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m6A RNA Methylation Regulators Act
as Potential Prognostic Biomarkers
in Lung Adenocarcinoma

Hongbo Wang, Xiangxuan Zhao*† and Zaiming Lu*†

Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China

N6-methyladenosine [m(6)A/m6A] methylation is one of the most common RNA

modifications in eukaryotic cell mRNA and plays an important regulatory role in mRNA

metabolism, splicing, translocation, stability, and translation. Previous studies have

demonstrated that the m6A modification is highly associated with tumor cell proliferation,

migration, and invasion. In the present study, five m6A regulatory factors have

been revealed, namely heterogeneous nuclear ribonucleoprotein A2/B1(HNRNPA2B1),

heterogeneous nuclear ribonucleoprotein C (HNRNPC), Vir like m6A methyltransferase

associated protein (KIAA1429/VIRMA), RNA binding motif protein 15 (RBM15) and

methyltransferase like 3 (METTL3), which are closely related to the overall survival (OS) of

patients with lung adenocarcinoma (LUAD). These five m6A regulatory factors exhibited

potential prognostic value for the 1, 3, and 5-years survival outcomes of LUAD patients.

Our findings revealed that several signaling pathways, such as cell cycle, DNA replication,

RNA degradation, RNA polymerase, nucleotide excision repair and basal transcription

factors, are activated in the high-risk group of LUAD patients.

Keywords: lung cancer, N6-methylAdenosine (m6A), prognosis, epitranscriptomics, cancer biomarker

INTRODUCTION

Lung cancer is currently one of the most common malignant tumors presenting the highest fatality
rate among all malignancies (Siegel et al., 2020). In opposite to the surgical resection of early lung
cancer, advanced lung cancer is mainly treated with radiotherapy and/or chemotherapy, while
adjuvant immunotherapy and targeted therapy are also administered (Hirsch et al., 2017). Most
patients have already advanced lung cancer by the time of their diagnosis mainly due to the limited
knowledge in the pathogenesis of lung cancer, and the 5-year survival rate does not exceed 20%
(Siegel et al., 2020). The clinical prognosis of patients is mainly based on tumor stage and other
clinical indicators such as tumor nodemetastasis (TNM) stage. However, huge variation is observed
in the final prognosis of the same tumor stage as a result of patients’ heterogeneity. Therefore,
relying on simple tumor staging may lead to poor prognosis accuracy, greatly affecting patients’
further treatment and reducing the overall survival rate (OSR) (Razzouk, 2014; Perakis et al.,
2016). The identification of accurate prognostic markers can contribute to the improvement of
the treatment of lung cancer patients.

N6-methyladenosine (m6A) refers to the N6 terminal methylation of adenosine, which is a
ubiquitous post-transcriptional modification mechanism of RNA in eukaryotic cells (Chen et al.,
2019). m6A is involved in the RNA metabolism, and more specifically in mRNA translation,
degradation, splicing, export, and folding (Liu et al., 2017; Chen et al., 2019; Liu and Gregory,
2019). The completion of m6A modification requires the binding of methyltransferase with the

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.622233
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.622233&domain=pdf&date_stamp=2021-02-10
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xiangxuanzhao@163.com
mailto:luzaiming@sina.com
https://doi.org/10.3389/fgene.2021.622233
https://www.frontiersin.org/articles/10.3389/fgene.2021.622233/full


Wang et al. m6A in Lung Adenocarcinoma Prognosis

conservative motif RRACH (R=A/G, H=U/A/C) in RNA (Kane
and Beemon, 1985; Narayan et al., 1994; Balacco and Soller,
2019). m6A often occurs in the stop codons of the 3′ untranslated
(3′UTRs) and exon regions, respectively (Dominissini et al., 2012;
Meyer et al., 2012). m6A modification is usually a reversible
process that is regulated by various related factors (Jia et al., 2011,
2013). The m6A regulators reported so far can be divided into
three types. The first type is called Writers including METTL3,
METTL14,METTL16,WTAP, KIAA1429, RBM15, and ZC3H13,
which are able to recognize RNA and modify m6A (Dai et al.,
2018; Balacco and Soller, 2019). The second type is Erasers
that include fat mass- and obesity-associated protein (FTO)
and alk B homolog 5 (ALKBH5). These regulators are mainly
responsible for removing m6A modifications (Liu et al., 2018;

FIGURE 1 | The 16 m6A-related genes were differentially expressed in the comparison of LUAD with normal tissues. (A) Heatmap (***p < 0.001; **p < 0.01; *p <

0.05; Red means high expression and green means low expression). (B) Violet plots (***p < 0.001; **p < 0.01; *p < 0.05; Blue represents normal tissue and red

represents cancer tissue). (C) The correlation between the expression levels of each m6A-related gene.

