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In a small chromosomal region, a number of polymorphisms may be both linked to and associated with a disease.
Distinguishing the potential causal sites from those indirectly associated due to linkage disequilibrium (LD) with a causal
site is an important problem. This problem may be approached by determining which of the associations can explain the
observed linkage signal. Recently, several methods have been proposed to aid in the identification of disease associated
polymorphisms that may explain an observed linkage signal, using genotype data from affected sib pairs (ASPs) [Li et al.
[2005] Am. J. Hum. Genet. 76:934–949; Sun et al. [2002] Am. J. Hum. Genet. 70:399–411]. These methods can be used to test
the null hypothesis that a candidate single nucleotide polymorphism (SNP) is the sole causal variant in the region, or is in
complete LD with the sole causal variant in the region. We extend variations of these methods to test for complete LD
between a disease locus and haplotypes composed of two or more tightly linked candidate SNPs. We study properties of the
proposed methods by simulation and apply them to type 1 diabetes data for ASPs and their parents at candidate SNP and
microsatellite marker loci in the Insulin (INS) gene region. Genet. Epidemiol. 31:727–740, 2007. r 2007 Wiley-Liss, Inc.
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INTRODUCTION

Genetic mapping studies often reveal a region
of linkage containing a number of disease-associated
polymorphisms. A marker may be associated with
the disease either because it has direct influence on
disease susceptibility (i.e. it is a ‘‘causal’’ polymorph-
ism), or because it is in linkage disequilibrium (LD)
with a causal polymorphism. Distinguishing poly-
morphisms that may be directly associated with the
trait from those that are indirectly associated due to
LD with a causal variant is an important problem.
This problem may be addressed by trying to identify
the polymorphism(s) that can explain an observed
linkage result. If a particular locus is the only causal
polymorphism in the region, then association with
this locus should be able to explain all the linkage in
the region. On the other hand, if the variant is not the
causal variant, or is not the only causal variant in
the region, evidence of linkage should exceed that
explained by the association with this variant. There-
fore, making use of genetic family data to extract both
linkage and association information facilitates model-
ling of effects at the underlying causal loci, rather
than simply detecting those effects.

A few recent studies have attempted to assess
whether association with a given polymorphism
is responsible for an observed linkage signal for a
particular complex disease [Boutin et al., 2003; Dunn
et al., 2006; Larkin et al., 2006]. However, there is
no consensus on the best method to approach this
problem, and generally ad-hoc methods based on
subgroup analyses are applied. Furthermore, the
methods proposed thus far are limited to testing
whether association with a single polymorphism can
account for the observed linkage. Clearly, improved
methods are needed for addressing the question of
whether association with a specific polymorphism
or combination of polymorphisms can explain an
observed linkage result.

Several methods have been proposed that may
help identify polymorphisms that cause an observed
linkage signal. Some of these methods focus on
testing the null hypothesis that a particular variant
explains none of the linkage versus the alternative
hypothesis that it can explain some or all of the
observed linkage in the region [Horikawa et al.,
2000; Dupuis and van Eerdewegh, 2003; Li et al.,
2004; Chen et al., 2005; Houwing-Duistermaat et al.,
2005]. The null hypothesis can then be rejected if
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the candidate variant is causal or if it is in LD with
a causal variant. Other methods have been proposed
for testing the null hypothesis that a particular
variant can explain all of the linkage in the region
versus the alternative that it cannot [Sun et al., 2002;
Dupuis and van Eerdewegh, 2003; Li et al., 2005].
In that case, rejection of the null hypothesis leads
the investigator to the conclusion that other relevant
polymorphisms exist in the region. Several methods
assess linkage in subsets of data selected based on
parental or children’s genotypes [Horikawa et al.,
2000; Dupuis and van Eerdewegh, 2003; Boutin et al.,
2003]. These types of methods can exclude much of
the data and may therefore be inefficient. Potentially
more efficient methods model linkage conditional
on parental or children’s genotypes [Sun et al., 2002;
Dupuis and van Eerdewegh, 2003] or by using
parental or children’s genotypes as a covariate in the
linkage model [Houwing-Duistermaat et al., 2005].

