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ABSTRACT 

Protein-protein interactions (PPIs) underlie most biological functions. Devastating human conditions like 

cancers, neurological disorders, and infections, hijack PPI networks to initiate disease, and to drive disease 

progression. Understanding precisely how diseases remodel PPI networks can, therefore, help clarify disease 

mechanisms and identify therapeutic targets. Protein kinases control most cellular processes through protein 

phosphorylation. The 518 human kinases, known as the kinome, are frequently dysregulated in disease and 

highly druggable with ATP-competitive inhibitors. Kinase activity, localization, and substrate recognition are 

regulated by dynamic PPI networks composed of scaffolding and adapter proteins, other signaling enzymes 

like small GTPases and E3 ligases, and phospho-substrates. Accordingly, mapping kinase PPI networks can 

help determine kinome activation states, and, in turn, cellular activation states; this information can be used for 

studying kinase-mediated cell signaling, and for prioritizing kinases for drug discovery. Previously, we have 

developed a high-throughput method for kinome PPI mapping based on mass spectrometry (MS)-based 

chemoproteomics that we named kinobead competition and correlation analysis (kiCCA). Here, we introduce 

2nd generation (gen) kiCCA which utilizes data-independent acquisition (dia) with parallel accumulation serial 

fragmentation (PASEF) MS and a re-designed CCA algorithm with improved selection criteria and the ability to 

predict multiple kinase interaction partners of the same proteins. Using neuroblastoma cell line models of the 

noradrenergic-mesenchymal transition (NMT), we demonstrate that 2nd gen kiCCA (1) identified 6.1-times more 

kinase PPIs in native cell extracts compared to our 1st gen approach, (2) determined kinase-mediated signaling 

pathways that underly the neuroblastoma NMT, and (3) accurately predicted pharmacological targets for 

manipulating NMT states. Our 2nd gen kiCCA method is broadly useful for cell signaling research and kinase 

drug discovery. 
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INTRODUCTION 

     Proteins are the molecular machines that carry out most biological functions. Proteins, however, do not act 

in isolation, but rather engage in protein-protein interactions (PPIs) to assemble larger complexes that are 

arrayed into pathways and system-level networks.1, 2 Accordingly, the topology of PPI networks can define the 

functional state of cells and tissues.3 Devastating human diseases like cancers, neurological disorders, and 

infections hijack PPI networks to promote disease initiation and progression, which causes the rewiring of 

signaling, transcriptional, and metabolic pathways.4-8 

The 518 protein kinases encoded in the human genome, collectively known as the kinome, control most 

cellular processes through protein phosphorylation on serine, threonine, and tyrosine (S/T/Y) residues.9 Protein 

phosphorylation can alter a substrate’s activity, cellular localization, stability, and PPIs, which includes kinases 

themselves. Kinases are frequently dysregulated in human disease, and they are highly druggable with ATP-

competitive, small molecule inhibitors.10-13 Because of that, kinases have emerged as one of the most 

important classes of drug targets for combating cancers,14 autoimmune and inflammatory diseases,15, 16 

neurological disorders,17 and infectious diseases.18, 19 Kinase activity, localization, and substrate recognition 

are regulated by dynamic PPI networks composed of scaffolding and adapter proteins, other signaling 

enzymes like small GTPases and E3 ligases, and their phospho-substrates.20-22 Profiling kinase PPI networks 

can, therefore, help determine kinome activation states, and how kinases are connected to signaling 

pathways.23, 24 This information can be used, in turn, for determining the mechanisms of kinase-mediated cell 

signaling in health and disease, and for prioritizing kinases among the 518 members of the kinome in drug 

target discovery.23, 24 Large-scale maps of PPI networks have been generated using yeast and mammalian 

two-hybrid systems,25 and mass spectrometry (MS)-based approaches like affinity purification (AP)-MS,26, 27 

size-exclusion chromatography-MS,28 protein crosslinking-MS,29 and proximity labeling-MS methods like BioID 

and APEX,3, 25, 30-33 however, there is still a critical need for more sensitive and high-throughput methods that 

can systematically map kinome interaction networks and their dynamics.23  

We developed the 2nd generation (gen) kinobead competition and correlation analysis (kiCCA) approach for 

the sensitive and high-throughput profiling of kinome PPIs. Like our 1st gen approach, 2nd gen kiCCA utilizes 

kinobeads, also known as multiplexed inhibitor beads (MIBs), for affinity purification of the kinome from native 

cell and tissue lysates, combined with a competitive binding assays using our library of broad-selectivity kinase 

inhibitors (KIs) that we named kinase interactome probes (KIPs).23, 34-39 The competitive binding assay is 

followed by shotgun nano liquid chromatography (nLC)-MS analysis to determine competed kinases and non-

kinase proteins. Correlation analysis then predicts which non-kinase proteins were co-competed with specific 

kinases, thereby broadly identifying kinase-protein interactions.23 To enhance the analytical depth of kinase 

interactomes, 2nd gen kiCCA relies on data-independent acquisition (dia) – parallel accumulation serial 

fragmentation (PASEF) for MS data acquisition,40 as well as a re-designed CCA algorithm with improved 

selection criteria and the ability to predict multiple kinase interaction partners of the same proteins. We show 

(1) that kinobead AP-MS with diaPASEF increased the analytical depth of the assayable kinome, which we 

exploited to determine the kinome-wide selectivity of four clinical anaplastic lymphoma kinase (ALK) inhibitors, 
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and (2) that 2nd gen kiCCA increased the number of observable kinome PPIs by 6.1-fold compared to our 1st 

gen approach, which we utilized to determine signaling pathways and therapeutic targets that promote 

neuroblastoma (NB) cell phenotypic plasticity.  

NB is the most common cancer in infants less than one year of age with 700-800 new cases in the US 

annually.41 NB tumorigenesis is frequently driven by amplification of the transcription factor N-Myc gene 

(MYCN) and activating mutations in the ALK gene.41 Through improvements in surgery and chemotherapy, 

low-risk and intermediate-risk NBs are highly treatable with current 5-year survival rates approaching 90%.41 

High-risk NBs, in contrast, remain a challenge in the clinic and only 50% of patients survive the first 5 years 

after diagnosis. NB cell phenotypic plasticity can promote therapy resistance and metastasis in high-risk NB, 

allowing cancer cells to transdifferentiate from a noradrenergic neuronal-like phenotype to a more 

mesenchymal-like phenotype.42-46 For instance, the noradrenergic-mesenchymal transition (NMT) has been 

shown to increase NB resistance to ALK inhibitor and chemotherapy,47, 48 and to modulate the response to 

disialoganglioside GD2-targeted immunotherapy.49, 50 Accordingly, pharmacological strategies to reverse the 

NMT, and thereby reduce metastasis and therapy resistance, are urgently needed. We used our 2nd gen kiCCA 

approach to map kinome interaction networks in the noradrenergic neuronal-like NB cell line SH-SY5Y and the 

isogenic, mesenchymal-like SK-N-SH cell line. This identified specific kinase-mediated signaling pathways that 

are associated with either of the opposing NMT states. Furthermore, we show that inhibiting these pathways 

with selective kinase inhibitors can disrupt the opposing NMT phenotypes. 