Pan et al., 2018). The third type is Readers that consist of
YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2, HNRNPC,
and HNRNPA2B1. Readers can recognize RNA methylation
modifications and further regulate RNA processing, translation,
and degradation (Wang et al., 2018; Ma et al., 2019).

Functional analysis has shown that m6A is crucial for cell
proliferation, cell self-renewal, and apoptosis as it affects many
important life processes (Zhou et al., 2019). A large number
of studies have confirmed that the aberrant m6A modification
plays a key role in the occurrence and progression of various
tumors including LUAD (Zhou et al., 2019; Yi et al., 2020; Zhang
et al., 2020). For instance, m6AReader YTHDF2 can promote the
non-small cell lung cancer (NSCLC) progression (Sheng et al.,
2019), while the Eraser ALKBH5 can inhibit the metastasis of
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NSCLC by inhibiting the miR-107/LATS2-mediated YAP activity
(Jin et al., 2020). In addition, m6A status can also affect the
sensitivity of NSCLC to Afatinib treatment (Meng et al., 2020).
However, the potential value of m6A for the prognosis of lung
cancer treatment still remains unexplored, especially for the
prognosis of LUAD. The present study initially confirmed that the
expression levels of five m6A regulators, including HNRNPA2B1,
HNRNPC, KIAA1429, RBM15, and METTL3 were correlated
with OS of LUAD patients. m6A Writers regulatory factors were
also suggested as potential prognostic biomarkers for LUAD.

MATERIALS AND METHODS

Data Acquisition
The LUAD gene expression data and the corresponding
clinical data were downloaded from The Cancer Genome
Atlas database (TCGA) (https://cancergenome.nih.gov/) by
using TCGA-assembler in February 20201. Gene expression
in the downloaded files was normalized using the Fragments
Per Kilobase of exon model per Million mapped fragments
(FPKM) metric. Data for the m6A regulators including
METTL3, METTL14, METTL16, WTAP, KIAA1429, RBM15,
ZC3H13, FTO, ALKBH5, YTHDF1, YTHDF2, YTHDF3,
YTHDC1, YTHDC2, HNRNPC, and HNRNPA2B1, were
retrieved by mining the transcriptomics data of LUAD and
para-carcinoma tissues. The human tissue expression levels in
Genotype-tissue expression (GTEx) database were downloaded
in May 2020. The GTEx dataset contains more than 900
organs and tissues of healthy people, with a total of more
than 17,000 samples, covering 54 types of tissues in the
human body.

Bioinformatics Analysis
Gene expression data of the tumor and control sample were
separately sorted. Gene expression data for the 16 m6A related
genes were then extracted and data with incomplete information
were deleted. R software (Version 3.6.1) was used to perform
differential expression analysis on the m6A regulatory factors
in lung tissue samples in a comparison between 497 LUAD
tissues (from 467 LUAD patients) and 54 para-carcinoma tissues.
Vioplot tool was used to plot violin graphs to visualize the results
of the differential expression analysis between LUADpatients and
control samples. The Spearman correlation analysis was deployed
to study the associations between the expression levels of the 16
m6A-related regulatory factors.

The Least Absolute Shrinkage and Selection Operator
(LASSO) model is a dimensionality reduction method,
which can reduce the number of variables through a
penalty mechanism and ultimately achieve the goal of
reducing bias. The LASSO model analysis was performed
using the glmnet R package. Gene Set Enrichment Analysis
(GSEA) software (Version 4.0.3 from Broad Institute official
website homepage) was used to analyze the enrichment
analysis between high-risk and low-risk groups. A total of

1The cancer genome atlas (TCGA) (2020). https://portal.gdc.cancer.gov/

TABLE 1 | Clinical data of LUAD patients in TCGA database.

