.,
2017), whereas its knockout in Sirt3−/− mouse embryonic
fibroblasts induced abnormal mitochondrial physiology as well
as increases in stress-induced superoxide levels and increased
genomic instability (Kim et al., 2010). At the mRNA level,
Sirt3 is the third most expressed member of the sirtuin family
in the whole brain of the adult rat, except in the cerebellum
where its expression was modestly lower (Sidorova-Darmos
et al., 2014). During the development, mRNA expression pattern
of Sirt3 was similar in cortex, cerebellum and hippocampus,
with Sirt3 mRNA levels being fairly consistent from embryonic
day 18 (E18) until 24 months of age (Sidorova-Darmos et al.,
2014). Unfortunately, sex differences were not investigated in
the study of Sidorova-Darmos et al. (2014), since the sex was
not specifically determined for E18, postnatal days (PN) 2,
PN7 or PN21 stages, while only female rats were used for the
3 and 24 month tissue samples, but Sirt3 mRNA levels were
similar at least in liver tissue from male and female mice at
the age of 11 months (Yu et al., 2015). Braidy et al. (2015)
investigated changes in the protein levels of various sirtuins in
the aged female rat brain. Twenty-four month old rats showed
lower SIRT3 levels in the hippocampus and frontal cortex,
but not occipital or temporal lobe, compared to 3 month old
rats.

The co-presence of SIRT3 and the peroxisome proliferator-
activated receptor-γ coactivator-1α (PGC-1α) implicates its
role in mitochondrial biogenesis that provides ATP to support
fundamental cellular processes involved in synaptic plasticity
such as neurite outgrowth (Kong et al., 2010). Interestingly,
the mitochondrial SIRT3 promoter region carries an estrogen-
related receptor (ERR)-binding element (ERRE) located
399- to 407-bp downstream (Figure 3; Kong et al., 2010).
SIRT3 attenuates ROS and protects the cell from ROS both
directly through the deacetylation of manganese superoxide
dismutase (MnSOD; Figures 2, 3) and indirectly via interaction
with transcription factors such as forkhead box O3 (FOXO3a;
Figure 3) as demonstrated in TCam-2 cells (Panza et al.,
2017). Sirt3-induced activated FOXO3a translocates to the
nucleus and augments FOXO3a-dependent antioxidant defense
mechanisms, through upregulation of PGC-1α and MnSOD
(Figure 3).

BDNF Pathway
Research has implicated one of the neurotrophic factors, BDNF,
to be involved in age-related cognitive decline. A hypothesis
has emerged that aging is associated with a decreased BDNF
signaling capacity in the CNS (Mattson et al., 2004). In humans,
BDNF levels have been shown to decrease in brain regions
involved in age-related neurodegenerative diseases: e.g., in
Alzheimer’s disease (AD) in the frontal cortex (Ferrer et al.,
1999), the hippocampus (Phillips et al., 1991), the parietal cortex
(Hock et al., 2000) and the entorhinal cortex (Narisawa-Saito
et al., 1996). However, age-related changes in brain BDNF
levels in elderly humans during normal cognitive aging are
under-investigated. In aged monkeys (26, 30 and 32 years),
the intensity of BDNF-immunoreactivity has been found to
decline in cell bodies and dendrites of the neurons in the
hippocampal formation (Hayashi et al., 2001). In humans,
BDNF levels in plasma have been found to decrease with
increasing age (Lommatzsch et al., 2005; Ziegenhorn et al.,
2007; Erickson et al., 2010) and the levels of tropomyosin
receptor kinase B (trkB, BNDF receptor) mRNA decreased over
the life span (Webster et al., 2006). In accordance with these
results, it has been shown that the levels of trkB decrease in
the rat hippocampus during aging (Croll et al., 1998; Silhol
et al., 2005) and 24-month-old rats exhibited significantly
less BDNF protein in three brain regions as compared to
4-month-old rats (Bimonte-Nelson et al., 2008). However, it
should be noticed that conflicting data from animal research
exist not always confirming whether age-related changes do
occur in the brain (Bimonte-Nelson et al., 2008). Compared
to females, males had lower BDNF levels in the hippocampus
at 20 months emphasizing the important role of sex and sex
hormones (Bimonte-Nelson et al., 2008). Therefore, discordant
findings between aging studies may also be related to the
fact that some studies used males (e.g., Narisawa-Saito and
Nawa, 1996; Yurek and Fletcher-Turner, 2001), whereas others
used female animals (e.g., Scott et al., 1994). In agreement
with these findings, some authors found that elderly females,
but not elderly males, with poorer cognitive performance
had lower plasma BDNF levels than better performers (e.g.,
Komulainen et al., 2008) and smaller hippocampal volumes
are associated with reduced levels of serum BDNF and poorer
memory performance (Erickson et al., 2010). Moreover, genetic
studies have identified a single nucleotide polymorphism on
the BDNF gene that moderates age-related cognitive decline
(Erickson et al., 2008). Of note, a very recent study showed
that estrogen tweaks circuit function by interacting with a
uniquely human version of the gene that encodes for BDNF,
the Val66Met genotype (Wei et al., 2018). The BDNF Val66Met
variant and ovarian steroids interactively modulate working
memory-related hippocampal function in women suggesting
that hormone-gene interaction may underlie sex/individual
differences in brain disorders, thus providing a potential
explanation for observations of individual differences in the
effects of estrogen on hippocampal performance in women (Wei
et al., 2018).

