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Abstract: Mass spectrometry imaging is a powerful tool to analyze a large number of metabolites
with their spatial coordinates collected throughout the sample. However, the significant differences
in ionization efficiency pose a big challenge to metabolomic mass spectrometry imaging. To solve
the challenge and obtain a complete data profile, researchers typically perform experiments in both
positive and negative ionization modes, which is time-consuming. In this work, we evaluated the
use of the dicationic reagent, 1,5-pentanediyl-bis(1-butylpyrrolidinium) difluoride (abbreviated to
[C5(bpyr)2]F2) to detect a broad range of metabolites in the positive ionization mode by infrared
matrix-assisted laser desorption electrospray ionization mass spectrometry imaging (IR-MALDESI
MSI). [C5(bpyr)2]F2 at 10 µM was doped in 50% MeOH/H2O (v/v) electrospray solvent to form +1
charged adducted ions with anionic species (−1 charged) through post-electrospray ionization. This
method was demonstrated with sectioned rat liver and hen ovary. A total of 73 deprotonated metabo-
lites from rat liver tissue sections were successfully adducted with [C5(bpyr)2]2+ and putatively
identified in the adducted positive ionization polarity, along with 164 positively charged metabolite
ions commonly seen in positive ionization mode, which resulted in 44% increased molecular coverage.
In addition, we were able to generate images of hen ovary sections showing their morphological
features. Following-up tandem mass spectrometry (MS/MS) indicated that this dicationic reagent
[C5(bpyr)2]2+ could form ionic bonds with the headgroup of glycerophospholipid ions. The addition
of the dicationic reagent [C5(bpyr)2]2+ in the electrospray solvent provides a rapid and effective way
to enhance the detection of metabolites in positive ionization mode.

Keywords: metabolites; dicationic reagent; ambient ionization; IR-MALDESI; mass spectrome-
try imaging

1. Introduction

Metabolomics plays a critical role in understanding human biology regarding molecu-
lar functions and cellular activities [1]. Comparing metabolic differences between normal
and abnormal pathways could contribute to our knowledge about metabolites’ proper-
ties and their involvement in different stages of disease processes [2,3]. Additionally, the
abundances of metabolites, as well as their spatial distributions across biological systems,
provide insights into novel biomarkers useful for disease prognosis and diagnosis [3–5],
which may promote personalized cancer treatment [1,3,6]. Therefore, it is important and
necessary to achieve a comprehensive metabolite profile in a high-accuracy and high-
throughput manner.

Mass spectrometry imaging (MSI) is one of the most effective analytical approaches to
measuring metabolites qualitatively and quantitatively due to its ability to simultaneously
detect hundreds to thousands of analytes based on their respective mass-to-charge ratio
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(m/z) and abundance. In the meantime, the exact coordinates where these metabolites are
within the sample can be recorded in MSI datasets. The abundances of analyte(s) combined
with their corresponding locations can be used to generate ion heat maps, which are espe-
cially helpful in discriminating tumor regions in cancerous tissues [7–9]. Matrix-assisted
laser desorption ionization (MALDI) is a widely used ionization method of imaging metabo-
lites and lipids in a variety of biological samples. The progress and applications of MALDI
MSI have been summarized in several reviews [10–12]. However, MALDI conventionally
requires a high vacuum environment, making it impractical to use when analyzing volatile
molecules. Moreover, peaks produced by the organic matrices often interfere with peaks of
interest in the low m/z spectra, increasing the difficulty in accurately deciphering the mass
spectra [13,14]. These challenges demand the development of advanced MSI instrumenta-
tion and methodology operated under ambient conditions, such as atmospheric pressure
MALDI (AP-MALDI) [15,16], probe electrospray ionization (PESI) [17,18], desorption elec-
trospray ionization (DESI) [19,20], and infrared matrix-assisted laser desorption ionization
(IR-MALDESI) [21–23].