Features Numbers Percentage %

Gender Female 254 54.39

Male 213 45.61

Age (Y) 65.01 ± 10.05

≤65 227 48.61

>65 240 51.39

Stage Stage I 251 53.75

Stage II 108 23.13

Stage III 75 16.06

Stage IV 25 5.35

Unknown 8 1.71

T T1 162 34.69

T2 244 52.25

T3 39 8.35

T4 19 4.07

Unknown 3 0.64

M M0 314 67.24

M1 24 5.14

Unknown 129 27.62

N N0 300 64.24

N1 87 18.63

N2 66 14.13

N3 2 0.43

Unknown 12 2.57

55,268 genes were included in the analysis. Moreover, the
“c2.cp.kegg.V7.0.symbols.gmt” analysis package was used to
study the pathway enrichment. All the LUAD samples were
divided into two groups (high-risk and low-risk groups) by
median risk score. P-value and False Discovery Rate (FDR)
thresholds of 0.05 and 0.25, respectively, were used to infer
significant findings.

Statistical Analysis
One-way analysis of variance (Anova) test was used to compare
the 16 m6A regulatory factors in between 497 LUAD tissues
and 54 para-carcinoma tissues. The Spearman correlation
was used to clarify the relationship between the m6A gene
expression level and the basic clinical information (such as age,
gender, TMN stage) of LUAD patients. The OSR is defined
as the time period from diagnosis to death. Univariate and
multivariate COX logistic regression models were used to
analyze the prognostic potential of each factor and their ability
to predict the survival outcome of LUAD. Kaplan-Meier and
receiver operating characteristic (ROC) curves were plotted
to demonstrate the prognostic performance of the explored
m6A related regulators. A prognostic model was established
by drawing a Nomogram plot, and calibration curves were
used to verify it. P-value threshold of 0.05 was used to infer
statistical significance.
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FIGURE 2 | The expression levels of 16 m6A-related genes were correlated with the survival time of LUAD patients. (A) Forest plot depicting Hazard ratios (HR) and

95% intervals of trust of the m6A-related genes. The expression levels of HNRNPA2B1, HNRNPC, KIAA1429, RBM15, and METTL3 were associated to the prognosis

of patients. (B) Combining the levels of these five m6A-related genes to establish a Nomogram chart to predict 1, 3, and 5-year survival patients with LUAD. (C–E)

Validation curve corresponding to patient 1, 3, and 5-year survival prediction model (Calibrated curve).

RESULTS

m6A Regulator mRNA Levels
After screening the mRNA expression levels of the m6A
regulators in 497 LUAD and 54 normal control samples,
respectively, we analyzed the expressions of 16 m6A
related regulators: METTL3, METTL14, METTL16, WTAP,
KIAA1429, RBM15, ZC3H13, FTO, ALKBH5, YTHDF1,
YTHDF2, YTHDF3, YTHDC1, YTHDC2, HNRNPC and
HNRNPA2B1. Among them, METTL3, METTL14, KIAA1429,
RBM15, ZC3H13, FTO, YTHDF1, YTHDF2, HNRNPC,
HNRNPA2B1, WTAP, YTHDF3 and METTL16, were
significantly overexpressed in LUAD tissues. The expression of
ALKBH5, YTHDC1, and YTHDC2 presented no statistically
significant differences (Figures 1A,B). Moreover, Pearson

correlation analysis was conducted between the 16 m6A related
regulators. We found that the positive correlation between the
expression levels of YTHDF3 and KIAA1429 was the highest
one. Furthermore, significant positive correlations were revealed
between YTHDC1, YTHDC2, RBM15, and METTL14 from the
same analysis (Figure 1C).

m6A-Related Gene Expression and LUAD
Prognosis
Clinical data of the 467 patients were further analyzed to
explore the prognostic potential of the expression levels
of the m6A regulatory factors in LUAD (Table 1). Survival
analysis showed that the expression levels of four regulatory
factors (HNRNPA2B1, HNRNPC, KIAA1429, and RBM15)
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FIGURE 3 | Identification and validation of a risk model to prognose LUAD patients. (A) The LASSO analysis model was verified by repeated calculation of the 16 m6A

genes. (B) LASSO coefficient profiles. (C) According to LASSO risk factors, LUAD patients were divided into high-risk group and low-risk group. Heatmap

demonstrated the expression levels of HNRNPA2B1, HNRNPC, KIAA1429, RBM15, and METTL3 in the two assessed groups. (D) Kaplan Meier analysis for the

survival of LUAD patients. (E) 1-year (P < 0.001), (F) 3-year (P < 0.001), (G) 5-year OS ROC curves (P < 0.001).

were significantly positively associated with the patient’s
death risk, while METTL3 was negatively associated with
it without reaching statistical significance (0.05<p<0.1)
(Figure 2A). Then, a Nomogram prediction model based on
the expression levels of the above five genes and patient’s
outcomes data were established (Figure 2B). Four hundred
and twenty cases were randomly selected from all cases
and divided into three groups with each one of them
having 140 cases. The results of the calibration curves
indicated that the Nomogram prediction model presented

good predictive potential for 1, 3, and 5-year OS of LUAD
patients (Figures 2C–E).