The method proposed by Sun et al. [2002] is based
on the observation that if a particular locus is the
only causal variant in the region, then conditional
on the genotypes at that locus for the affected
individuals, there should be no unexplained iden-
tical-by-descent (IBD) oversharing in the region
among the affecteds. They showed that under the
null hypothesis that the candidate single nucleotide
polymorphism (SNP) is the sole causal site in the
region, the IBD sharing distribution of affected sib
pairs (ASPs) at the candidate SNP, given their
genotypes at this SNP, is independent of their
affected status and depends only on their genotypes
at the SNP. On the basis of this property, Sun et al.
[2002] proposed test statistics similar to the usual
allele-sharing-based linkage statistics, including the
non-parametric linkage (NPL) statistic [Kruglyak
et al., 1996] and the Zlr statistic [Kong and Cox, 1997].

In contrast to methods that evaluate linkage
conditional on association, Li et al. [2005] jointly
modelled linkage and association in a region.
Assuming a single causal variant in the region of
linkage, Li et al. [2005] proposed an approach to
quantify the degree of LD between a candidate SNP
and the putative disease locus. They modelled the
likelihood of the marker data conditional on the trait
data for a sample of ASPs, with disease penetrances
and disease locus-SNP haplotype frequencies as
parameters. They proposed two likelihood ratio
tests to characterize the relationship of the candidate
SNP and the disease locus. In contrast to typical
association analysis methods that are designed to
detect a relationship between an observed variant
and the phenotype, but which do not reveal the
pattern of LD with a possibly unobserved causal
variant, the methods proposed by Li et al. [2005]
for joint modelling of linkage and association are
designed to model this LD pattern. The approach

originally described by Li et al. [2005] does not make
use of parental genotype data (even when available),
and is restricted to testing whether a single SNP can
explain the observed linkage. A recent implementa-
tion of this method in the software LAMP (http://
www.sph.umich.edu/csg/abecasis/LAMP/), how-
ever, does utilize parental genotype data and can
be used to test whether association with a micro-
satellite marker can explain the observed linkage.

In this paper, we describe tests of whether
a haplotype composed of two tightly linked SNPs
can explain all the linkage in a region. We begin by
reviewing the methods of Li et al. [2005] and Sun
et al. [2002] for assessing whether an observed
linkage signal can be explained by the association
with a single candidate SNP. Using simulations
we compare the methods proposed by Li et al. [2005]
and Sun et al. [2002], as well as alternatives that
condition on parental candidate SNP genotypes, and
demonstrate that conditioning on parental geno-
types does not usually lead to large power loss.
We then extend these alternative methods to test the
null hypothesis that association with a haplotype
can fully account for the observed linkage. We study
properties of these haplotype tests by simulation.
Finally, we apply a number of the methods to data
for the INS gene associated with type 1 diabetes.

METHODS

JOINT MODELLING OF LINKAGE AND
ASSOCIATION: ‘‘LI’’ AND ‘‘LI-CPG’’ METHODS

Recently, Li et al. [2005] proposed a method for
identifying SNPs responsible for a linkage signal.
Assuming there is one causal SNP in the region, they
modelled the likelihood of the sibs’ genotypes at
markers and a candidate SNP, conditional on the
sibs’ affected status, in terms of the penetrances
of the corresponding disease-locus genotype and
disease-SNP-candidate-SNP haplotype frequencies.
By restricting these haplotype frequencies appro-
priately, models corresponding to linkage equili-
brium (LE) or complete linkage disequilibrium (LD)
can be fit. Likelihood ratio statistics can then be
constructed to test whether the candidate SNP and
disease gene are in LE, or whether the candidate
SNP and the disease gene are in complete LD,
implying that either the candidate SNP or a
polymorphism in complete LD with it may account
fully for the linkage signal. Li et al. [2005] propose
evaluating significance of these statistics by simula-
tion. The method described by Li et al. [2005] was
originally implemented in a software program called
LAMA. More recently, LAMA has been replaced by
the program LAMP [Li et al., 2006] (http://
www.sph.umich.edu/csg/abecasis/LAMP/), which
has extended capabilities including the use of
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parental genotype data and different types of
pedigree structures. Also LAMP has improved
speed and efficiency, as the P values are calculated
using asymptotic arguments rather than by simula-
tion. This program can perform tests of linkage,
association, and tests of whether association with a
particular marker can explain the observed linkage.
Unlike the original method of Li et al. [2005], marker
allele frequencies can be estimated by LAMP, and
need not be specified before analysis.