IR-MALDESI is a rapid and organic matrix-free MS ionization source combining the
benefits of MALDI with post-electrospray ionization (ESI) [24]. In IR-MALDESI experi-
ments, a pulsed 2.97 µm mid-infrared laser resonantly excites the O-H stretching bond of
endogenous water and/or an exogenously deposited ice matrix, which desorbs neutral
species within the laser spot [25]. The desorbed neutral molecules further partition into
small droplets in the orthogonal electrospray and are ionized in an ESI-like mechanism be-
fore being introduced into a high resolving-power mass spectrometer [26–28]. The current
IR-MALDESI source is interfaced with an Orbitrap Exploris 240 mass spectrometer. Over
the past decade, IR-MALDESI has advanced significantly in the direct analysis as well as
spatially resolved mass spectrometry imaging of biomolecules, including metabolites and
lipids [9,29].

One of the challenges facing the MSI field is the variations of ionization efficiency
among metabolites due to their structural diversity. While some metabolites are readily de-
tected in positive ionization mode, others like fatty acids (FAs) and glycerophosphates (PAs)
are more conducive to analysis in negative ionization mode. Herein, researchers usually
conduct two separate MSI experiments in both polarities to improve molecular coverage.
However, running two experiments in both ionization polarities is time-intensive and
challenging especially when the sample is valuable and limited. Furthermore, MSI analysis
in negative ionization mode does not perform as robustly compared to positive ionization
mode due to increased tendency for corona discharging [30,31]. To solve these problems
and maintain the same metabolite profile, a polarity-switching method is developed such
that the electrospray polarity was rapidly alternated in adjacent voxels, which allows for
detection of positively and negatively charged species from the same sample in a single
experiment; however, the spatial resolution of X dimension is compromised (two times
lower in X dimension than Y dimension) [7]. Furthermore, the polarity-switching method
is not universally applicable to all mass spectrometers [32,33]. An alternative method
named paired-ion electrospray ionization (PIESI) is to add doubly- or multiply-charged
reagents into electrospray solvent to form positively charged adducts with deprotonated
biomolecules, which allow them to be detected in positive ionization mode. First intro-
duced in 2005 [34], PIESI has been used in liquid chromatography (LC) ESI MS [35–37],
single probe ESI MS [38,39], and DESI MS [40–42] to help detect inorganic anions, de-
protonated glycerophospholipids, and other anionic ions. Although the mechanism is
still under exploration, previous evidence suggested that binding equilibrium constants,
surface activity, and structural flexibility could partly explain the ionization efficiency of
ion-pairing reagents [34,43,44].

In this study, we demonstrated the feasibility of a dicationic reagent, 1,5-pentanediyl-
bis(1-butylpyrrolidinium) difluoride (abbreviated to [C5(bpyr)2]F2), to detect deprotonated
metabolites in positive ionization mode via IR-MALDESI MS. The dicationic reagent
[C5(bpyr)2]2+ contains two cationic moieties connected by a hydrocarbon chain. Once
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[C5(bpyr)2]2+ binds to an anionic ion (−1 charged), the resulting positively charged adducts
can be imaged in the positive ionization mode. The use of dicationic reagent [C5(bpyr)2]2+

was reported in many studies for MS analysis [35–39,45] and showed superior performance
for analyzing anions in ESI MS [37]. Since the ionization mechanism of IR-MALDESI is
similar to ESI [26–28], we can ideally expect a similarly superior performance for detecting
negatively charged ions in positive ionization mode with IR-MALDESI. Additionally, in a
single-probe MSI experiment, [C5(bpyr)2]2+ was added to the solvent and used to extract
the chemical contents, which led to the detection of a significant number of deprotonated
metabolites in positive ionization polarity [38]. Hence, we chose this representative di-
cationic reagent [C5(bpyr)2]2+ to enrich the metabolomic coverage for IR-MALDESI MSI.
The method development was carried out with quasi-homogeneous rat liver sections.
Following that, hen ovary sections were tested as a model system for mass spectrometry
imaging. Tandem mass spectrometry (MS/MS) substantiated that adducts were likely
formed between deprotonated ions and [C5(bpyr)2]2+.