LASSO Regression and Risk Co-Efficient
LASSO regression models were used to analyze the risk
coefficient and risk value of the expression of the five
m6A regulators (HNRNPA2B1, HNRNPC, KIAA1429, RBM15,
METTL3) in OS prediction (Figures 3A,B). The patients of
the present study were divided into high and low-risk groups
based on their predicted risk scores. HNRNPA2B1, HNRNPC,
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FIGURE 4 | GSEA software was used to analyze the expression differences of internal signal pathways between the two subgroups, including Cell cycle (P < 0.001,

FDR < 0.001, NES = 2.56), DNA replication (P < 0.001, FDR < 0.001, NES = 2.17), RNA degradation (P < 0.001, FDR<0.001, NES = 2.49), RNA polymerase (P =

0.006, FDR = 0.024, NES = 1.85), Nucleotide excision repair (P < 0.001, FDR < 0.001, NES = 2.29), and Basal transcription factors (P < 0.001, FDR < 0.001, NES

= 2.29) as well as other related signaling pathways (P < 0.05, FDR < 0.25).

TABLE 2 | Univariate and multivariate COX regression analyses were used to

assess the association between the clinical data and risk score of LUAD patients

and the prognosis.

Univariate COX regression Multivariate COX regression

Hazard ratio P Hazard ratio P

Age 1.002 (0.983–1.021) 0.843

Gender 1.035 (0.717–1.495) 0.852

Stage 1.654 (1.401–1.951) <0.001 1.324 (1.056–1.660) 0.015

T 1.632 (1.315–2.024) <0.001 1.064 (0.836–1.353) 0.615

M 1.757 (0.964–3.203) 0.066

N 1.790 (1.459–2.196) <0.001 1.374 (1.046–1.805) 0.022

Risk score 1.793 (1.465–2.195) <0.001 1.658 (1.331–2.056) <0.001

KIAA1429, and RBM15 were found to be overexpressed in
the high-risk group, while METTL3 was overexpressed in the
low-risk group (Figure 3C). Furthermore, survival analysis was
conducted using the combined risk value. Results confirmed
that the prognosis of patients in the high-risk group was
significantly worse than the one in the low-risk group (P
< 0.01) (Figure 3D). ROC curves for the 1, 3, and 5-year
survival prediction demonstrated that the risk value possesses
high prognostic accuracy with area under the curve (AUC)
of 0.60–0.71 (Figures 3E–G).

KEGG and Multi-Factor Analysis
GSEA software was used to analyze pathway enrichment for
the genes that are differentially expressed between high and
low-risk patients. The cell pathway was found to be enriched
in the set of deregulated factors with a p-value threshold of
0.05 and a FDR threshold of 0.25. The pathway enrichment
analysis using KEGG database pathways revealed that Cell
cycle (P < 0.001, FDR<0001, Normalized Enrichment Score
(NES)=2.56), DNA replication (P < 0.001, FDR<0001, NES
= 2.17), RNA degradation (P < 0.001, FDR<0001, NES =

2.49), RNA polymerase (P = 0.006, FDR=0.024, NES=1.85),
Nucleotide excision repair (P < 0.001, FDR<0001, NES=2.29),
Basal transcription factors (P < 0.001, FDR<0001, NES=2.29),
and other related signaling pathways are significantly activated
in the high-risk group (P < 0.05; FDR<0.25) (Figure 4).
Accordingly, a heatmap of the most enriched genes for
each identified KEGG pathway by GSEA between high and
low-risk groups was presented in Supplementary Figures 1–6

and Supplementary Tables 1–6. Univariate and multivariate
COX regression analyses were performed based on existing
risk factors and patient clinical information (such as age,
gender, and tumor and TMN staging) to evaluate their
prognostic potential in LUAD (Table 2). The results of univariate
analysis suggested that the stage (P < 0.001), T stage (P
< 0.001), lymph node metastasis stage (P < 0.001) and
risk score (P < 0.001) of LUAD patients are significantly
negatively associated with the patient’s OS. The results of
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FIGURE 5 | (A) Nomogram of OS in LUAD patients. (B–D) Corresponding 1/3/5-year survival time verification curve (Calibrated curve).

multivariate analysis suggested that the tumor stage (P =

0.015), lymph node metastasis stage (P = 0.022) and risk score
(P < 0.001) are significantly negatively associated with the
patient’s OS.