Alternatively, we may consider modelling linkage
and association jointly with additional conditioning
on the parental candidate SNP genotypes, as descri-
bed in Appendix A. For a sample of ASPs and their
parents genotyped at M markers plus a candidate
SNP, we model

PrðXC;GC XP;GP;ASPj Þ;

where XP denotes the marker genotypes of the
parents, XC denotes the marker genotypes of the
sibs, and GP and GC denote the candidate SNP
genotypes of the parents and sibs, respectively.
In Appendix A we show that this likelihood can be
parameterized in terms of two relative risk para-
meters:

RR11 ¼
PrðdiseasejgD ¼ 11Þ

PrðdiseasejgD ¼ 22Þ
;RR12 ¼

PrðdiseasejgD ¼ 12Þ

PrðdiseasejgD ¼ 22Þ
;

where gD is the genotype at the disease locus, and
two LD parameters:

d1 ¼ PrðD ¼ 1jA ¼ 1Þ; d2 ¼ PrðD ¼ 1jA ¼ 2Þ;

where D and A represent alleles on a disease SNP-
candidate SNP haplotype. These LD parameters
describe the conditional haplotype frequencies, that
is, the probability of the high-risk allele ‘1’ at the
disease locus, given the allele at the candidate SNP
on the haplotype. If allele ‘1’ at the candidate SNP
always occurs on haplotypes with allele ‘1’ at the
disease SNP, then d1 5 1 and d2 5 0, whereas if allele
‘2’ at the candidate SNP always occurs on haplo-
types with allele ‘1’ at the disease SNP then d1 5 0
and d2 5 1. This likelihood does not require the pre-
specification or estimation of marker or candidate
SNP allele frequencies. We use a likelihood ratio
statistic to test the null hypothesis that the candidate
SNP is the sole causal polymorphism, or is in
complete LD with the sole causal polymorphism
in the region, and therefore association with the
candidate SNP can fully account for the linkage
signal. We define ‘‘complete LD’’ as the situation of
one-to-one correspondance between the alleles at
these two SNPs on a haplotype, i.e. (d1, d2) 5 (1,0) or
(d1, d2) 5 (0,1). In terms of the widely used LD
parameters D0 and r2, our definition of complete LD
implies that D05 1 and r2 5 1.

We refer to this approach as Li-cpg (cpg denotes
conditional on parental genotypes). Although

conditioning on parental genotypes can lead to
some power loss, it can also give rise to methods
more robust to departures from Hardy Weinberg
Equilibrium and population stratification. Further-
more it has the advantage of eliminating the
requirement for allele/haplotype frequency estima-
tion. We estimate empirical P values for the Li-cpg
likelihood ratio statistic by simulation, as described
in Appendix A.

MODEL-FREE TESTS OF LINKAGE CONDI-
TIONAL ON GENOTYPES AT CANDIDATE
LOCI: ‘‘SUN’’ AND ‘‘SUN-CPG’’ METHODS

The method proposed by Sun et al. [2002] is based
on the fact that under the null hypothesis that the
candidate SNP is the sole causal site in the region,

PrH0
ðIjGC;ASPÞ ¼ PrðIjGCÞ; ð1Þ

where I is the IBD sharing at the candidate locus and
GC are the sibs’ genotypes at this locus. Sun et al.
[2002] then use the distribution of ASP IBD sharing
given the sibs’ genotypes at the candidate SNP, GC,
(which depends on allele frequencies at the SNP) to
obtain

mG ¼ EH0
S½ � andsG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarH0

S½ �
p

for each sib pair, for some IBD sharing statistic
S. A variation of the usual NPL score statistic of
Kruglyak et al. [1996] or the linear or exponential
likelihood of Kong and Cox [1997] based on the
standardized family score statistics

Z ¼
S� mG

sG

is then used to assess evidence against H0.
We propose modifying the method of Sun et al.

[2002] by conditioning on parental (in addition to
children’s) genotypes, which avoids having to
specify allele frequencies in the analysis. In the
modified model, GC in equation (1) is replaced by
fGP;GCg, i.e. both the parental and sibs’ genotypes,
and therefore mG and sG are based on the IBD
distribution given ASP and parental candidate SNP
genotypes. We refer to this modified version of the
method as Sun-cpg. Note that the Li-cpg and
Sun-cpg approaches can only be used to analyze
affected sib pairs with both parents genotyped at the
candidate SNP, although missing marker data is
allowed.