We show that diaPASEF-powered kinobead AP-MS and 2nd gen kiCCA are versatile and effective MS-

based chemoproteomic tools for kinome interaction profiling that will be broadly useful for cell signaling 

research and kinase drug discovery in virtually any disease context. 

RESULTS 

1. Kinobead AP-MS with diaPASEF enables deep kinome interaction profiling 

     It has been shown that shotgun nLC-MS analyses of complex peptide mixtures using the diaPASEF method 

on Bruker timsTOF MS systems improved proteome depth over previous MS systems for high-throughput 

proteomics.40 To determine if such improvements are also observed for relatively low-complexity peptide 

samples like the ones obtained by affinity purification (AP), we compared the performance of diaPASEF-

powered kinobead AP-MS to our previous iterations of the approach.24, 38, 39 To determine if diaPASEF 

improved kinobead AP-MS’s utility for both KI selectivity profiling and kinase-protein interactome profiling, we 

benchmarked multiple parameters; these included the number of identified and quantified kinases and co-

precipitating proteins, and the number of kinases that can be competed off the kinobeads when performing 

soluble KI binding-competition experiments (Fig. 1A).23, 38, 39 We subjected the noradrenergic neuronal-like NB 

cell line SH-SY5Y and the isogenic, mesenchymal-like NB cell line SK-N-SH to kinobead AP-MS analysis, 

including soluble binding-competition experiments with our 21 KIPs.23 Because we have analyzed the two NB 

cell lines with kinobead AP-MS previously, this allowed us to directly compare performance to our 1st gen 

approach.23 Briefly, peptide samples were analyzed on the Bruker nanoElute 2 – timsTOF Pro 2 nLC-MS 
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system using 45 min nLC gradients and the diaPASEF method with label-free quantification (LFQ, Fig. 1A).40, 

51 We computed raw files using the deep neural network-based search engine Dia-NN 1.8.1 in library-free 

mode.52 This identified and quantified a total 357 kinases in the two NB cell lines, 1.34-fold more compared to 

the previous iteration of kinobead AP-MS that utilized data-dependent acquisition (dda) on a Thermo Orbitrap 

Fusion Lumos Tribrid MS system (Fig. 1B and S1A, and Table S1).23 We also identified and quantified 6,946 

proteins that co-precipitated with the kinobeads in the two NB cell lines, a 2.04-fold increase over our previous 

workflow (Fig. 1B, and S1A, and Table S1).23, 38 This suggested that analyzing relatively low-complexity 

peptide samples using the diaPASEF method still significantly increased the analytical depth of the kinome and 

the co-precipitating proteome. 

      Next, we compared the number of kinases that could be competed with our 21 KIPs to our previous 

kinobead AP-MS experiments.23 This showed an average 1.43-fold increase in competed kinases across all 

KIPs (Fig. 1C, S1B, S1C, and Table S1). We also determined if diaPASEF identified more previously reported 

interaction partners of kinases that were co-competed with the 21 KIPs.23, 53 This showed that we identified 447 

reported kinase interaction partners in the two NB cell lines that were co-competed with the kinase targets of 

the respective KIP, an average 1.86-fold increase across all KIPs (Fig. 1C and S1C, and Table S1).23 

Collectively, these results showed that diaPASEF-powered kinobead AP-MS with soluble competition 

significantly expanded the number kinases that are assayable in KI binding-competition experiments and 

identified a larger number of kinase interaction partners for deep kinome PPI profiling. 

      To clarify if the increased analytical depth of diaPASEF-powered kinobead AP-MS can identify unreported 

kinase inhibitor targets, we profiled the kinome selectivity of the 1st gen ALK inhibitor crizotinib, the 2nd gen ALK 

inhibitor ceritinib, and the 3rd gen ALK inhibitors entrectinib and lorlatinib.54 Several ALK inhibitors are approved 

for the treatment of non-small cell lung cancers (NSCLCs) that carry ALK gene fusions.55 Furthermore, the ALK 

gene is affected by gain of function mutations in 14% of high-risk NB cases, and ALK inhibitors like lorlatinib 

are being tested in clinical trials against high-risk NB.56 A better understanding of ALK inhibitor target profiles in 

NB cells will help determine their mechanisms of action, optimize treatments, and avoid off-target toxicities. 

Accordingly, we profiled the kinome-wide selectivity of crizotinib, ceritinib, entrectinib, and lorlatinib in SK-N-SH 

cell lysate at 1 µM KI competitor concentration. This showed that entrectinib (3rd gen) exclusively bound to its 

main targets ALK and the high-affinity nerve growth factor receptor (NTRK1),57 and that ALK was the sole 

interactor of ceritinib (2nd gen),58 thus confirming their high selectivity across the kinome (Fig. 1D, Table S1). In 

contrast, crizotinib (1st gen) and lorlatinib (3rd gen) showed binding to several off-target kinases that have not 

been reported previously (KInase Experiments Omnibus, KiEO, http://kieo.tanlab.org).36 Thus, we found that 

crizotinib also bound to the receptor tyrosine kinases AXL and Mer (MERTK) that can promote cancer cell 

survival and therapy resistance.59, 60 In addition to known off-targets like the tyrosine kinases TNK2, PTK2, and 

PTK2B (http://kieo.tanlab.org),61 lorlatinib showed strong off-target binding to several serine-threonine kinases, 

including MAP4K2 and MAP2K6, and the non-receptor tyrosine kinase TNK1, which has not been reported 

previously. TNK1 has recently been shown to promote tumor growth and autophagy, and MAP4K2 and 

MAP2K6 activate the JNK and p38 branches of mitogen-activated protein kinase (MAPK) signaling that can 
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confer therapy resistance to cancer cells.62, 63 Collectively, our results identified previously unreported off-

targets of clinical ALK inhibitors, whose inhibition may contribute to their clinical efficacy in NSCLCs and NBs.  

  

    

Figure 1. Workflow overview and performance of diaPASEF-powered kinobead AP-MS. (A) Detailed overview of our 

diaPASEF kinobead AP-MS workflow, which enables both kinome-wide KI selectivity profiling and kinase interactome 
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mapping using our kiCCA approach. (B) Comparing the number of quantified kinases and non-kinase proteins found in 

our diaPASEF kinobead AP-MS analysis of the NB cell lines SK-N-SH and SH-SY5Y to our previous kinobead AP-MS 

approach. (C) Number of kinases (left panel) and reported non-kinase interaction partners of these kinases (right panel) 

that were significantly competed off the kinobeads with our 21 KIPs compared to our previous experiments. Result of 

diaPASEF kinobead AP-MS assays with soluble competition. Statistics: two-sample Student’s t-test p-value ≤ 0.05, log2 

FC ≥ 0, N = 2. Refers to Fig. S1B, S1C, and Table S1. (D) Kinases competed at 1 µM competitor concentration of the 

ALK inhibitors crizotinib, ceritinib, entrectinib, and lorlatinib as determined by diaPASEF kinobead AP-MS with soluble 

competition in SK-N-SH cell lysates. Statistics: two-sample Student’s t-test Benjamini-Hochberg (BH)-FDR ≤ 0.05, log2 

FC ≥ 0, N = 4. Refers to Table S1. (E) Comparison of significantly competed ALK inhibitor targets from our diaPASEF 

kinobead AP-MS assay with previously reported targets of these inhibitors. Statistics: see (D). Refers to Table S1. 