In summary, there is evidence suggesting that the BDNF-trkB
system, especially in the hippocampus, is sensitive to aging and is
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FIGURE 3 | Model of possible interactions between estrogen, BDNF and SIRT3. BDNF protein binds to its tyrosine kinase B receptor (TrkB) which stimulates
signaling pathways, including the extracellular signal-regulated kinase (ERK) and the phosphatidylinositol 3-kinase (PI3K) pathways. This leads to the activation of the
cAMP response element-binding protein (CREB) and transcription of genes, including peroxisome proliferator-activated receptor gamma coactivator 1-alpha
(PGC-1α). Estrogen (E2) activates similar signaling pathways as BDNF, and, by binding its receptor (ER), modulates the gene expression of BDNF, TrkB and SIRT3.
SIRT3 protein translocates to mitochondria and interacts with Forkhead box O3 (FOXO3A), thereby activating this protein. In turn, activated FOXO3A (Act. FOXO3A)
induces the transcription of the manganese superoxide dismutase (MnSOD) which acts as ROS scavengers in mitochondria. In addition, SIRT3 protects the cell from
ROS directly through the deacetylation of MnSOD. SIRT3 regulates also the expression of PGC-1α (indicated by the doted arrow) which is involved in mitochondrial
biogenesis. In the graph, E2 designates where estrogen may interact with the BDNF and SIRT3 pathways. BDNF: brain derived neurotrophic factor, CRE, cAMP
response elements, PGC-1α, proliferator-activated receptor gamma coactivator 1-alpha, SIRT3, sirtuin 3.

modulated by sex and sex hormones respectively. In this context,
the drop in estrogen in females during perimenopausemight play
a role in the cognitive function decline during female aging.

BDNF and estrogen are both important modulators of
synaptic plasticity (Figure 3; Zárate et al., 2017). Synaptic
plasticity, the dynamic regulation of synaptic mechanisms like
long-term potentiation (LTP), spine density and form, number
and length of dendrites and axons (neuritogenesis) and the
number of neurons (neurogenesis and apoptosis) represent
major mechanisms by which our brain can adapt to periods
of pathologically enhanced or reduced function or to save
information at the synaptic level. Mitochondria play a crucial
role as they provide the cellular energy for these adaptive
responses or initiate apoptosis in case of neuronal damage
beyond the possibility of repair. Changes of synaptic function

and plasticity play a major role for cognitive deficits in aging
and age-related brain disorders (Barnes, 1990; Rosenzweig and
Barnes, 2003).

Activation of the high-affinity BDNF receptor TrkB results in
phosphorylation of tyrosine residues in the cytoplasmic domain
of the receptor and subsequent recruitment and activation
of signaling proteins that engage extracellular signal-regulated
kinases (ERKs) and the phosphatidylinositol 3-kinase (PI3K)-
Akt kinase pathway (Figure 3; Cheng et al., 2012).