EXTENSION OF LI-CPG TO PHASE-KNOWN
HAPLOTYPES OR MULTI-ALLELIC
CANDIDATE POLYMORPHISMS IN LD
WITH A SINGLE CAUSAL SNP

Suppose a number of candidate SNPs are tested
using the procedures described above and for each
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one we can reject the null hypothesis that the SNP
is in complete LD with the sole causal SNP in the
region, i.e. each SNP does not fully explain the
observed linkage peak. Assuming there is a single
causal SNP in the region, we may then ask whether
association of disease with a haplotype composed of
two candidate SNPs can fully explain the observed
linkage, due to complete LD of the haplotype with a
single untyped causal SNP. We assume the two
candidate SNPs are very tightly linked and therefore
there is no recombination between them, so that the
two-SNP haplotype can be thought of as a single
marker with four possible alleles. Since extension
of the above method to a phased 2-SNP haplotype
is equivalent to extending the method to a candidate
locus with four alleles, we consider those two
scenarios together. We describe the method only
for two-SNP haplotypes or four-allele markers to
simplify notation, noting that extension to markers
with any number of alleles or haplotypes composed
of more SNPs is straightforward. We first consider
an extension of the joint model for linkage and
association with conditioning on genotypes at the
candidate locus (i.e. an extension to Li-cpg).

We assume there is only one causal SNP (D) in the
region, and test whether a haplotype composed of
two tightly linked candidate SNPs is in complete LD
with D. Let RR11 and RR12 be the two relative risk
parameters, as before, and let di ¼ PrðD ¼ 1jM ¼ iÞ
for i ¼ ð1; . . . ; 4Þ, where D represents an allele at the
disease locus and M represents either a two-SNP
haplotype (where haplotypes 11, 12, 21, and 22 are
denoted by 1, 2, 3, and 4, respectively), or a multi-
allelic candidate marker (with alleles 1–4). The
likelihood is the same as in the case of a single
candidate SNP (see equations (A.1) and (A.2)),
except PrðDCjGC; ID;GPÞ is now a function of the
two RR parameters and all four d parameters. Under
the null hypothesis of complete LD the d’s are all 0
or 1, such that not all are 0, and not all are 1. For
example, if the disease allele (say D 5 1) only and
always occurs on haplotype 12 (M 5 2), then d1 5 0,
d2 5 1, d3 5 0, and d4 5 0. In that case, the M haplo-
type/marker fully determines the risk of disease (for
that region) and fully explains the linkage signal. As
before, the test is carried out by fitting the general
model as well as the restricted model under the null
hypothesis and calculating the likelihood ratio
statistic.

Although the above discussion is fully general-
izable to a marker (or haplotype) with any number
of alleles, the estimation would become more
difficult as the number of parameters increases.
The method described above would be useful for
testing whether a multi-allelic marker is in complete
LD with a single causal SNP in the region; however,
it would not be as useful for analyzing haplotypes,

since it assumes that haplotypes are known. Dis-
carding families for which haplotypes could not be
phased could lead to a large loss of information and
potential bias [Dudbridge et al., 2000]. This moti-
vates an extension of the above method to the
general situation of phase-unknown two-SNP geno-
types.

EXTENSION TO TWO-SNP GENOTYPES
WITH POSSIBLY UNKNOWN PHASE:
HAPLOTYPE EXTENSION TO LI-CPG

As in the description of Li-cpg, let XP denote
the marker genotypes of the parents, XC denote the
marker genotypes of the sibs, DC denote the
(unknown) disease-locus genotypes of the sibs, and
ID denote the (possibly unknown) extended IBD
sharing by the ASP at the candidate SNP, which
equals the extended IBD sharing by the ASP at the
disease-locus. Now let GP and GC denote the
unphased genotypes of the parents and children
at the two candidate SNPs. In addition, let hp and
hc denote the phased two-locus candidate SNP
genotypes of the parents and children. (Note that
here ‘‘candidate’’ refers to a combination of two
SNPs potentially in complete LD with a single
unknown disease SNP, but not disease SNPs
themselves. For a haplotype tightly linked to
a disease SNP, ‘‘complete LD’’ refers to a situation
such that the high risk disease SNP allele occurs only
on one subset of the candidate SNP haplotypes,
while the low risk allele occurs only on the
remaining subset of haplotypes). Although we may
be able to infer hp and hc for some families, these
would generally be unknown and can only be
determined probabilistically. Let fHP;HCg denote
the set of all possible phased two-locus genotypes
consistent with the parental SNP genotype data GP.