  

2. Improved selection criteria for CCA boost the depth of kinome PPI analyses 

     Previously, we observed that inconsistently and weakly competed kinases in our kinobead AP-MS binding-

competition experiments produced false-positive PPI predictions in our CCA, and that we had to remove such 

kinases from our CCA analysis to prevent the accumulation of false positives.23 To more systematically remove 

kinases that may produce false positives from our current analyses, we performed parameter scanning, 

selecting kinases that fulfill increasingly stringent t-test p-value and log2 MS intensity fold-change (FC) cut-off 

criteria when performing binding-competition experiments with our 21 KIPs (Fig. 2A and S2A). To determine if 

inconsistently or weakly competed non-kinase proteins lead to the accumulation of false-positive PPI 

predictions as well, we performed the same parameter scanning experiments for non-kinase proteins (Fig. 2A 

and S2A). To estimate the performance of our CCA in predicting the largest possible number of true vs. false 

PPIs when using specific cut-off criteria for input kinases and non-kinase proteins, we introduced a CCA score 

(SCCA) that incorporated the difference in the median of CCA Pearson’s r-values for reported vs. unreported 

kinase PPIs in the BioGRID database, multiplied with the number of reported kinase PPIs at each cut-off (SCCA 

= (median r reported – median r unreported) * Nreported).53 This showed that an increasingly stringent log2 MS 

intensity FC cut-off for kinases led the SCCA to undergo a maximum at ~2.5-fold for both the SK-N-SH and the 

SH-SY5Y cell line (Fig. 2A and S2A). In contrast, an increasingly stringent FC cut-off for non-kinase proteins 

did not cause the SCCA to undergo another maximum (Fig. 2A and S2A). The same was true for increasingly 

stringent p-value cut-offs (Fig. 2A and S2A). We concluded that more stringent selection criteria for input 

kinases, but not non-kinase proteins, ensured that our CCA predicted most true kinase PPIs correctly, while 

keeping the number of false-positive kinase PPI predictions at a minimum. To identify an optimal cut-off for 

kinases to input into CCA that considers both the log2 MS intensity FC and the t-test p-value for KIP 

competition, we next plotted the SCCA for different FC and p-value cut-offs against one another (Fig. 2B and 

S2B). This showed that the SCCA rapidly plateaued at a log2 FC ≥ 0.5 and a p-value of ≤ 0.05 for CCA analysis 

of the SK-N-SH cell line, and at a log2 FC ≥ 0.5 and a p-value of ≤0.01 for CCA analysis of the SH-SY5Y cell 

line. To clarify if these new selection criteria improved performance over our 1st gen CCA workflow, we applied 

our previous cut-off criteria for both kinases and non-kinases (log2 MS intensity FC >0.75 and t-test p-value < 
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0.05) to our diaPASEF kinobead AP-MS data from the two NB cell lines and performed CCA. We then 

compared the number and identity of reported kinase PPIs that were predicted by our 2nd gen CCA to the 

number of PPIs that were predicted by our 1st gen CCA.23 This showed that using our newly defined selection 

criteria led the CCA to correctly predict 81% and 47% more previously reported kinase PPIs in the SK-N-SH 

and SH-SY5Y cell lines, respectively (Fig. 2C).  

3. Second generation kiCCA identifies multiple kinase interactors of the same proteins 

     Signaling proteins, enzymes, and transcription factors often interact with, and are phosphorylated, by 

multiple kinases, enabling signal integration and introducing redundancy to upstream kinase pathways.64, 65 

Determining kinase pathway redundancy, in turn, is critical for understanding cell signaling mechanisms and to 

predict responses to KI therapy.35, 66 The previous iteration of our kiCCA workflow was able to predict only the 

kinase-protein interactor pair with the highest CCA Pearson’s r value, and thus was unable to identify multiple 

kinase interactors of the same protein. To address this shortcoming, we re-computed our 2nd gen kiCCA data, 

determining kinases with the 1st to 10th highest CCA Pearson’s r-value for all quantified non-kinase proteins. 

We then mapped CCA PPI predictions against reported kinase PPIs in the BioGRID interaction database, 

calculated %TDRs for interactions with the 1st to 10th kinase (%TDR = (Nreported/Nunreported) * 100), and plotted 

%TDRs for 0.05 Pearson’s r intervals on a heat map (Fig. 2D and S2C).53 These %TDR maps allowed us to 

convert CCA Pearson’s r-values into TDR estimates for the 1st to 10th predicted kinase interactors of non-

kinase proteins (Table S1). For the 1st kinase interactor, %TDRs approached 100% for Pearson’s r-values 

>0.95 and monotonously decreased to ~10% for Pearson’s r-values between 0.65 and 0.6. We observed the 

same trend for the 2nd and 3rd kinase interactor, and in some cases observed >10% TDRs for up to the 10th 

kinase interactor for some broad specificity signaling adapters like 14-3-3 family proteins. For instance, 2nd gen 

kiCCA predicted 7 reported and 9 unreported kinase interactors of the 14-3-3 proteins YWHAB, YWHAE, 

YWHAG, YWHAH, YWHAQ, and YWHAZ (Fig. S2D and Table S1). Likewise, 2nd gen kiCCA predicted 4 

reported and 6 unreported kinase interactors of the signaling adapter growth factor receptor-bound protein 4 

(GRB4 or NCK2) that broadly binds trysosine-phosporylated receptor and non-receptor tyrosine kinases (Fig. 

S2D and Table S1). These results suggested that 2nd gen kiCCA can correctly predict multiple kinase 

interaction partners of the same proteins.   

     Among the multiple kinase interactors predicted to interact with the same proteins (%TDR > 10), we found 

that many are highly homologous kinases like the hippo kinases STK3 and STK4, and casein kinase catalytic 

subunits α1 and α2 (CSNK2A1 and A2, Table S1). This reflected both the structural similarity of these kinases, 

and their overlapping biological functions. We also identified structurally dissimilar kinases that were predicted 

to interact with the same proteins. For instance, 2nd gen CCA predicted that the kinase breakpoint cluster 

region protein (BCR) interacted with the same proteins as the adapter-associated kinase 1 (AAK1) and the 

BMP-2-inducible protein kinase (BMP2K) in SK-N-SH cells (Fig. 2E and Table S1). To validate that BCR 

interacted with same proteins as AAK1 and BMP2K, we performed co-IP/MS experiments using a selective 

antibody targeting the common predicted interactor adapter protein 2 (AP2) subunit β1 (AP2B1) in SK-N-SH 
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Figure 2. Re-defining the selection criteria for the CCA. (A) Parameter scanning experiment determining the CCA score 

(SCCA) for kinase PPIs predicted by our CCA in the SK-N-SH cell line. Increasingly stringent Student’s t-test log2 FC and 

p-value cut-off criteria were applied and only kinases or non-kinases fulfilling these criteria were used for CCA. Statistics: 

two sample Student’s t-test, range of log2 FC ≥ 0 to ≤ 5, and p ≥ 0 to ≤ 0.001. Refers to Fig. S2A. (B) Plotting the SCCA for 

varying log2 FC cut-offs and p-Value cut-offs against one another identified optimal mixed cut-off criteria for kinases input 

into our CCA. Refers to Fig. S2B. (C) Venn diagrams showing the overlap of reported kinase PPIs that were predicted by 
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our 1st gen CCA algorithm and PPIs predicted by our 2nd gen CCA algorithm. Both 1st and 2nd gen CCA used the same 

diaPASEF kinobead AP-MS data from the two NB cell lines SK-N-SH and SH-SY5Y as the input. Refers to Table S1. (D) 

