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Role of structural holes in containing spreading processes
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Structural holes are channels or paths spanned by a group of indirectly connected nodes and their intermediary
in a network. In this work we emphasize the interesting role of structural holes as brokers for information
propagation. Based on the distribution of the structural hole numbers associated with each node, we propose a
simple yet effective approach for choosing the most influential nodes to immunize in containing the spreading
processes. Using a wide spectrum of large real-world networks, we demonstrate that the proposed approach
outperforms conventional methods in a remarkable way. In particular, we find that the performance gains of our
approach are particularly prominent for networks with high transitivity and assortativity, which verifies the vital

role of structural holes in information diffusion on networked systems.
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I. INTRODUCTION

Networks have emerged as an attractive theme in complex
system research, due to their universality for depicting a
variety of natural and synthetic systems [1,2]. Based on
the fact that a complex system consists of many mutually
interacting components, the interaction among components
and how they intertwine can be captured by a graph, where
nodes correspond to individual components and edges to their
interactions. Such a network can be thought of as a backbone
of the complex system along which signals, information,
and contagious entities propagate. In real-world networks,
however, undesirable signals can also spread through net-
works. For example, malicious rumors can spread among
individuals, computer worms deluge the internet, and epidemic
diseases can infect vulnerable people through contact. Hence,
developing effective strategies for preventing the spreading of
harmful signals through a network is a research challenge of
both theoretical and practical importance.

In general, containing spreading processes, a dual problem
to the influence maximization problem (i.e., finding the most
influential nodes for information diffusion), can be formu-
lated as an optimization problem that is non-deterministic
polynomial-time hard. Therefore, pursuing an exact solution
to influence minimization for large-scale networks suffers
from combinatorial explosion. Alternatively, a number of
efficient approaches are proposed to approximately solve
the problem [3-10]. These solutions can be classified into
two categories: (i) optimization-based methods; for example,
by using the greedy heuristic climbing algorithm, the result
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of Kempe et al. [9] shows that it can approximate the
optimum to within a factor of 1 — 1/e (where e is the base
of the natural logarithm); and (ii) structure-based approaches,
typically inspired by the relatedness between the topology and
functionality of networks, such as those topology based heuris-
tic methods including [4,5]. Compared with the optimization-
based algorithms, heuristics approaches are computationally
much more efficient and thus more practical in a diversity of
networked systems. Therefore, it is of particular interest to
devise efficient methods by leveraging the information of the
structures of complex networks.

Since the seminal works of Watts and Strogatz [11] and
Barabdsi and Albert [12], the topological characteristics of
networks have been thoroughly explored in sociology [13],
biology [14], technology [15], economy [16], etc. One
prominent feature is the extremely broad, often scale-free,
distribution of degree (defined as the number of immediate
neighbors) of their nodes. The property of scale-free degree
distribution reflects the allocation of one kind of social capital,
from the viewpoint of social network analysis, i.e., a few
hub nodes in such networks have a disproportionally large
number of interaction partners while the majority of nodes are
connected only to just a handful of relations. In other words,
to some extent the degree of a node represents the importance
of that node in the whole network. Identifying important
nodes [17] is of great significance for infection control. In
previous works [18-20], heuristic methods based on degrees
have been proved to be more efficient than random strategies
in selecting candidate nodes to vaccinate. However, node
degree only captures network property at low orders, while
control information spreading paths of networks obviously
requires higher-order information on networks. This is why
the degree-based methods are not always optimal.
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To improve the performance of heuristic infection con-
trol, nontrivial properties of networks based on higher-order
connectivity patterns are required. Considering that informa-
tion often travels across the shortest paths of a network, it
is clear that the more paths pass through a node, the more
important that node should be. In this sense, betweenness
centrality [21] is an appropriate measure for quantifying
the importance of a node. While betweenness has wide
applications in many networks, it fails to show superiority
compared to degree-based methods [3]. The reason lies in
the assumptions that information transfers follow shortest
paths, while spreading processes expand more randomly in
real-world situations. Further, though betweenness centrality
considers the indirect influence of high-order neighbors of
the nodes, the infection occurring in the ego networks of
the infected has no immediate relation to distant nodes. Ego
betweenness [22,23] defines node importance at the local
level, but as it is highly correlated with global betweenness
centrality, the immunization effects resulting from the two
betweenness-based strategies are nearly the same.