We now consider estimation of the parameters
RR11, RR12, and (d1, y, d4), by modelling the
likelihood of the data, as in the single candidate
SNP case (equation (A.1)), however with GP and GC

defined as the two-SNP genotypes. The likelihood
contribution for each family is

PrðXC;GCjXP;GP;ASPÞ¼
X4

ID¼1

PrðIDjXC;XPÞPrðXCjXPÞ

PrðIDjXPÞ

� PrðGC; IDjGP;ASPÞ:

However, now,

PrðGC; ID;ASPjGPÞ

¼
X

fhc;hpg2fHC;HPg

Prðhc; hp;GC; ID;ASPjGPÞ

¼
X

Dc

X

hc;hp

PrðDc; hc; hp;GC; ID;ASPjGPÞ
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¼
X

Dc

X

hc;hp

PrðASPjDc; hc; hp;GC; ID;GPÞ�

PrðDcjhc; hp;GC; ID;GPÞPrðhc; hp;GC; IDjGPÞ

¼
X

Dc

X

hc;hp

PrðASPjDcÞPrðDcjhc; hp; IDÞ�

PrðIDjhc; hp;GC;GPÞPrðhc; hp;GCjGPÞ

¼
X

Dc

PrðASPjDcÞ
X

hc ;hp

PrðDcjhc; hp; IDÞ�

PrðIDjhc; hpÞPrðhc; hpjGC;GPÞPrðGCjGPÞ

¼
X

Dc

PrðASPjDcÞ
X

hc ;hp

PrðDcjhc; hp; IDÞ�

PrðIDjhc; hpÞPrðGCjhcÞPrðhc; hpjGPÞ:

Computational details of calculation of this like-
lihood are included in Appendix B.

As in the single candidate SNP case (see Appendix
A), we evaluate significance of the likelihood ratio
test statistic by simulation. In this case we fix the
genotypes of the ASPs and parents at both candidate
SNPs comprising the haplotype, and sample the
IBD configurations for all ASPs at the candidate SNP
conditional on these genotypes. We then generate
marker data for the children, given the marker IBD
status and parental genotypes at the markers.

Although we have considered the question of
whether association with either a single SNP, or a
microsatellite, or a haplotype composed of multiple
SNPs can explain all the linkage in the region, all of
the models we have developed thus far assumed a
single causal SNP potentially in complete LD with
the candidate SNP/microsatellite/haplotype. How-
ever, existence of multiple causal variants in tight
linkage is plausible, for instance if any of several
mutations within a single gene, or combinations
of those mutations, alter disease susceptibility. The
possibility of multiple tightly linked causal poly-
morphisms leads to complications in our parametric
modelling framework. The assumption made in the
model that there is a single underlying causal SNP
essentially amounts to fitting a simplified model
under which there are two classes of haplotypes
(low and high risk) leading to three different
genotype risks. Nevertheless, because we evaluate
significance using the described simulation proce-
dure, in which all candidate loci being tested are
fixed at their observed values (and therefore
haplotypes composed of these SNPs are fixed), our
method is expected to be valid for tests of whether
association with these candidate loci can account for
all the linkage in the region, regardless of how many
of these SNPs are causal.

Although explicit models that allow for multiple
causal SNPs that explain all the linkage in a region

could be considered, difficulty arises if genotype
effects and LD are modelled explicitly via the RR
and d parameters. If effects of multiple causal SNPs
are allowed, the number of both the RR and the
d parameters increases substantially. In addition,
explicit assumptions about the number of causal
SNPs in the region must be made to fit the model.
As an alternative to explicit joint modelling of
linkage and association, we therefore considered an
extension of the method introduced by Sun et al.
[2002] for a scenario with potentially multiple tightly
linked causal variants in a region.