Notably, it has been shown that estrogen and BDNF receptor
(trkB) coexpression leads to convergence of their signaling
pathways (Figure 3; Scharfman and MacLusky, 2006) and
PI3K and MAPK/ERK protein cascades may be activated by
estrogen or BDNF-bound membrane receptors (Cover et al.,
2014). Both pathways phosphorylate the transcription factor
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cAMP response element-binding protein (CREB) which, in
turn, induces the expression of PGC-1α resulting in protein
transcription, neuronal plasticity and memory formation and
consolidation (Marosi and Mattson, 2014). Intra-pathway
crosstalk is in addition possible. Moreover, estrogen and BDNF
can interact directly, because estrogen induces BDNF gene
expression, which in turn acts on trkB to exert its effects
(Figure 3; Scharfman and MacLusky, 2006). Induction of
this kind may occur by an ERE on the BDNF gene or by
estrogen-induced increase in neural activity that upregulates
BDNF (Figure 3; Scharfman and MacLusky, 2006; Zárate
et al., 2017). By enhancing the uptake of energy substrates,
mitochondrial biogenesis, and protein synthesis capabilities of
neurons, estrogen-BDNF signaling plays pivotal roles in the
adaptive changes in synapse formation and modification. Thus,
the concerted action between BDNF and estrogen is important
for the improvement of synaptic function and plasticity in
aging.

ESTROGEN AND BIOENERGETICS IN
FEMALE BRAIN: IMPLICATIONS FOR
ESTROGEN REPLACEMENT THERAPY

Estrogen is an essential regulator of the metabolic system
of the female brain and contributes to processes within
the entire bioenergetic system including glucose metabolism,
glucose transport and ATP production as well as mitochondrial
respiration (Figure 2; Rettberg et al., 2014). A decline of
15%–25% in metabolic function in the brain was observed
after the loss of estrogen by surgical removal of ovaries or
reproductive endocrine aging (Loembe et al., 1988; Slebos et al.,
1988). Recent research of our group confirmed in vitro the
effects of estrogen on mitochondrial function (Figure 2). We
showed that estrogen, such as estradiol and estrone, was able
to improve bioenergetics and antioxidant defenses in primary
neuronal cultures and in human neuroblastoma cells (SH-
SY5Y) by increasing mitochondrial membrane potential (MMP),
ATP levels, basal respiration and MnSOD activity (Grimm
et al., 2014; Figure 2). Besides, a treatment with estrogen
was efficient in reducing bioenergetic impairments observed
in a cellular model of AD (Grimm et al., 2016a; Lejri et al.,
2017). Thus, estrogen represents an attractive therapeutic tool
to counteract the mitochondrial impairments in aging and
age-related disorders.

Female sex is the major risk factor for AD after advanced
age. Preclinical studies demonstrated that the perimenopause
to menopause transition is a sex-specific risk factor for
AD (Mosconi et al., 2017). In animal studies, estrogenic
regulation of cerebral glucose metabolism falters during
perimenopause (Mosconi et al., 2017). During aging, a decline
of genes required for mitochondrial function and β-amyloid
degradation was observed in a rat model recapitulating
fundamental characteristics of the human perimenopause (Yin
et al., 2015). Impaired synaptic function and emergence of
glucose hypometabolism in brain give plausible mechanisms of
neurological symptoms of perimenopause and can be predictive

of later-life vulnerability to hypometabolic conditions like AD
(Yin et al., 2015).

In the metabolic system of the aging female brain, the earliest
change is the persistent decline in neuronal glucose transport
and metabolism, followed by a drop in mitochondrial function
(Ding et al., 2013). In fact, immediately before the transition
into reproductive senescence, a hypometabolism in the brain of
female mice (at 6–9 months) was demonstrated by a reduction
in glucose uptake and hexokinase activity (Ding et al., 2013).
These phenomena were also accompanied by inactivation of
complex IV activity and pyruvate dehydrogenase leading to an
impairment of the mitochondrial energy-conservation system
in the brain of female mice (Ding et al., 2013). In parallel to
the decline in glucose transport, lactate transport and utilization
were also reduced, suggesting that the lactate is not used as
an alternative fuel source during the transition to reproductive
senescence.