To find effective indicators by which a set of nodes is chosen
to be vaccinated in containing spreading processes, one needs
to capture the full characteristics of node influence in general
information transfer. Usually it is insufficient to apply only an
individual importance indicator to characterize the role of a
node in spreading processes. A reasonable solution is to apply
multiple indicators to evaluate the importance of a node and
identify its role [24]. However, determining the weightings
of respective metrics in the composite measure is an open
problem. Besides, some metrics such as betweenness central-
ity are computationally expensive for large-scale networks.
Motivated by these considerations, in this work we design a
simple metric, which we call structural hole count (SHC), to
capture the roles of a node from multiple facets. This metric
is then applied to contain spreading processes modeled in a
number of real-world networks. Remarkable improvements
on the efficiency of the containing strategy are found through
numerical simulations. To further understand properties of this
indicator, we also inspect its relationship to existing network
metrics. Our findings indicate that the structural hole count
achieves a combined effect of the degree correlation and
clustering coefficients simultaneously in containing spreading
processes.

The remainder of this paper is organized as follows. We
first introduce a role measurement according to the theory of
structural holes [25] in social network analysis in Sec. II and
then devise the contain strategy based on the proposed metric
in Sec. III. We provide computational experiments to validate
the metric on large social networks, showing that the strategy
based on our proposed metric significantly outperforms the de-
gree and betweenness centrality based heuristics. We also dis-
cuss the performance gains in a range of real networks and find
a correlation between the introduced metric and several exist-
ing metrics in Sec. IV. Section V gives a summary of this work.

II. MEASURING THE ROLE OF NODES
BY STRUCTURAL HOLES

We begin by introducing a metric for quantifying the
relative importance of a node in the spreading process of
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FIG. 1. Schematic diagram of structural holes in an ego network.
Dashed lines represent structural holes in the presence of ego.
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a network, based on the so-called structural holes. The
theory of structural holes indicates that some individuals in a
network bridge people or clusters of people that are otherwise
disconnected. They act as structural hole spanners to fill the
holes among the people or group without direct connections.
For example, as shown in Fig. 1, there are four structural holes
marked by dashed blue arrows associated with the ego node.
For each structural hole, the nodes in it will never have the
chance to communicate with each other upon the removal of
the ego node. Obviously, the ego node plays an important
role in the information propagation and the higher the number
of structural holes associated with it, the more important the
role is. Hereby we leverage the property of structural holes to
define an intuitive measure called structural hole count SHC(7)
to quantify the node importance, as

1
SHC(i) = 5 Z (1 — Ag)), (1)

k,jeN;

where Ay ; denotes the connectivity between a pair of nodes
k and j (A, ; = 1 if there is an edge linking node k and node
Jj and Ay ; = 0 otherwise). Moreover, N; represents the set of
neighbors of node i. The SHC(i) counts how many structural
holes exist in the neighborhood set of node i. In early studies
of social network research, Burt used the same index in the
studies of ego networks [25], which is called brokage in the
context of sociology. However, less attention has been drawn in
applying this measurement in network analysis. In this work,
we extend the idea to general networks and reveal its important
role in spread control.

Here we discuss more properties of the structural hole
count. First, it has connections but dissimilarities with ego
betweenness in some respects. Both are defined on ego
networks, which is centered on a specific node with its personal
network as depicted in Fig. 1. Since ego is between two other
nodes, if ego lies on the shortest path from one to the other,
ego betweenness indicates the percentage of all geodesic paths
from neighbor to neighbor passing through ego, while SHC
only considers the number of spanned holes by ego.

Second, SHC has an interesting relation with the degree of
anode. It can be easily verified that for any node i in a graph,
the following relation holds:

SHC(i) = 1(d? — d;) — |G, @)
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where d; represents the degree of node i, N; denotes the
neighbors of i (including the node i itself), G; denotes
the subgraph spanned on this set of nodes, and | - | denotes
the number of edges in the subgraph. As can be
seen, the structural hole count is upper bounded by the squared
degrees. This explains the positive correlation between the
two quantities, as is demonstrated in Fig. 3, since only nodes
with high degrees are likely to have a large structural hole
count. However, in the meantime, nodes do exist with high
degrees but low structural hole counts: Each of such nodes
will be centered by densely interconnected neighbors, leading
to a large |G ;| that diminishes the structural hole count.
Therefore, depending on the actual graph connectivity, the two
quantities can demonstrate a significant difference as well.