2. Results and Discussions
2.1. Detection of Negatively Charged Metabolites in Adducted Positive Ionization Polarity

The addition of 10 µM [C5(bpyr)2]2+ into the ESI solvent resulted in the peak at
162.1747 m/z (z = 2) with an average ion flux of >107 ions/sec in the ESI mass spectrum
(Figure 1A). This indicated the dicationic ion was readily detected and can be used for
tissue analyses. Rat liver was chosen to study the efficacy of the [C5(bpyr)2]2+ due to
its quasi-homogeneous nature and well-studied metabolite profile. We conducted IR-
MALDESI MSI analysis of rat liver sections with a low m/z window (150–600) and a
high m/z window (350–1400) separately in negative ionization, positive ionization, and
[C5(bpyr)2]2+ adducted positive ionization mode.
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related to [C5(bpyr)2]2+ are labeled in purple. (B). Dicationic chemical structure of [C5(bpyr)2]2+.
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In negative ionization mode, most negatively charged metabolites were detected in
the low m/z window, while a distinct cluster containing deprotonated glycerophospho-
lipids, such as PAs, was observed between 700 and 950 m/z (Figure S1). Furthermore, we
compared the mass spectrum in positive ionization mode to that in [C5(bpyr)2]2+ adducted
positive ionization mode (Figure 2). We found three noticeable mass spectral features
stood out in the m/z range of 500–675, 750–900, and 1000–1250, respectively. Figure 2A
displays that the abundant species normally observed in positive ionization mode, such as
Glycerophosphocholines (PCs) and Glycerophosphoethanolamines (PEs), still dominated
at 750–900 m/z while using [C5(bpyr)2]2+. Detailed spectra at 500–675 m/z (Figure 2B) and
1000–1250 m/z (Figure 2C) exhibited that a few peaks were only observed in [C5(bpyr)2]2+

adducted positive ionization mode, therefore, they were putatively assigned as the poten-
tial adduct ions with [C5(bpyr)2]2+. Each m/z value of those peaks was subtracted by the
mass shift of 324.3494 (dicationic mass of [C5(bpyr)2]2+). The resulting m/z values were
searched against the METLIN database with the parameter settings of the negative charge,
[M-H]- and 2.5 ppm mass measurement accuracy (MMA). In addition to high mass mea-
surement accuracy, spectral accuracy is the instrument’s ability to accurately measure the
isotopic distribution. Combing high spectral accuracy with high MMA, we can determine
the elemental composition of one compound based on its isotopic distribution [46]. In
this work, the number of carbons in each molecule was estimated by dividing the relative
abundance of the M + 1 peak containing one 13C by the natural isotopic abundance of 13C
(~1.11%). As Figure 3 was shown, there was good agreement between experimental and
theoretical isotopic abundance, increasing our confidence in the putative identifications.

Overall, we found 73 deprotonated metabolites formed adduct ions with [C5(bpyr)2]2+,
among which 59 were also detected in negative ionization mode (Figure 4A, refer to
Tables S1 and S2 for the detailed list of metabolites). Most of them were manually classified
into FAs with a few PAs and PEs species according to LIPID MAPS. The number of
positively charged metabolites observed in positive ionization mode from the rat liver
section was 167; 164 were still observed at their usual m/z when [C5(bpyr)2]2+ was added
to ESI solvent (Figure 4B, refer to Table S3 for the detailed list of metabolites). The main
classes for most positively charged metabolites were PCs, PEs, Diradylglycerols (DGs), and
Triradylglycerols (TGs).
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Figure 3. Spectral accuracy determination of three representative deprotonated metabolite ions in negative ionization mode
(top, blue) and [C5(bpyr)2]2+ adducted positive ionization mode (bottom, purple), respectively. All background peaks were
removed to clearly show the good alignment between the experimental MS spectra (shown in lines) and theoretical 13C
isotopic distribution (marked in grey dots).
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Figure 4. Venn diagram summarizing the number of metabolites from rat liver sections tentatively identified in negative,
positive, and [C5(bpyr)2]2+ adducted positive ionization modes, respectively. (A). Negatively charged metabolites detected
in negative ionization and [C5(bpyr)2]2+ adducted positive ionization modes. (B). Positively charged metabolites detected
in positive ionization and [C5(bpyr)2]2+ adducted positive ionization modes. All putative identifications were made
via accurate m/z matching in the METLIN database within 2.5 ppm MMA. Detailed information regarding putative
identifications, molecular formula, and categories are listed in Tables S1–S3.