HAPLOTYPE EXTENSIONS OF SUN-CPG

We implemented a haplotype extension of the
‘‘Sun-cpg’’ approach for microsatellite markers or
multiple candidate polymorphisms in a region
possibly forming a haplotype (for now only im-
plementing the NPL-type statistic). Note that this is
different from the haplotype extension to Li-cpg
described above, which assumed a single causal SNP
in the region. Here we are not making such an
assumption. The method proceeds exactly as the
Sun-cpg for the single-SNP case (i.e. in equation (1)
GC is replaced by GC, GP), except now we calculate
PrðIjGC;GPÞ, where GC, GP are the genotypes of
parents and children at two or more tightly linked
candidate SNPs. To calculate these quantities, we use
a new version of Merlin [Abecasis and Wigginton,
2005] that can estimate IBD sharing given a number
of markers, taking into account LD within haplotype
blocks.

RESULTS

SIMULATIONS

We used the models listed in Table I to study type
1 error and power of methods for testing whether
associations with a candidate SNP can fully account
for an observed linkage signal. For Models 1–4, the
second SNP in the haplotype was the sole causal
polymorphism in the region. We carried out tests of
whether association with the first SNP in the
haplotype could explain the observed linkage. This
first SNP in the haplotype (the ‘‘candidate SNP’’) is
either in complete LD with the causal SNP (therefore
association with this candidate SNP can fully explain
the linkage—the null hypothesis is true) or is in
incomplete LD (the null hypothesis is not true).
Different levels of LD are considered within each
disease-generating model to demonstrate the effect
of decreasing LD between the disease and candidate
SNP on power. For Model 5, three SNPs in a
haplotype influence disease susceptibility; thus the
null hypothesis is not true. All models follow a
multiplicative disease risk model, except for
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Model 4. ASP and parental genotypes were gener-
ated at five markers spaced at 2.5 cM intervals (i.e. at
0.0, 2.5, 5.0, 7.5, and 10.0 cM). Each marker had four
equally frequent alleles. The disease and candidate
SNPs were located at 5.2 cM along this map, these
two loci being fully linked but with varying levels
of LD. Parental affected status was treated as
unknown.

Results in Table II demonstrate that under the null
hypothesis (full LD), correct type 1 error rates
were achieved with all methods except the LAMP
test of complete LD which gave conservative
results in the situations investigated in our simula-
tions. As expected, power increased as the sample
size increased and as the level of LD between the
candidate SNP and the causal SNP decreased.
Under most of the multiplicative models considered
(see Models 1, 2, and 5), the method proposed
by Sun et al. [2002] was most powerful. A similar
approach with additional conditioning on parental
candidate marker genotypes, which does not
require allele frequency specification, led to some
power loss. However, the method of Sun et al.
[2002] can be highly sensitive to misspecification of
these parameters. For Model 2, the true candidate
SNP high-risk allele frequency is 0.5. In the simula-
tions presented in Table II, correct allele frequencies
were used. When analysis was performed assuming
an allele frequency of 0.45, the type 1 error of the Sun
et al. [2002] method rose to 26.3%. When the data
was re-analyzed assuming an allele frequency of
0.55, the type 1 error dropped to about 0%, with the
power dropping to 6.9, 44.6, and 83.1% for the high,

medium and low LD models. Therefore, although
the Sun-cpg method generally has lower power than
the approach proposed by Sun et al. [2002], when
allele frequency estimates may be inaccurate, this
approach has a considerable advantage. Condition-
ing on parental genotypes at the candidate SNP, in
addition to those of the sibs, negates the need for
specifying allele frequencies and therefore leads to a
more robust test.

Under the simulated model with a rare high-risk
allele (Model 3) and the non-multiplicative model
(Model 4), the LAMP test for complete LD was more
powerful than the Sun approach. Again, condition-
ing on parental genotypes generally led to some
power loss, although in most cases the power loss
was not high. In fact, in some of the low-power
scenarios (e.g. Model 1—high LD), Li-cpg was more
powerful than the test of complete LD implemented
in LAMP. The program LAMP requires specification
of the prevalence, and estimates allele frequencies
from the data. In our simulations we observed that
misspecification of the prevelance can reduce power
(data not shown). However, prevalence estimates are
usually quite reliable, so this is not a major concern.
When there is more than one causal SNP in a small
region, the assumption of a single causal SNP in the
region made by the LAMP and Li-cpg methods is
violated. Under a model with a causal haplotype
made up of three SNPs, all of which influence disease
susceptibility (Model 5), we found that the Sun and
Sun-cpg approach were more powerful than Lamp
and Li-cpg, presumably because they do not make the
incorrect assumption of a single causal SNP.