Heatmap showing the %TDR for PPIs achieved by our 2nd gen CCA separated into 0.05-unit intervals of the CCA 

Pearson’s r-value for the 1st through 10th predicted kinase interactor of a non-kinase protein. The %TDR reflects the 

percentage of BioGRID-reported divided by BioGRID-unreported PPIs. Refers to Fig. S2C. (E) STRING network for 

interaction partners of the kinases AAK1, BMP2K, and BCR, as predicted by 2nd gen CCA. (F) Volcano plot showing the 

results of a co-IP/MS experiment using a specific antibody that binds AP2B1. Only proteins that are also members of the 

STRING interaction network in (E) are shown. Statistics: two sample Student’s t-test p < 0.05. Refers to Fig. S2E. (G) 

Venn diagrams comparing the total number of predicted kinase PPIs of 1st predicted kinase vs. 1st – 10th predicted kinase, 

as was determined by 2nd gen CCA in the NB cell lines SK-N-SH and SH-SY5Y. 

 

cell lysate. This revealed that AP2B1 co-precipitated both AAK1 and BCR, and 12 additional members of the 

network, but not BMP2K (Fig. 2F and Table S2). This suggested that AAK1 and BCR, but not BMP2K, are part 

of the same PPI network. To clarify if AAK1 and BCR are part of the same protein complex, we performed 

another co-IP/MS experiment using a selective antibody targeting AAK1. This showed that AAK1 co-

precipitated BCR and 7 additional members of this network (Fig. S2E and Table S2). These results validated 

that 2nd gen kiCCA can correctly predict multiple kinase interaction partners of the same proteins.  

     Comparing the total number of predicted kinase PPIs at a %TDR > 10 when only considering the 1st kinase 

interactor vs. including the 1st through the 10th interactor, we observed 74% more reported and 261% more 

unreported PPIs across the two NB cell lines for a total of 1,098 unique kinase-protein interactions (Fig. 2G 

and Table S1); this presents an 6.1-fold increase in unique kinase PPIs compared to our 1st gen kiCCA of the 

two NB cell lines (N = 179 predicted PPIs). This showed that including multiple kinase interactors greatly 

expanded observable kinome interactions. 

4. A detailed map of NMT-dependent kinome PPI rewiring in neuroblastoma 

     Having established a map of the kinome and its PPIs in the isogenic mesenchymal-like SK-N-SH cell line 

and the noradrenergic neuronal-like SH-SY5Y cell line (Fig. 3A), we next asked how the NB cell NMT alters 

the abundance of the kinome and its PPIs. Kinases that interact with signaling complexes in an NMT-

dependent manner may promote phenotypic switching and present druggable targets to inhibit NB phenotypic 

plasticity, metastasis, and therapy resistance.48-50 Accordingly, we performed differential expression analysis 

(DEA) of kinases and their interaction partners between the two NB cell lines as described previously.23 This 

identified 302 kinases and 358 kinase interaction partners that were differentially abundant between the two 

NB cell lines (Fig. 3B and Table S2), an increase of 58% and 295% compared to our previous experiments.23 

Concordant with our previous results,23 kinases that are typically expressed in the central and peripheral 

nervous system like ALK and the peripheral plasma membrane protein CASK were highly abundant in the 

noradrenergic neuronal-like SH-SY5Y cell line (Fig. 3B). In contrast, kinases typically expressed in the 

mesenchymal lineage like the receptor tyrosine kinases AXL and MET, and the TGFβ receptor type-2 

(TGFBR2) were highly enriched in the SK-N-SH cell line. This validated that the two NB cell lines exist in 
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opposing NMT states. Notably, our 2nd gen approach identified 133 kinases that showed differential abundance 

between the NB cell lines that we did not detect using our 1st gen approach. These included kinases controlling 

neuronal growth, differentiation and survival like the neurotrophic tyrosine kinase receptors type 1 and 2 

(NTRK1 and 2), cell polarity like the MAP/microtubule affinity-regulating kinases 1-4 (MARK1-4), and cell 

migration like the myosin light chain kinase (MYLK, Fig. 3B and Table S2), thus yielding additional information 

on how these processes may be controlled by kinases during the NMT.  

     The 358 differentially abundant kinase interactors were part of 168 kinase PPI networks that control diverse 

cellular processes (2nd gen kiCCA interaction %TDR > 10, Table S2). Applying gene set enrichment analysis 

(GSEA) to the DEA results of kinases and their interaction partners confirmed that pathways related to the 

mesenchymal phenotype were upregulated in the SK-N-SH cell line. These included pathways related to cell 

motility, wound healing, cytokine signaling, including WNT and NF-κB signaling, and NOTCH and Hippo 

signaling (Fig. 3D and Table S2).   

     

Figure 3. Mapping changes in kinome PPIs that are associated with the NB cell NMT using our 2nd gen kiCCA approach. 

(A) Schemata: the noradrenergic-neuronal SH-SY5Y cell line and the isogenic mesenchymal-like SK-N-SH cell line serve 

as in vitro model for the NB cell NMT. (B) Volcano plot showing the differential abundance of kinases between the two 

opposing NMT states represented by the SH-SY5Y and SK-N-SH cell line. Statistics: one sample Student’s t-test, BH-

FDR < 0.05, N = 22. Refers to Table S2. (C) Venn diagrams comparing the differential abundance of kinases and kinase 

interaction partners between the two NMT states as determined by either 1st gen or 2nd gen kiCCA (for statistics, see (B)). 

Refers to Table S2. (D) Results of a GSEA with GOBP terms applied to the results of differential expression analysis of 
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kinase and kinase interaction partners between the two NB cell line SH-SY5Y and SK-N-SH; only pathways that achieved 

an FDR < 0.05 are shown (for statistics, see (B)). (E) Association of kinases with pathways through the sum of %TDRs of 

their interaction partners that have been associated with specific GOBP pathways terms shown in panel (D). NES is the 

normalized enrichment score. Refers to Fig. 3A and Table S1.  

 

In contrast, pathways enriched in the noradrenergic neuronal-like SH-SY5Y cell line included terms related to 

central nervous system function like learning, synaptic vesicle cycle, and neurotransmitter transport, as well as 

terms related to chromatin regulation and cell cycle progression (Fig. 3D and Table S2). To determine which 

kinases interacted with the pathways that were associated with NMT phenotypes, we systematically mapped 

non-kinase pathway members to specific kinases for 14 representative pathways terms (Fig. 3E and S3A, and 

Table S2). This created a map of kinase-pathway interactions in the NMT, suggesting both reported and 

unreported kinase functions in phenotypic plasticity. For instance, as we described previously, casein kinase 2 

(CK2) interacted with chromatin remodeling complexes in the noradrenergic neuronal-like SH-SY5Y cell line. In 

addition, we found here that TANK-binding kinase 1 (TBK1), AAK1, and STE20-like kinase MST3 (STK24) 

interacted preferentially with proteins that control NF-κB, WNT, and NOTCH signaling in the mesenchymal-like 

SK-N-SH cell line (Fig. 3E and S3A, and Table S2). This suggested that inhibiting these kinases may 

reprogram the opposing NMT states. 