2.2. Mass Spectrometry Imaging of a Hen Ovary Section with the Dicationic Reagent

Following the method development, the hen ovary tissue sections were chosen for
mass spectrometry imaging as the sample contained more morphological features. The
desorbed neutrals from the hen ovary tissue sections were post-ionized by ESI solvent
containing [C5(bpyr)2]2+. The m/z range was adjusted to 200–1000 for negative ionization
polarity to encapsulate the most negatively charged metabolites we observed in the rat
liver results. In positive and [C5(bpyr)2]2+ adducted positive ionization modes, the mass
range was altered to 350–1400 m/z. Two main reasons for this change were (1) to include
a majority of [C5(bpyr)2]2+ adduct ions between 525 and 1325 m/z; (2) to retain a few
positively charged metabolites that were normally seen between 350 and 500 m/z. Since
the goal of this part of the study is to assess the capability of the [C5(bpyr)2]2+ to enrich
the molecular profile of metabolomic mass spectrometry imaging instead of imaging
the whole hen ovary section, we chose to only sample a small ROI that contained two
follicles (Figure 5A). In total, 18 deprotonated metabolites were able to form adducts with
[C5(bpyr)2]2+ in the adducted positive ionization mode (refer to Table S4 for the detailed
list of metabolites). Two heatmaps of representative protonated lipid ions were shown
along with three adducted ions in Figure 5B–F. The heatmaps exhibited the same spatial
distribution and were highly correlated with the morphological features displayed in the
optical image.
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2.3. MS/MS Analysis of Selected Lipid Adducts with the Dicationic Reagent

To acquire more information about the adduct formation and to validate the identifica-
tions of adducted ions, we conducted HCD MS/MS experiments on selected adducted ions
from the rat liver tissue section. A common fragment ion at m/z 196.2058 was detected in
all MS/MS mass spectra (Figure 6A–D), which is derived from [C5(bpyr)2]2+ itself losing
C8H17N (127.1362 Da). The same neutral loss of 127.1362 Da was also observed in the
fragment ions detected at 476.4457 m/z in Figure 6A, at 918.6942 m/z in Figure 6B, and
at 963.7519 m/z in Figure 6C, respectively. However, in Figure 6D, we did not observe
either the precursor ion at 1209.8991 m/z or the expected fragment ion at 1082.7628 m/z
(i.e., the fragment ion caused by the neutral loss of 127.1362 Da), possibly due to the
low abundance of the precursor ion at 1209.8991 m/z (with an averaged ion flux ~104

ions/sec). Importantly, we found a fragmentation scheme [headgroup of glycerophos-
pholipid+ C5(bpyr)2-C8H17N]+, i.e., for PA, [H2O4P+C5(bpyr)2-C8H17N]+ at 294.1823 m/z
in Figure 6B; for PE, [C2NH7O4P+C5(bpyr)2-C8H17N]+ at 337.2248 m/z in Figure 6C;
for PI, [C6H10O8P+C5(bpyr)2-C8H17N]+ at 456.2353 m/z in Figure 6D. As Figure 6A–D
shown, the peaks related to [headgroup of glycerophospholipid+C5(bpyr)2-C8H17N]+ and
[lipid+C5(bpyr)2-C8H17N]+ were retained, whereas the commonly occurring product peaks
for lipid identifications were not detected. One possible explanation for this phenomenon
is that the anionic lipids formed ionic bonds with [C5(bpyr)2]2+. Specifically, when the
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lipids were glycerophospholipids such as PAs, PEs, and PIs, the ionic bonds were built
between their headgroup and one of the cationic moieties of the dicationic reagent. Given
that the electrostatic force between ionic bonds is generally stronger than that between
covalent bonds, the covalent bonds in the adducted ions were cleaved first. The fragmenta-
tion pattern is very interesting and warrants further investigation. This could lead us to
explore specific types of dicationic reagents regarding their cationic moieties to enhance
the detection of glycerophospholipids as well as other categories of lipids and metabolites.
It is also important to point out that the fragment peak at 294.1823 m/z that was observed
in Figure 6B was also found in Figure 6C, which could be due to a neutral loss of C2NH5
(43.0422 Da) from the headgroup of PEs.