A Nomogram prognostic analysis model was established
based on clinical data such as age, gender, stage, lymph
node metastasis and risk value (Figure 5A). The analysis of
the 1, 3 and 5-year OS of patients through the Nomogram
prediction model has demonstrated that the risk value
contributes most to the prediction model followed by
lymph node metastasis, age and tumor stage. Three
hundred cases were randomly selected from all cases and
were then divided into three groups with each one of
them having 100 cases. Calibration curves showed that the
established Nomogram prediction model presented good
predictive potential for the 1, 3, and 5-year OS of LUAD
patients (Figures 5B–D).

m6A Writers in Normal Human Organ
Tissues
METTL3, RBM15, and KIAA1429 have been grouped to the
m6A Writers type (Wang et al., 2018; Chen et al., 2019; Chen
and Wong, 2020). LASSO regression analysis showed that the
m6A Writers, METTL3, RBM15 and KIAA1429, present higher
weight co-efficients (Co-ef) (METTL3: −0.0576562669796008;
KIAA1429: 0.0269410278179687; RBM15: 0.0539704827385957)
than those of HNRNPA2B1 (0.00473147643475602) and
HNRNPC (0.00964499370244368). The expression levels of
three genes (METTL3, RBM15, and KIAA1429) in 54 human
normal organ tissues were compared and analyzed using the
GTEx database. No significant difference was found in the
comparison between the expression levels of METTL3 and
KIAA1429 in various tissues of the human body (Figures 6A,B),
while RBM15 was overexpressed in bone marrow and testis
compared to other organs in the human body (Figure 6C).
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FIGURE 6 | The expression levels of three m6A-related genes METTL3 (A),

RBM15 (B), and KIAA1429 (C) in various organs in the human body.

DISCUSSION

The present study has discussed the m6A regulatory factor-
related genes are associated to the overall prognosis of LUAD
patients, and the newly introduced prognostic model is
proven to accurately prognose the outcomes of LUAD
patients. Meanwhile, the m6A regulatory factor-related
genes are associated with the occurrence and development
of LUAD.

m6A is one of the most common RNA modifications
discovered so far. Accumulating studies have recently shown
that the deregulation of the m6A RNA modification plays an
important role in the occurrence and progression of tumors (Cui
et al., 2017; Yang et al., 2017; Dai et al., 2018). For instance,
the overexpression of FTO in acute myeloid leukemia (AML)
can inhibit the m6A levels of Ankyrin repeat and SOCS box
containing 2 (ASB2) and of retinoic acid receptor α (RARα)
mRNA, resulting in the occurrence and progression of AML (Li
et al., 2017). The low expression of m6A regulators METTL14

in HCC (Ma et al., 2017) and the overexpression of the m6A
regulator ALKBH5 in glioblastoma (Zhang et al., 2017) have
been both associated with poor prognosis. Thus, the abnormal
modification of m6A is closely related to tumor progress,
metastasis and survival prognosis.

The expression levels of a variety of genes involved in RNA
methylation mechanisms are closely related to the prognosis
of lung cancer patients (Sun et al., 2020). m6A methylation is
an important RNA modification that occurs in various RNA
types such as microRNAs (miRs), circRNAs, and lncRNAs. At
the same time, a large number of studies have confirmed that
m6A and tumor progression are strongly correlated (Ma et al.,
2019). The levels of m6A-related genes are also tightly associated
with the prognosis of lung cancer patients. For instance, Liu
and colleagues have confirmed that the expression level of m6A
is weakly correlated with the prognosis of patients with lung
squamous cell carcinoma, while it has a strong correlation with
the prognosis of patients with LUAD (Liu et al., 2020). A most
recent report from zhuang et al. have reported that the differences
in the expression of m6A regulators not only have certain
diagnostic significance for early lung cancer, but are also closely
related to the prognosis of LUAD patients (Zhuang et al., 2020).