5. CK2 and TBK1 present target candidates for reprogramming NB cell phenotypic states 

     NB cell phenotypic transitions like the NMT can promote metastasis, disease relapse, and therapy 

resistance.42-44 We sought to determine if our 2nd gen kiCCA approach can prioritize kinase targets for 

manipulating NMT phenotypic states. We focused on kinase complexes that showed NMT state-dependent 

changes in their composition, particularly kinase complexes that control chromatin organization and cytokine 

signaling; this is because chromatin remodeling plays critical roles in cancer cell phenotypic plasticity.67 

Likewise, cell signaling pathways that are triggered by cytokines like TGFβ, WNT5α, interleukins, and TNFα 

have been shown to promote cancer cells’ transitions to a mesenchymal-like state.68  

     Concordant with our previous results, we found that CK2 interacted with members of the polycomb 

repressive complex 1 (PRC1), including the autism susceptibility gene 2 protein (AUTS2), preferentially in the 

SH-SY5Y cell line (Fig. 4A and Table S2).23 AUTS2 has been shown previously to activate the transcription of 

neuronal genes in cooperation with CK2, suggesting that PRC1 complexes that contain CK2 and AUTS2 can 

promote the noradrenergic neuronal-like phenotype in NB cells.69 A function for CK2 and AUTS2 in the NB cell 

NMT has not been reported previously, however. Supporting our hypothesis, 2nd gen kiCCA identified additional 

PRC1 complex members that interacted with CK2 preferentially in the SH-SY5Y cell line, and that can activate 

the expression of neuronal genes (Fig. 4A and Table S2); these included fibrosin-1-like protein (FBRSL1, also 

known as AUTS2L), the RING1 and YY1-binding protein (RYBP), and the chromobox protein homolog 2 

(CBX2).69, 70 These results led us to hypothesize that pharmacological inhibition of CK2 can destabilize the 

noradrenergic neuronal-like phenotype in the SH-SY5Y cell line.  
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     2nd gen kiCCA also revealed that TBK1 was the most prominent kinase interacting with proteins that control 

cytokine signaling. Particularly, the interaction of TBK1 with the TNF receptor associated factor 1 (TRAF1) was 

highly abundant in the mesenchymal-like SK-N-SH cell line (Fig. 4A and Table S2). TBK1 controls interferon 

and NF-κB signaling in a context-dependent manner.71 TRAF1 is a scaffolding protein that can activate NF-κB 

and JNK signaling, which have both been shown to promote the mesenchymal differentiation of cancer cells.72-

75 Furthermore, TRAF1 can recruit the anti-apoptotic E3 ligases BIRC2 and BIRC3 to TNF receptors, two 

proteins that we also found to be part of the TBK1 PPI network (Fig. 4A).76 This suggested that the TBK1-

TRAF1 complex promoted the mesenchymal-like state in the SK-N-SH cell line, and that pharmacological 

inhibition of TBK1 can destabilize the mesenchymal-like phenotype. 

     To test our target hypotheses, we treated the SH-SY5Y (noradrenergic neuronal-like) and SK-N-SH 

(mesenchymal-like) cell lines with the selective CK2 inhibitor SGC-CK2-1 and the selective TBK1 inhibitor 

GSK8612 for four days.77, 78 To determine inhibitor effects on NMT pathways, we then performed global MS-

based proteome analysis; this showed that CK2 inhibition significantly altered the expression of 3,202 proteins 

in the SH-SY5Y cell line (40% of the proteome) and the expression of 2,147 proteins in the SK-N-SH cell line 

(26% of the proteome), whereas TBK1 inhibition did not alter protein expression in the SH-SY5Y cell line, but 

significantly altered the expression of 708 proteins in the SK-N-SH cell line (8.5%, Table S2, two sample 

student’s t-test, BH-FDR ≤ 0.05, N = 4 and N = 3). This suggested that CK2 broadly controls gene expression 

or protein stability in both the SH-SY5Y and SK-N-SH cell lines, and that TBK1 does so only in the SK-N-SH 

cell line. Applying GSEA with GOBP pathway terms to the global proteome data showed that CK2 inhibition 

downregulated pathways related to neuronal function, including neuron differentiation and synaptic 

transmission, as well as DNA repair and cell cycle terms, and upregulated pathways related to cell migration, 

oxidative phosphorylation, and stress in both NB cell lines (Fig. 4B, Fig. S3B, and Table S2). Downregulation 

of neuronal pathways was evident also at the level of individual neuronal markers. Thus, we observed the 

systematic downregulation of, e.g., the neuronal adhesion molecules NRCAM, NRCAM2, and L1CAM, as well 

as the neural extracellular matrix proteins tenascin-C (TNC) and tenascin-R (TNR, Fig. 4C). 

     In contrast, in SK-N-SH cells, TBK1 inhibition downregulated pathways related to cell migration, TGFβ 

signaling, pathways that negatively regulate canonical WNT signaling, and mesenchymal differentiation (Fig. 

4D and Table S2). Canonical NF-κB signaling, on the other hand, was upregulated, hinting that TBK1 inhibits 

this pathway in mesenchymal NB cells. Analyzing the expression of individual pathway marker proteins 

confirmed that TGFβ signaling became downregulated and NF-kB signaling upregulated in response to TBK1 

inhibition (Fig. 4E). Concordant with TRAF1 functions in c-Jun N-terminal kinase (JNK) signaling, we also 

observed that the transcription factor JUN itself and several AP1 (JUN-FOS) targets became downregulated 

(Fig. 4E); this included the mesenchymal markers vimentin (VIM) and prelamin-A/C (LMNA), as well as the NB 

oncogenic driver GTPase NRas (NRAS). We concluded that that the TBK1-TRAF1 complex may balance NF-

κB inhibition with TGFβ and JNK-AP1 pathway activation to promote the mesenchymal state in NB cells. 
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Figure 4. Utilizing 2nd gen kiCCA to prioritize kinase targets for pharmacologically manipulating NB cell NMT states. (A) 

STRING interaction networks (v12.0) of kinase PPIs predicted by 2nd gen kiCCA in the isogenic NB cell lines SK-N-SH 

(mesenchymal-like) and SH-SY5Y (noradrenergic neuronal-like). Only physical interactions were used to build the 

STRING network. Relates to Table S1. (B) Results from GSEA of global protein expression data, comparing SH-SY5Y 

cells treated with either the CK2 inhibitor SGC-CK2-1 or DMSO (vehicle) for 4 days. Only pathway terms that achieved an 

FDR < 0.05 are shown. Relates to Table S2. (C) Volcano plot showing expression differences of neuronal marker proteins 

between SH-SY5Y cells treated with either the CK2 inhibitor SGC-CK2-1 or dimethyl sulfoxide (DMSO, vehicle) for 4 

days. Proteins included in the GOBP gene set ‘Neuronal Differentiation’ were used to define proteins as neuronal marker 

proteins. Statistics: two sample Student’s t-test, BH-FDR < 0.05, N = 3 Relates to Table S2. (D) Results from GSEA of 

global protein expression data, comparing SK-N-SH cells treated with either the TBK1 inhibitor GSK8612 or DMSO 