III. SPREADING CONTAINED IN REAL NETWORKS

In general, the study of spreading suppression is based
on information diffusion or epidemic spreading models of
networks. The problem of containing the spreading processes
is then to reduce the proportion of being infected by blocking
as few as possible nodes in a network. In this work, we focus
on the susceptible-infected (SI) model [26]. This spreading
model usually assumes two possible states for each node, i.e.,
susceptible and infected. The susceptible state can switch to
the infected state with certain probability A (0 < A < 1) and
then sticks to the infected state for the rest of the time.

Now we formulate the spreading contained problem in
a network represented by an undirected graph G = (V,E).
Here V and E (C V x V) denote the sets of nodes and
links in the network, respectively. The spreading process
proceeds from any initially infected node v in the following
way. At each discrete time step 7, when there exists any
susceptible node in the neighborhood of node v, node v tries to
contaminate its susceptible neighbors. Then, in the next steps,
all currently infected nodes continue to spread the information
or disease to their immediate susceptible neighbors until the
susceptible become the infected. Eventually, all the nodes are
infected if there is no intervention. At this point, the ST model
distinguishes itself from the independent-cascade model [9],
wherein the latter the infected nodes are only given a single
chance to activate each of their susceptible neighbors and
therefore the final infection heavily depends on the propagation
probability A.

To measure the severity of contamination in the network G
subject to interventions, one can use the average contamination
degree (ACD) ¢(G, Z) defined as

1
(G, Z)= —

v, o(v;Gz). 3)

veVy

Here Z is the set of protector nodes that are blocked or
immunized, V7 denotes the residual set of nodes (V \ Z),
and Gz denotes the network on V. Here G can be deemed
the residual network constructed after blocking the nodes Z
in the graph. The term o (v; G7) is the number of nodes that
are reachable from v. The | - | operator denotes the number of
elements in the entity-.

The ACD measures, on average, how many victims each
node in the residual graph can infect. It can be computed
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directly given a specific protector set Z. However, this is
computationally time consuming for large-scale networks.
Instead, we experimentally evaluate the ACD by randomly
sampling seed nodes and employing the spreading processes
on networks with sufficient repeats.

In order to minimize the spread of contamination in a
graph, we propose a heuristic to immunize (or block) those
nodes with large structural hole counts. On the one hand,
such nodes typically reside in dense regions of the graph
(that is, with high degrees), potentially having an impact on
many neighbors. On the other hand, neighbors of such nodes
only have sparse connections with each other. This means
immunization of such nodes will eventually break down almost
all the connections within its neighborhood, rendering very few
alternative propagation channels left.

In the literature, various solution schemes were also
proposed to this problem. For example, it has been shown that
removing nodes in order of decreasing degrees (or out-degrees
in directed networks) is a successful scheme for preventing
the spread of contamination in most real networks [18-20,27].
Some other examples include random walks [28], betweenness
criteria [29], and highest-degree neighbors [30] (see [31] for a
comprehensive review).

In the following, we compare our method with several
popular heuristic methods that are based on the topology of the
network. These methods include (i) selecting nodes according
their degrees, referred to as the degree-based method; (ii)
randomly sampling nodes, referred to as the random scheme;
(iii) performing random walk in the network and immunizing
every node visited [28], referred to as the random walk; and
(iv) selecting the neighboring nodes with largest degree [30],
referred to as NDeg. Using several large real networks, we
experimentally evaluate the performance in terms of ACD,
which is estimated by numerical simulation of spreading
dynamics on the network G, as mentioned previously. One
of the real networks we employ in our experiments is the
collaboration network of Arxiv GrQc (general relativity and
quantum cosmology) [32], which comes from the e-print arXiv
and depicts scientific collaboration relations between authors
whose papers have been submitted to the general relativity
and quantum cosmology category. Specifically, if an author
i coauthored a paper with author j, there is an undirected
edge from i to j. Other real networks such as Astro-Physics
(astroph) collaboration networks and High Energy Physics
(caHepPh) collaboration network [32] also have been used to
verify the validity of the proposed method. It should be noted
that the largest connected component will be considered when
a network is not strongly connected.