One possible hypothesis that could explain the adduct formation with dicationic
reagent is that this chemistry is happening on a millisecond scale at the surface of the
droplet. After the mid-infrared laser irradiates the tissue sample, neutral species are ejected
and encounter the orthogonally oriented electrospray plume where they are ionized in an
ESI-like process [26–28]. Since all charges are located on the droplet surface, [C5(bpyr)2]2+

and other cationic ions (e.g., H+) are competing against each other for the adduct formation
simultaneously. Therefore, we hypothesize that [C5(bpyr)2]2+ outcompetes others due to
two possible reasons: (1) the binding equilibrium constant for [C5(bpyr)2]2+ adducts is
greater than the binding equilibrium constants for other possible adducts. As a result,
neutral species that are liable to get deprotonated could be more easily adducted with
[C5(bpyr)2]2+; (2) it is more likely that metabolites form ionic bonds with [C5(bpyr)2]2+.
Since the electrostatic force within an ionic bond is generally stronger than that of a covalent
bond, it is easier to form an ionic bond between oppositely charged ions (i.e., neutral species
that can be negatively ionized and [C5(bpyr)2]2+ that is +2 positively charged, respectively).
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fragment peak at 1082.7628 m/z was not seen in the spectra possibly due to the low abundance of its precursor ion at
1209.8991 m/z.

3. Materials and Methods
3.1. Materials

The dicationic reagent 1,5-pentanediyl-bis(1-butylpyrrolidinium) difluoride
([C5(bpyr)2]F2) at the concentration of 2.5 mM in 50% methanol/H2O (v/v) was pur-
chased from AZYP, LLC (Arlington, TX, USA). The dicationic structure was observed
at 162.1747 m/z (z = 2) and 343.3483 m/z (z = 1) with high ion abundance (Figure 1A).
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The dicationic chemical structure was shown in Figure 1B. [C5(bpyr)2]F2 was diluted to
10 µM with 50% methanol/H2O in this experiment. LC/MS grade methanol, formic acid,
and water were purchased from Fisher Chemical (Fair Lawn, NJ, USA). Nitrogen gas for
purging the enclosure was purchased from Arc3 Gases (Raleigh, NC, USA).

3.2. Preparation of Rat Liver and Hen Ovary Sections

Rat liver and domestic hen ovary tissues were provided from the NCSU Department of
Biological Sciences and the Prestage Department of Poultry Science, respectively, and stored
at −80 ◦C before the IR-MALDESI analysis. The utilized animal tissues were managed
in accordance with the Institute for Laboratory Animal Research Guide. All husbandry
practices were approved by the North Carolina State University Institutional Animal Care
and Use Committee (IACUC, Raleigh, NC, USA). The tissues were sectioned to 15 µm
using a Leica CM1950 cryostat (Buffalo Grove, IL, USA) at −15 ◦C and then thaw-mounted
onto microscope glass slides.

3.3. IR-MALDESI Experimental Parameters

The home-built IR-MALDESI source was elaborately described in previous publica-
tions [47,48]. The “burst-mode” 2.97 µm infrared laser was developed by JGM Associates,
Inc. (Burlington, MA, USA) and set to 10 pulses/burst to generate ~1.0 mJ/burst laser
energy for this experiment [49]. An ice layer was exogenously deposited on top of the
sample by purging the enclosure with dry nitrogen to achieve a relative humidity of <12%
and cooling down the stage to −8 ◦C before exposing the sample to the ambient envi-
ronment for several minutes to promote ice growth. Then, the enclosure was closed and
purged again to maintain a relative humidity of <12% throughout each experiment. The
electrospray solvent was 50% MeOH/H2O (v/v) modified with 0.2% formic acid for both
positive and negative ionization modes. For [C5(bpyr)2]2+ adducted positive ionization
mode, the dicationic reagent was added into the electrospray solution at 10 µM. The ESI
solution was delivered by a syringe pump (Fusion 101, Thermo Fisher Scientific, Bremen,
Germany) at a flow rate of 1.5 µL/min. The IR-MALDESI source is currently coupled to a
high resolving power Orbitrap Exploris 240 mass spectrometer (Thermo Fisher Scientific,
Bremen, Germany). The instrument was set to “Small Molecules” mode with a resolving
power of 240,000FWHM at 200 m/z. To coordinate the laser desorption and ion acquisition
events, the automatic gain control function (AGC) was disabled, and the optimal injection
time was set to 15 ms for both MS and MS/MS analyses. The raster step size was set to
150 µm. The pixel size was 150 × 150 µm.