(vehicle) for 4 days. Only pathway terms that showed an FDR < 0.05 are shown. Relates to Table S2. (E) Differences in 

the expression of proteins that are the transcriptional targets of TGFβ-SMAD3, JNK-AP1, and NF-κB signaling between 

SK-N-SH cells treated with either the TBK1 inhibitor GSK8612 or DMSO (vehicle) for 4 days. Result of global proteome 

profiling. All proteins shown significantly differed in expression. Statistics: two sample Student’s t-test, BH-FDR < 0.05, N = 

4. Refers to Table S2. (F) Trans well migration assay showing that CK2 inhibition with SGC-CK2-1 promoted migration in 

both SH-SY5Y cells and SK-N-SH cells, and that TBK1 and tyrosine kinase inhibition using GSK8612 and dasatinib, 

respectively, significantly inhibited cell migration only in the SK-N-SH cell line. Statistics: two sample Student’s t-test p < 

0.05, N = 4; error bars are the S.D. 

 

     Next, to test if changes in molecular pathways correlate with changes in cellular phenotypes, we performed 

trans-well assays, determining changes in cell migration, a hallmark of the transition to a more mesenchymal-

like state. Our GSEA showed that inhibiting CK2 upregulated pathways related to cell migration, whereas TBK1 

inhibition downregulated cell migration pathways. Indeed, we observed that CK2 inhibition significantly 

increased cell migration both in the SH-SY5Y and the SK-N-SH cell line (Fig. 4F), suggesting that both cell 

lines became relatively more mesenchymal-like. In contrast TBK1 inhibition significantly decreased migration in 

SK-N-SH cell lines, as did dasatinib, a broad selectivity inhibitor of Src-family kinases which served as our 

positive control (Fig. 4F). This confirmed that TBK1 inhibition antagonizes mesenchymal-like traits. 

     Collectively, our results demonstrated that 2nd gen kiCCA can be used to prioritize kinase targets for altering 

NB cell NMT states, which in turn could be exploited to modulate NB responses to targeted therapy and to 

inhibit metastasis and disease relapse.   

DISCUSSION 

     Here, we demonstrated that diaPASEF-powered kinobead AP-MS and 2nd gen kiCCA are versatile and 

efficient MS-based chemoproteomic tools for kinome interaction profiling, which includes kinase-inhibitor and 

kinase-protein interactions. Specifically, we showed that diaPASEF kinobead AP-MS identified previously 

unreported kinase targets of clinical ALK inhibitors that may explain their mechanism of action and clinical 

efficacy. Thus, lorlatinib may inhibit kinases that are involved in JNK and p38 signaling, and in autophagy 

(TNK1), all processes that have been shown to promote therapy resistance in vivo.62, 63, 79 Lorlatinib is the ALK 
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inhibitor that has progressed the furthest in clinical trials against high-risk NB to date,56 and has the most off-

target kinases of all ALK inhibitors that we tested. Collectively, this suggested that the polypharmacology of 

lorlatinib is critical for its clinical efficacy, and that more efficient inhibitors with engineered polypharmacology 

could be developed utilizing the insights that we obtained.  

     We also showed that our 2nd gen kiCCA approach identified 1,098 unique kinase PPIs in the two isogenic 

NB cell lines SK-N-SH and SH-SY5Y, 74% of which have not been reported previously.53 Comparing kinase 

interactome changes between the mesenchymal-like SK-N-SH cell line and the noradrenergic neuronal-like 

SH-SY5Y revealed 168 kinases that showed differences in their PPIs between the opposing NMT states. We 

utilized this information for target prioritization, and we correctly predicted kinases that when inhibited, 

destabilize the respective NMT states. Thus, concordant with our target hypotheses, inhibiting CK2 

destabilized the noradrenergic neuronal-like phenotype, while inhibiting TBK1 destabilized the mesenchymal 

phenotype. Intuitively, this suggested that TBK1 inhibition may be useful to sensitize NBs to therapy and to 

prevent metastasis. Yet, inhibiting CK2 to destabilize the noradrenergic neuronal-like phenotype may be of 

translational value as well. Thus, recent studies suggested that noradrenergic neuronal-like NB cells are more 

resistant to GD2-targeted immunotherapy than their mesenchymal-like counterparts.50 

     Collectively, our results present compelling evidence that mapping alterations of kinase PPI networks in 

disease can be used to prioritize targets for therapeutics development and provide a deep knowledgebase of 

kinase signaling pathways that are involved in the NB cell NMT. This knowledgebase contains several 

additional leads on kinases that may control NB cell NMT states; these include AAK1, specific Src-family 

kinases like CSK, and the myosin light chain kinase (MYLK) that may control WNT signaling and adhesion/cell 

migration in mesenchymal-like NB cells, respectively (Fig. 3E and S3A, and Table S2). On the other hand, 

CDK7 and BRD2 emerged as additional kinases that promote the noradrenergic neuronal-like NB cell 

phenotype at the transcriptional level (Fig. 3E and S3A, and Table S2).  

     Despite 2nd gen kiCCA identifying more than 6-times as many kinase interactions as our 1st gen approach, 

one shortcoming of the approach is that we use cell and tissue lysates for our analyses. We speculate that we 

lose most kinase PPI observations because cellular contents are diluted by about 100-fold upon cell lysis, 

which will lead to the dissociation of low-affinity PPIs; this favors the identification of stable kinase complexes 

and disfavors the identification of kinase-substrate interactions. The next generations of kiCCA will overcome 

these shortcomings by capturing kinase complexes in intact cells and tissues. 
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RESOURCE AVAILABILITY 

Lead Contact 

Martin Golkowski, Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84112, 

USA, email: martin.golkowski@utah.edu 

Materials Availability 

As lead contact, Martin Golkowski is responsible for all reagent and resource requests. Please contact Martin 

Golkowski at martin.golkowski@utah.edu with requests and inquiries. 

Data and Code Availability 

Bruker MS output files, a detailed list of instrument settings, and DIA-NN output files generated by this study 

have been uploaded to the MassIVE repository of the University of San Diego under the acquisition number 

MSV000096379. This study did not generate new code. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell lines and tissue culture conditions 

The neuroblastoma cell lines SK-N-SH and SH-SY5Y were purchased from the American Type Culture 

Collection (ATCC). All cells were grown at 37°C under 5% CO2, 95% ambient atmosphere. Fifteen cryo-frozen 

cell stocks were generated from the original vial from the cell bank (passage 3). Experiments were performed 

with cells at <10 passages from the original vial. All cell media used were those recommended by the ATCC, 

supplemented with 100x penicillin-streptomycin-glutamine (Thermo Fisher Scientific) and 10% fetal bovine 

serum (FBS, Corning). Cells were harvested when reaching 90% confluency. 