In the experiments, the estimated performance index
c(G,Z) is calculated by using the SI model. Although the SI
model has the propagation probability A as a tuning parameter
merely determines the time to reach convergence but not the
infected area of the spreads. Thus one can take arbitrary
positive values less than 1 in the experiment. Here we use
A = 0.05, but other nonzero values were found to give similar
results.

Figure 2 shows the contamination degree of the resulting
networks as a function of the number of nodes blocked k,
using different schemes as discussed above. We can see that
the proposed method outperforms other methods in that the
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FIG. 2. Estimated average contamination degree as a monotonic function of the number of blocked nodes, compared with degree-based
random methods, random walk, and NDeg in (a) astroph, (b) caGrQc, (c) caHepPh, and (d) netPhy networks, respectively.

average contamination degree declines more rapidly over
k. More specifically, the expected contamination degree is
reduced to almost zero by blocking about 14% of the nodes
with the proposed method in the astroph network (Fig. 2).
In contrast, by blocking the same number of nodes, the
contamination degree is still more than 50% for the degree-
based method. Overall, the performances of random schemes
(both random sampling and random walk) are inferior; the
NDeg method can outperform the degree-based method,
indicating the importance of the highest-degree neighbors, and
our approach always outperforms other competing methods in
these large-scale networks. Another observation is that the
performance of the random walk method is inferior to the
degree-based method in these networks, which seems to be
different from the observations made in [28].

Note that the ultimate contamination degree n may hardly
reach zero. By looking into the distribution of vaccinations
in the networks, it is found that most of the remaining
nodes are surrounded by immunized nodes, indicating that
diffusion starting from those nodes can hardly spread out.
However, there do exist a few hub nodes that still have some
nonimmunized neighbors, which can be infected by the hub
nodes, owing to the scale-free property of the degree and
structural hole count distributions.

We further compare the sets of target nodes immunized
in our method with the degree-based method. The insets in
Fig. 3 show the similarities of the two sets of target nodes
as a function of the number k of nodes blocked in four real
networks. Here the similarity J is quantified by using Jaccard
index [33]. It can be observed that for very low immunization
rates (k% close to zero), the target nodes from the two methods
can be very close. However, when a larger k is needed, the two

methods typically target different nodes in the graph, with an
overlap ratio that is lower than 50%.

These results imply that some nodes with higher structural
hole count but lower degree are crucial for preventing
the spreading processes. This can be manifested from the
definition of the structural hole count. Structural hole count
takes into account not only the connections a node has, but
also the connectivity of the neighborhood of this node. In
containing the spreading dynamics of a network, blocking the
nodes whose neighbors are densely connected with each other
can hardly decrease the chance that malicious information
spreads from one neighbor to other neighbors, because of the
existence of alternative communication channels in the dense
ego network. In comparison, the definition of structural hole
counts explicitly takes into account the impact of alternative
propagation channels. Therefore, the preference is given to
those nodes with low connectivities among their neighbor-
hood, rather than those with densely connected neighbors.

IV. DISCUSSION

Through the numerical simulation on a wide spectrum of
real-world networks, we have observed that the performance
gains of the proposed method over the degree-based method
varies from network to network. Specifically, in some networks
the proposed method works remarkably better [as Fig. 2(d)
shows], while in other cases the improvement can be insignifi-
cant. Thus, it is interesting to study what causes the difference
in the performance of an intervention method for different
networks.

To achieve this, we employ 14 real networks as described in
Table I. We adopt some classical measures to characterize these
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FIG. 3. Structural hole count vs degree for four real networks, i.e., (a) astroph, (b) caGrQc, (c) caHepPh, and (d) netPhy networks. The
insets show the similarity of the two sets of blocked nodes corresponding to degree-based and structural-hole-count-based methods.

networks, such as the average shortest path length L, clustering
coefficient C [11,43], average degree D, and assortativity
coefficient A, [44]. In addition, we define the performance
gains ¢(G) between the proposed method and the degree-based
method, as

¢(G) = max[c,(G; k) — ca(G: k). “4)

Here k is the ratio of immunized nodes and ¢, and ¢, are the
average contamination degrees corresponding to the proposed
and degree-based methods, respectively. Then ¢(G) is the

TABLE I. Real networks used in the experiments. For discon-
nected networks, the maximal connected components are taken into
consideration.