For the method development on rat liver sections, MS data were collected across two
separate m/z ranges to allow for broader coverage and to ensure inclusion of the adducted
species given the increase in mass shift: 150–600 m/z and 450–1800 m/z for all condi-
tions (i.e., negative ionization, positive ionization, and [C5(bpyr)2]2+ adducted positive
ionization). The region-of-interest (ROI) was 20 × 20 scans on tissue and 10 × 10 scans
off tissue. Each condition was repeated three times. For imaging hen ovary sections, the
m/z ranges were adjusted to 200–1000 for negative ionization mode, and 350–1400 for both
positive and [C5(bpyr)2]2+ adducted ionization mode to include most cationic metabolites,
as well as adducted ions. MS/MS analyses of selected adducted ions from rat liver tissue
sections were conducted using higher-energy collision-activated dissociation (HCD) with
normalized collision energy (NCE) of 50%. The isolation window was set to 1.0 or 1.5 Da
based on the m/z of the precursor ions.

3.4. Data Analysis

All the Xcalibur raw files were first converted into mzML format using the Mscovert
from the ProteoWizard software package [50] and further converted to imzML [51] for-
mat by an imzML converter [52]. The imzML files were loaded into MSiReader version
1.02 [53,54] (available at https://msireader.ncsu.edu/ (accessed on 2 September 2021))
operated in the MATLAB environment (R2019b; MathWorks, Natick, MA, USA). The MSi-

https://msireader.ncsu.edu/
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Peakfinder tool was used to generate potential tissue-specific ions with mass measurement
accuracy (MMA) of ±2.5 ppm, which showed 1.5× or higher abundance ratios than the
off-tissue area. The putative metabolite identification of potential tissue-specific ions was
carried out by searching m/z in METLIN [55] (https://metlin.scripps.edu/index.php (ac-
cessed on 10 September, 2021)). Imaging data obtained from hen ovary sections were also
subject to METASPACE [56] (https://metaspace2020.eu/ (accessed on 25 August 2021))
and metabolites were putatively annotated with a 10% false discovery rate using HMDB-v4.
Most putatively identified metabolites were lipids, which were manually categorized based
on LIPID MAPS (https://www.lipidmaps.org/data/classification/LM_classification_exp.
php (accessed on 16 November 2021)).

4. Conclusions

In this work, the deprotonated metabolites commonly seen in negative ionization
mode were observed in positive ionization mode through adduct formation when doping
[C5(bypr)2]2+ in the electrospray solvent. By utilizing this method, we enhanced the
metabolite coverage obtained in the positive ionization mode within the same m/z range
without the need to run two experiments in both ionization polarities, which saved data
acquisition time and reduced sample consumption. This method was tested on rat liver
sections and hen ovary sections, revealing that it has the potential to be used with different
biological samples. Tandem mass spectrometry presented evidence that the dicationic
reagent [C5(bypr)2]2+ was likely attracted to the headgroup of glycerophospholipid ions.
In future work, we will optimize the dicationic reagent concentration to maximize the
number and ion abundances of specific kinds of negatively charged metabolites, which
could provide more biological depth in a single MSI analysis.

Supplementary Materials: The following supplemental materials are available online at https://
www.mdpi.com/article/10.3390/metabo11120810/s1. Figure S1: The representative mass spectrum
was obtained in negative ionization mode from the rat liver section, Table S1: 93 negatively charged
metabolites from the rat liver section detected in negative ionization mode, Table S2: 73 negatively
charged metabolites from the rat liver section forming adducted ions with the dicationic reagent
detected in adducted positive ionization mode, Table S3: 167 positively charged metabolites from the
rat liver section detected in positive ionization mode, Table S4: 18 negatively charged metabolites
from the hen ovary section forming adduct ions with the dicationic reagent detected in adducted
positive ionization mode.
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