Trans well migration assay 

For the trans well migration assay, 1*10E6 SH-SY5Y cells or SK-N-SH cells were seeded onto 6-well trans well 

inserts (Corning, 24-mm inserts, 8 µm pore size) in 1.35 mL of serum-free medium (see ‘Cell lines and tissue 

culture conditions’ above). Then either DMSO vehicle or drug in DMSO were added in 150 µL of serum free 

medium (10X stock) to reach a final DMSO concentration of 0.1% (v/v). Then inserts were placed in a 6-well 

plate well containing either 2.6 mL serum-free medium (negative control) or 2.6 mL complete growth medium 

containing 10% FBS (attractant). Cells were allowed to migrate for 24 h in a cell culture incubator at 37°C 

under 5% CO2, 95% ambient atmosphere. Then, inserts were gently washed with phosphate-buffered saline 

(PBS) twice and cells on top of the insert removed using a moist Q-tip. Wells were then placed in a new 6-well 

plate, where each well contained 1 mL of a 0.1% crystal violet solution in 20% aqueous methanol solution. 

Cells were stained with crystal violet for 10 min at RT on a rocker and excess crystal violet solution was 

removed by rinsing the inserts twice with PBS. The inserts with the cells were then dried overnight at room 

temperature (RT). Then, using 70% ethanol and Kim wipes, any remaining crystal violet was removed from the 

top of the insert. Crystal violet-stained cells were then eluted into a new 6-well plate using 1 mL 33% aqueous 
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acetic acid (v/v) on a rocker to allow mixing to homogeneity. 100 µL aliquots from each well were then 

transferred to standard clear flat bottom 96-well plates for quantification of the crystal violet concentration using 

a photo spectrometric plate reader at 590 nm wavelength (SkyHigh Plate Reader, Thermo Fisher Scientific). 

The read-out was compared to a calibration curve obtained from a 96-well plate containing a defined number 

of cells. Drugs and concentrations used were the TBK1 inhibitor GSK8612 (2 µM final, Mechem Express, 

MCE), the CK2 inhibitor SGC-CK2-1 (2 µM final, MCE), and dasatinib (100 nM final, MCE). 

Inhibitor treatments for global proteome profiling 

For global proteome profiling, 0.3x106 SK-N-SH or SH-SY5Y cells per well were seeded on 6-well plates and 

allowed to adhere for 24 h. Then, the TBK1 inhibitor GSK8612 (2 µM final, MCE), the CK2 inhibitor SGC-CK2-

1 (2 µM final, MCE), or DMSO (vehicle control) were added. The final concentration of DMSO in all wells was 

0.1% (v/v). Cells continued to grow for 96 h and then were harvested for global proteome analysis. Briefly, the 

growth medium was aspirated and the cells rinsed twice with ice-cold PBS. Cells were lysed in 8 M urea 

containing 100 mM Tris (pH =8.5), 5 mM tris(2-carboxyethyl)phosphine hydrochloride (TCEP*HCl) and 10 mM 

chloroacetamide (CAM). Lysates were harvested using a cell scraper (Sarstedt) and transferred to 1.7 mL 

microtubes and incubated on a thermal shaker for 30 min at 37°C and 1,400 rpm. For further sample 

processing, see ‘Peptide preparation for global proteomics below’.  

Kinase affinity enrichment, KI competition, and on-bead digestion of proteins 

Kinase affinity enrichment, KI competition, and on-bead digestion of proteins was performed as previously 

described.23 In addition to the 21 KIPs, the following kinase inhibitors were used as the competitors for soluble 

competition experiments at the given final concentrations: lorlatinib (1 µM final, MCE), entrectinib (1 µM final, 

MCE), crizotinib (1 µM final, MCE), and ceritinib (1 µM final, MCE). Final DMSO (vehicle) concentration in all 

pulldowns was 0.1% (v/v). 

Co-immunoprecipitation/MS (Co-IP/MS) analyses of AP2B1 and AAK1 interactions  

Co-IP/MS analyses were performed as previously described.23 Antibodies used were AAK1 (E8M3P) Rabbit 

mAb (Cell Signaling Technology, CST, #61527) and beta 2 Adaptin (AP2B1) pAb (Novus Biologicals, # NBP3-

29580). The resulting peptide samples were analyzed by nLC/MS on the Thermo Orbitrap Fusion Lumos 

system, and MS .raw files computed exactly as described previously.23 

Global proteome profiling 

For global proteome analyses by nLC-MS, aliquots of 100 µg of protein in 8 M urea lysis buffer were pipetted 

into a new microtube and diluted with four times the volume ice-cold acetone. 80% aq. trichloroacetic acid 

(TCA) was added to a final concentration of 4% (v/v), samples were vortexed briefly at max speed and kept at -

20°C overnight. Precipitated protein was pelleted at 2,000 rcf at 4°C for 10 min and the supernatant aspirated. 

The pellet was cleaned by adding 1 mL of ice-cold acetone, dispersing the pellet in a sonicator bath, pelleting 

the protein at 2,000 rcf at 4°C for 10 min, and aspirating the supernatant; this step was repeated once more. 

The pellets were dried until translucent (2-3 min), 100 µL of 8 M urea buffer containing 100 mM Tris (pH = 8.5) 

was added and the sample agitated on a thermal shaker at 1,400 rpm at 37°C until the pellet was dissolved 

(15-30 min). Then, the samples were diluted 2-fold with 100 mM triethylammonium bicarbonate (TEAB), the pH 

was adjusted to 8-9 with 1 M aq. NaOH, if needed, and 1 µg of Lys-C (Wako-Fujifilm) was added (1:100 ratio 

digestive enzyme to protein). Then, the mixtures were agitated on a thermal shaker at 1,400 rpm at 37°C for 2 

h, diluted another 2-fold with 100 mM TEAB, and 1 µg of MS grade trypsin was added (Pierce). The pH was 

tested and readjusted if needed. The mixtures were agitated on a thermomixer at 1,400 rpm at 37°C overnight, 

acidified with formic acid (FA, 1% final), and cleared by centrifugation for 10 min at 14,000 rcf and RT. An 

aliquot of the supernatant equaling 5 µg peptide was desalted on C18 StageTips to be used for global 

proteome analysis by nLC-MS.80 

nLC/MS analyses of peptide samples on the Bruker timsTOF Pro 2 system 

Peptide samples of 200 ng were analyzed on a timsTOF Pro 2 – nanoElute 2 nLC-MS system (Bruker). Peptides 
were separated using 15 cm long, 150 µm inner diameter PepSep columns packed with 1.5 µm diameter C18 
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beads in 45 min long LC gradients (5-30% B) at flow rates of 0.5 µL/min. LC solvents were A (0.1% formic acid 
in LC-MS-grade water) and B (0.1% formic acid in LC-MS-grade acetonitrile). MS data were acquired in data-
independent acquisition mode using the diaPASEF method.40 General MS instrument parameters were the 
following: polarity: positive; mass range: 100 m/z to 1700 m/z; 1/K0 start: 0.60 Vs/cm²; 1/K0 end: 1.40 Vs/cm², 
CaptiveSpray; capillary: 1600 V. The complete list of instrument setting can be found in the MassIVE repository 
of the University of San Diego under the acquisition number MSV000096379. 