Network 14 E (d)

karate club [34] 34 78 4.59
polblogs [35] 1222 16714 27.36
Celegans [36] 297 2345 15.79
power grid [11] 4941 6594 2.67
hepth citation [37] 5835 13815 473
netscience [38] 379 914 4.82
URVemail [39] 1133 5451 9.62
PGP [40] 10680 24316 4.55
caGrQC [37] 4158 13422 6.46
caHepTh [37] 8638 24806 5.74
condmat2005 [41] 36458 171735 9.42
astroph [41] 14845 119652 16.12
as22july06 [42] 22963 48436 4.22
caHepPh [37] 11204 117619 20.99
netPhy [38] 19873 128744 12.96

maximal difference of the performances for the two methods at
some k. Clearly, ¢ indicates the improvement of the proposed
method with respect to the degree-based method.

We study the relation between the performance gains and
network properties, in particular the clustering coefficient and
the assortativity coefficient. Figure 4 shows the performance
gains of the proposed method with regard to the two network
characteristics. As can be seen, the two network properties
can clearly separate those networks with significant and
insignificant performance gains. The proposed method seems

[ karate club
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I condmat2005
: [ ] astroph
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0.2 B URV email
BlrGr
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| netPhy
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W

FIG. 4. Performance difference distribution of real networks in
two-dimensional topological feature space. Here C denotes the
clustering coefficient, A, represents the assortativity coefficient, and
¢ is the performance difference.
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to have a quite prominent performance gain for networks
with high clustering and high assortativity coefficients; in
comparison, for networks whose coefficients are both small,
the performance gain is insignificant.

The observation indicates that the performance of the
proposed method using the structural hole counts is actually
adaptive with regard to multiple network characteristics simul-
taneously. In other words, it equivalently takes into account
multiple indicators in containing the spreading processes. We
believe this is attributed to the interesting relation between
the structural hole counts and various network characteristics.
In highly transitive networks, the neighbors of a node are
heavily interconnected and form a dense local cluster with
their ego, while the nodes that span plenty of structural
holes are in the critical paths between different clusters.
Thus, intuitively, those bridging nodes should be blocked
in suppressing diffusion processes, which coincides with the
result demonstrated in [45]. In addition to transitivity, high
assortativity of a network implies that highly connected nodes
are prone to connecting other highly connected nodes, i.e., hub
nodes have hub neighbors. In the targeted containing policy,
the degree-based method takes into account the fragility of
the hubs in scale-free networks [20]. However, due to the
high transitivity and degree-degree correlation, the targeted
nodes with high degrees are likely to be densely connected and
thus fail to maximize their influence on spreading processes.
In contrast, the structural hole count takes into account not
only high connections but the type of the connections between
the target nodes and the rest nodes. That is, those hubs with
weak ties are more important in preventing the infections.
Consequently, blocking such nodes will significantly improve
the performance of the containing strategy.

Finally, we find that for disassortative networks (i.e.,
with negative assortativity coefficient), there is no obvious
advantage of the proposed method over the degree-based
method. In fact, both methods are very efficient in containing
the spreading process with a small portion of immunized nodes
in disassortative networks. The reason is that disassortative

PHYSICAL REVIEW E 93, 032312 (2016)

networks often have a scale-free degree distribution. Neigh-
bors of high-degree nodes usually only have a small number
of connections and these neighbors are not interconnected
directly by virtue of the disassortativity property. In other
words, the structural hole counts and the degree are close
for those truly important nodes in containing the spreading
process. Therefore, high-degree nodes also span the structural
holes among the low-degree nodes, which leads to a big overlap
between the immunization sets derived from the two methods.

V. CONCLUSION

Developing effective strategies for containing the spread
of undesirable propagation through a network is an important
topic of both practical and research significance. By leveraging
the role of structural holes in shaping the communication
channels, we have devised an effective heuristic approach to
suppress the spreading processes in a network. Using a variety
of real-world networks including several large-scale social
networks, we have demonstrated experimentally that the pro-
posed method can significantly outperform the degree-based
heuristic for networks with high transitivity and assortativity.
We further interpret this success by the correlation of structural
holes and weak ties among high-degree nodes. Compared
to greedy algorithms, our approach based on the topological
characteristics depends merely on local connectivity patterns
and is computationally much more attractive for real-world
applications.
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