TABLE I. Simulation models: single SNP analysis

Model Description

Risk contributions
for haplotypes
(11, 12, 21, 22)a

LD Frequency
of haplotypes
(11, 12, 21, 22)

Disease
prevalenceD0 r2

Model 1—full LD Multiplicative (0.15, 0.30, 0.15, 0.30) 1.00 1.00 (0.70, 0.00, 0.00, 0.30) 0.038
Model 1—high LD 0.74 0.44 (0.60, 0.05, 0.10, 0.25)
Model 1—mid LD 0.44 0.13 (0.50, 0.10, 0.20, 0.20)
Model 1—low LD 0.23 0.025 (0.40, 0.12, 0.30, 0.18)
Model 2—full LD Multiplicative (0.10, 0.30, 0.10, 0.30) 1.00 1.00 (0.50, 0.00, 0.00, 0.50) 0.040
Model 2—high LD 0.80 0.64 (0.45, 0.05, 0.05, 0.45)
Model 2—mid LD 0.52 0.27 (0.38, 0.12, 0.12, 0.38)
Model 2—low LD 0.20 0.04 (0.30, 0.20, 0.20, 0.30)
Model 3—full LD Rare disease allele (0.10, 0.30, 0.10, 0.30) 1.00 1.00 (0.95, 0.00, 0.00, 0.05) 0.0121
Model 3—mid LD 0.70 0.05 (0.65, 0.01, 0.30, 0.04)
Model 4—full LD Non-multiplicative (0.01, 0.01, 0.05) 1.00 1.00 (0.70, 0.00, 0.00, 0.30) 0.0136
Model 4—high LD 0.67 0.44 (0.63, 0.07, 0.07, 0.23)
Model 4—mid LD 0.52 0.27 (0.60, 0.10, 0.10, 0.20)
Model 5 Causal haplotype (0.10, 0.15, 0.15, 0.20,

0.15, 0.20, 0.20, 0.30)
(0.20, 0.15, 0.05, 0.10,
0.10, 0.05, 0.15, 0.20)

0.0342

aRisks are calculated by multiplying the risk contributions of a person’s two haplotypes, except for Model 4. For Model 4, the table shows
the genotype risks for genotypes 11, 12, 22 at the second SNP in the haplotype. Under Model 5, there are three tightly linked disease-
susceptibility SNPs forming a haplotype. For this model, the table shows the haplotype risk and frequencies for haplotypes 111, 112, 121,
122, 211, 212, 221, 222.
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We also studied the performance of our haplotype
extensions of the methods by simulation under the
models shown in Table III. For models ‘‘Null 1’’, ‘‘Alt
1’’, and ‘‘Alt 2’’ the haplotype risk only depends on
the allele at the third locus, and therefore the third
locus is the sole causal SNP. Under model ‘‘Null 1’’
the loci 1–2 haplotype is in complete LD with the
third locus, and therefore the null hypothesis is true.
Under models ‘‘Alt 1’’ and ‘‘Alt 2’’ the candidate
haplotype is not in complete LD with the causal SNP,
and therefore the alternative hypothesis is true.
Under the ‘‘Null 2’’ model, association with loci 1
and 2 explains all the linkage, but not because the
loci 1–2 haplotype is in complete LD with the sole
causal SNP in the region, but rather because loci 1
and 2 are the only two causal SNPs in the region.
This model is used to test the sensitivity of the
extension of Li-cpg to the assumption of a single
causal SNP in the region.

Results are shown in Table IV. Table IV also shows
the average Kong and Cox [1997] LOD score
obtained when testing for initial linkage. In simula-
tions these methods gave type 1 errors close to the
nominal 5%. Note that under the ‘‘Null 2’’ model
both loci in the haplotype tested are causal, so that
the assumption of a single causal SNP in LD with the
candidate haplotype made by the Li-cpg haplotype

method is violated. However, the type 1 error is still
correct, demonstrating that the method is robust to
failure of this assumption. This is because of the way
significance of the statistic is assessed by a simula-
tion procedure which fixes all the candidate SNP
genotypes, as discussed in Appendix A.