Computation of Bruker MS raw files and output data processing 

Bruker MS raw files were computed using DIA-NN v.1.8.1 in library-free mode.52 The Homo sapiens FASTA 
downloaded from UniProt on 07.14.2023 (UP000005640) was used in the DIA-NN search. Briefly, DIA-NN search 
parameters were the following: reannotate: enabled; FASTA digest for library-free search/library generation: 
enabled; deep learning-based spectra, RTs, and IMs prediction: enabled; protease: Trypsin/P; missed cleavages: 
1; number of variable modifications: 0;  N-term M excision: enabled; C carbamidomethylation: enabled; peptide 
length range: 7 - 30; precursor charge range: 1 - 4; precursor m/z range: 300 - 1800; fragment ion m/z range: 
200 – 1800; generate spectral library: enabled; quantities matrices: enabled; precursor FDR (%): 1.0; mass 
accuracy: 0.0; MS1 accuracy: 0.0; scan window: 0; use isotopologues: enabled; MBR: enabled; no shared 
spectra: enabled; protein inference: Genes; neural network classifier: Single pass mode; quantification strategy: 
Robust LC (high precision); cross-run normalization: global; smart profiling; speed and RAM usage: optimal 
results. DIA-NN raw output files were loaded into Perseus v2.0.10.0, log2 transformed, median-normalized, and 
missing values were imputed (width: 0.2; downshift 1.8).81 Perseus was also used for differential expression 
analysis. 

2nd Generation competition and competition correlation analysis (CCA) 

For each cell line and condition tested, 21 KIP competition experiments and one DMSO control experiment 

were performed in biological duplicate, resulting in 44 kinobead pulldown and LC-MS experiments per 

condition/cell line. For input kinases into CCA, the following two sample t-test cut-off cutoff criteria were 

applied: p ≤ 0.05, log2 MS intensity FC ≥ 0.5 for the SH-N-SH cell line and p ≤ 0.01, log2 MS intensity FC ≥ 0.5 

for the SH-SY5Y cell line. All non-kinase proteins that were quantified were used for CCA. We correlated MS 

intensity values of all selected kinases and all non-kinase proteins using Pearson moment correlation (n = 44). 

We determined the kinases which showed the 1st through 10th highest Pearson r-value and estimated %TDR 

values for kinase PPI predictions based on the percentage of previously reported kinase PPIs in the BioGRID 

interactome database53 in each Pearson’s r-value interval of 0.05 units (%FDR = (NPPI,reported / NPPI,unreported) * 

100)). For mapping of previously reported PPIs we used the interactions derived from the ‘BIOGRID-MV-

Physical-4.4.223.mitab’ file downloaded on July 21, 2024. Predicted kinase-protein interactions showing a 

%TDR > 10 were then reported as a predicted PPIs with the %TDR value associated with each PPI (Table 

S2).     

Differential expression analysis (DEA) 

To identify differentially expressed proteomic features between cell lines and treatment conditions, we applied 

either a two-sample Student’s t-test or a one sample Student’s t-test, applying Benjamini-Hochberg (BH) 

correction for multiple hypothesis testing (FDR ≤ 0.05, discovery mode in kinobead AP-MS experiments and to 

analyze 2nd gen kiCCA data). Alternatively, we applied a simple p ≤ 0.05 (validation mode in kinobead and Co-

IP/MS data).23 

Plotting STRING interaction networks 

PPI network models were plotted using the STRING web application version 12.0 with the following settings: 

Edges were scaled with confidence, and only ‘physical subnetwork’ interactions were considered, i.e., only 

considering text mining, experiments, and databases.82 

Gene set enrichment analysis (GSEA) 

For gene set enrichment analysis (GSEA), we used the ssGSEA2.0 script in R together with the Gene 

Ontology: Biological Process (GOBP) gene set of the MSigDB database (‘c5.bp.v7.0.symbols’) according to 

the published protocol with the following minor modifications:83 to rank gene names, we calculated a compound 
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score using the two sample Student’s t-test log2 MS intensity difference multiplied by the -log10 p-value. The 

parameters used for GSEA were: sample.norm.type = "none", weight = 1, statistic = "area.under.RES", 

output.score.type = "NES", nperm = 1e3, min.overlap = 10, correl.type = "z.score", par = T, spare.cores = 1, 

export.signat.gct = T, extended.output = T. 

 

SUPPLEMENTARY FIGURES 

Figure S1 

 

(A) Number of quantified protein kinases and non-kinase proteins in the SH-SY5Y and SK-N-SH cell lines, comparing our 

previous iteration of kinobead AP-MS with diaPASEF-powered kinobead AP-MS. Refers to Fig. 1B, and Table S1. 

(B) Number of quantified protein kinases and non-kinase proteins that could be competed with the 21 KIPs in the SH-

SY5Y and SK-N-SH cell lines, comparing our previous iteration of kinobead AP-MS with diaPASEF kinobead AP-MS. 

Statistics: two-sample Student’s t-test p-value ≤ 0.05, log2 FC ≥ 0, N = 2. Refers for Fig. 1C and Table S1. 

(C) Number of kinases (left panel) and reported non-kinase interaction partners of these kinases (right panel) that were 

significantly competed against the kinobeads in the SH-SY5Y cell line with our 21 KIPs in our diaPASEF kinobead AP-

MS experiments with soluble competition, compared to our previous experiments (two-sample Student’s t-test p-value 

< 0.05, log2 FC > 0, N = 2). Refers to Fig. 1C and Table S1. 
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Figure S2 

      

(A) Parameter scanning experiment determining the CCA score (SCCA) for kinase PPIs predicted by our 2nd gen CCA in 

the SH-SY5Y cell line. Increasingly stringent Student’s t-test log2 FC and p-value cut-off criteria were applied and only 

kinases or non-kinases fulfilling these criteria used for CCA. Refers to Fig. 2A. 

(B) Plotting the SCCA for varying log2 FC cut-offs and p-Value cut-offs against one another identifies optimal mixed cut-off 

criteria for kinases input into our CCA of the SH-SY5Y cell line. Refers to Fig. 2B. 

(C) Heatmap showing the %TDR of our CCA for kinase interactions by 0.05-unit intervals of the CCA Pearson’s r-value for 

the 1st through 10th predicted kinase interactor of proteins. 2nd gen CCA data from SH-SY5Y cells. Refers to Fig. 2D. 
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(D) Physical STRING interaction network (v12.0) of multiple kinases predicted to interact with the signaling scaffolds 

NCK2 and 14-3-3 family proteins. Only interactions with a 2nd gen kiCCA %TDR > 10 were used to construct the networks. 

(E) Volcano plot showing the results of a co-IP/MS experiment using a specific antibody that binds AAK1. Only proteins 

that are also members of the STRING interaction network in Fig. 2E are shown. Statistics: two sample Student’s t-test p < 

0.05. Refers to Fig. 2E and Table S2.  
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Figure S3 

 

(A) Association of kinases with signaling pathways through their interaction partners. Kinases were ranked by the sum 

%TDRs for PPIs with their interaction partners. Interaction partners were deemed members of a signaling pathway if their 

gene name was contained in the GOBP gene sets shown in Fig. 3D. Refers to Fig. 3D and Table S2. 

(B) Results from GSEA with GOBP terms of global proteomics expression data, comparing SK-N-SH cells treated with 

either the CK2 inhibitor SGC-CK2-1 or DMSO (vehicle) for 4 days. Only pathway terms that showed an FDR < 0.05 are 

shown. Relates to and Table S2. 
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