In the present study, we have further expanded the number
of m6A regulatory factors and explored their gene expression
levels are related to the prognosis of patients with LUAD. Five
m6A modification regulators, namely HNRNPA2B1, HNRNPC,
KIAA1429, RBM15, and METTL3 are found to be closely related
to the prognosis of LUAD patients. LASSO analysis reveals that
the outcomes of patients in the high-risk group are significantly
worse than the ones in the low-risk group. Both univariate
and multivariate analyses conclude that the risk value, stage,
and lymph node metastasis are closely related to the patient’s
prognosis. Finally, a newly developed Nomogram model is able
to improve the accuracy of the prognosis of patients compared to
conventional risk factors.

The m6A writers, METTL3, RBM15, and KIAA1429, were
found to be linked with a higher risk in the LASSO regression
analysis. Therefore, the abnormal expression of m6A writer
regulatory factors may affect the prognosis of LUAD. Among
them, METTL3 belongs to the class I methyltransferases family
and is a predominantly catalytic enzyme in m6A modification.
METTL3 has been confirmed to be abnormally expressed
in a variety of tumors and is believed to be involved in
carcinogenesis (Zheng et al., 2019). Prior studies have validated
that METTL3 is overexpressed in lung cancer. METTL3 can
interact with the transcription factor eIF3h to promote the
translation of oncogenes and ultimately to catalyze and accelerate
tumor growth and metastasis (Lin et al., 2016; Choe et al.,
2018). METTL3 can promote the splicing of the miR-143-
3p precursor, which in turn activates the miR-143-3p/VASH1
axis and ultimately leads to the progression and metastasis
of lung cancer (Wang et al., 2019). METTL3 has also been
shown to increase the expression level of JUNB and promote
the occurrence of epithelial-mesenchymal transition (Wanna-
Udom et al., 2020). miR-600 (Wei et al., 2019) and miR-33a
(Du et al., 2017) is able to inhibit the expression of METTL3,
thereby ablating the progression of NSCLC. Thus, METTL3 plays
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an important role in the occurrence and development of lung
cancer. One of the main contributions of the present study is the
validation of the hypothesis that the overexpression of METTL3
is negatively correlated with the prognosis of LUAD. This is
consistent with the results of previous studies suggesting that
the overexpression of METTL3 often indicates poor prognosis in
patients with primary liver cancer (Chen et al., 2018).

m6A modification regulatory RBM15 is a member of the split
end protein (SPEN) family and can bind with METTL3 and
WTAP (Wang et al., 2020). Studies have confirmed that m6A
plays an important regulatory role in the lncRNA XIST-mediated
gene transcription silencing. RBM15 catalyzes the recognition
of the m6A site on lncRNA XIST by METTL3. This m6A
methylation process can be blocked by the inhibition of RBM15
(Patil et al., 2016). Recent studies have reported that RBM15
assists ZC3H13 in regulating m6Amethylation, which is essential
for speeding up the progress of glioblastoma multiforme (GBM)
(Chow et al., 2017; Knuckles et al., 2018). It has been confirmed
that RBM15 can regulate the differentiation of megakaryocytes
by modulating the alternative splicing of RNA (Jin et al., 2018).
Our results have showed that the overexpression of RBM15 may
be related to the prognosis of LUAD by affecting m6A.

KIAA1429 can upregulate c-JunmRNA viam6A by increasing
its stability and by promoting the proliferation of gastric cancer
cells (Miao et al., 2020). KIAA1429 increases the expression
of cyclin-dependent kinase 1 (CDK1) mRNA to increase the
invasion ability of breast cancer cells (Qian et al., 2019).
KIAA1429 has been shown to regulate the m6A modification
of GATA3 precursor mRNA (Lan et al., 2019) and ID2 mRNA
(Cheng et al., 2019) in HCC, thereby promoting the progression
and metastasis of HCC. In the present study, we have revealed
that the expression level of m6A Writer KIAA1429 may act as a
prognostic marker for LUAD patients.

In conclusion, our findings provide bioinformatics
evidence to trigger and support further research on
the important role of m6A in LUAD. Toward this
direction, the validation of the molecular mechanism of
m6A underlying LUAD occurrence and its association
with LUAD prognosis can be further explored by
mechanistic experiments with animal models and/or cancer
cell lines.
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