Earlier preclinical findings indicating emergence of
bioenergetic deficits in perimenopausal and postmenopausal
women were recently validated and suggested that the optimal
window of opportunity for therapeutic intervention in women
is early in the endocrine aging process (Mosconi et al., 2017).
A study bridged basic to clinical science to characterize brain
bioenergetics in a cohort of 43, 40–60 year-old clinically
and cognitively normal women at different endocrine
transition stages including premenopause, perimenopause
and postmenopause. Compared to premenopause, both

FIGURE 4 | Hypothetic model of the convergence of BDNF and SIRT3 on
mitochondria induced by estrogen. Estrogen (E2) induces the expression of
BDNF and SIRT3. The action of BDNF and SIRT3 converges on mitochondria
by regulating the expression of PGC-1α which is involved in mitochondrial
biogenesis that is necessary for synaptic plasticity. BDNF, brain derived
neurotrophic factor, PGC-1α, proliferator-activated receptor gamma
coactivator 1-alpha, SIRT3, sirtuin 3.
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perimenopause and postmenopause groups exhibited
a reduction in mitochondrial COX activity which was
correlated with a decline of cerebral glucose metabolism in
AD-vulnerable regions. A gradient in biomarker abnormalities
correlated with immediate and delayed memory scores and
was most pronounced in post-menopause, intermediate in
perimenopause, and lowest in premenopause (Mosconi et al.,
2017). Therefore, estrogen replacement therapies (ERT) may
only be beneficial before women accumulate a certain threshold
of cellular damage, at the appropriate time of a woman’s
life, also known as the ‘‘critical period’’ that starts during
perimenopause and ends early after menopause (Figure 1;
Velarde, 2013; Viña et al., 2013; Grimm et al., 2016b). This
‘‘critical period’’ might also explain the failure of the Women’s
Health Initiative (WHI) study including only postmenopausal
aged over 68 years thereby missing the vulnerable time frame
(Rossouw et al., 2002; Anderson et al., 2004). The window of
opportunity concept supports that estrogen can have beneficial
effects only on healthy brain during the years before the
menopause compared to some years after the menopause
onset where ERT could even present detrimental effect on
brain activity (Morrison et al., 2006; Brinton, 2008, 2009;
Scott et al., 2012; Rettberg et al., 2014; Miller and Harman,
2017). The effectiveness of ERT is also dependent on the
formulation of treatments (e.g., use of synthetic conjugated
equine estrogen vs. natural estrogen, or co-treatment with
progesterone), the mode of delivery (transdermal or oral)
and the regimen (cyclic or continuous; Miller and Harman,
2017).

Importantly, recent evaluation of the role of estrogen showed
that hormonal therapy can prevent the deleterious effects of aging
in cognition, and decreases the risks of dementia, if initiated early
(Girard et al., 2017). In this context, beneficial treatment effects
of estrogenmight be mediated by the BDNF and SIRT3 pathways
and their convergence via PGC-1α on mitochondria (Figure 4).

CONCLUSION

Over the last decade, accumulating evidence has suggested a
causative link between mitochondrial dysfunction and major
phenotypes associated with aging. A number of recent studies
link mitochondrial function to signaling pathways that regulate
brain plasticity, life span and to the aging process. It is clear
that estrogen exerts actions on the mitochondria and that these
organelles play an important role in age-related processes. In
this context, estrogen/BDNF or estrogen/SIRT3 actions and
interactions represent complex and fundamental mechanisms of
neuronal plasticity, a process highly depending on energy supply
via mitochondrial activity (Figure 4). Notably, a growing body
of evidence indicates emergence of bioenergetic deficits already
in perimenopausal women, suggesting that the optimal window
of opportunity should be used for the therapeutic intervention in
women during the endocrine aging process.

A full understanding of the molecular mechanisms triggered
by estrogen at the mitochondrial level and its effects in aging
populations may provide profound and exciting possibilities for
the future treatment of age-dependent diseases associated with
the deregulation of sexual hormone levels.
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