On the basis of the simulation results presented in
Table IV, it appears that extensions of the Li-cpg and
Sun-cpg approaches to haplotypes have similar
power. We expect the haplotype tests to be less
powerful than the corresponding single-SNP tests
because of the presence of additional LD parameters
(although power cannot be compared directly, as the
tests address different hypotheses). This reduction
in power may possibly lead to a requirement for
substantial evidence of linkage in the region, for the
test to be useful in practice. Nevertheless we find
that even with the simulated models with moderate
levels of linkage, the tests have reasonably good
power. Under the ‘‘Null 1’’ Model, with a sample of
1,000 ASPs, the single-SNP Sun-cpg approach has
54% power to reject each of the two candidates as the
sole causal locus, while the Sun-cpg haplotype
approach has the correct 5% type 1 error for the
hypothesis that the haplotype is in complete LD
with the sole causal locus. Under the ‘‘Alt 1’’ Model,
with a sample of 1,000 ASPs, the single-locus Sun-

TABLE II. Simulation results: single SNP analyses

Model Sample size

Type 1 error/powera

LAMP-LDb Li-cpg Sun Sun-cpg

Model 1—full LD 500 0.015 0.044 0.054 0.047
Model 1—high LD 500 0.118 0.145 0.199 0.191
Model 1—mid LD 500 0.253 0.220 0.367 0.327
Model 1—low LD 500 0.324 0.275 0.447 0.371
Model 1—full LD 1,000 0.006 0.058 0.052 0.064
Model 1—high LD 1,000 0.194 0.280 0.327 0.288
Model 1—mid LD 1,000 0.483 0.495 0.602 0.531
Model 1—low LD 1,000 0.608 0.530 0.704 0.607
Model 2—full LD 500 0.019 0.058 0.040 0.041
Model 2—high LD 500 0.296 0.260 0.277 0.240
Model 2—mid LD 500 0.699 0.680 0.732 0.646
Model 2—low LD 500 0.848 0.775 0.903 0.833
Model 2—full LD 1,000 0.022 0.044 0.046 0.051
Model 2—high LD 1,000 0.545 0.435 0.428 0.404
Model 2—mid LD 1,000 0.961 0.895 0.929 0.879
Model 2—low LD 1,000 0.993 0.990 0.990 0.976
Model 3—full LD 1,000 0.016 0.040 0.049 0.050
Model 3—mid LD 1,000 0.797 0.708 0.757 0.641
Model 4—full LD 1,000 0.023 0.043 0.039 0.037
Model 4—high LD 1,000 0.999 0.976 0.917 0.868
Model 4—mid LD 1,000 0.999 0.994 0.992 0.981
Model 5 1,000 0.232 0.251 0.366 0.308

aFor Li-cpg, type 1 error estimates are based on 500 data replicates, and power estimates are based on 200 data replicates. For all other
methods type 1 error and power estimates are based on 1,000 replicates. When data are generated under ‘‘full’’ LD, the null hypothesis is
true, and values in the table are estimates of type 1 error for a test of nominal size 0.05.
bLAMP-LD is the test for complete LD implemented in the software LAMP.
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cpg method has approximately 95% power to reject
each of the two candidate SNPs as the sole causal
locus, while the Sun-cpg haplotype method has 80%
power to conclude that the haplotype composed of
the two SNPs is not in full LD with the sole causal
locus.

APPLICATION TO TYPE 1 DIABETES DATA

The methods described in this paper were applied
to study the effects of polymorphisms in the insulin
gene (INS) region associated with type 1 diabetes
[Barratt et al., 2004]. By analyzing 75 polymorphisms
in the INS region, Barratt et al. [2004] found two
equally likely candidates for the causal locus, in
addition to a previously identified VNTR. Using
a stepwise conditional logistic regression approach,
they showed that none of the other genotyped
polymorphisms contributed significantly to the risk
of type 1 diabetes after accounting for either the
�23HphI polymorphism or 11140A/C SNP. Their
analysis revealed that LD with �23HphI is sufficient
to explain the association of all the other markers
tested. Further analysis showed that 11140A/C
could perhaps be just as effective in explaining the

observed association in this region. They concluded
that susceptibility in this region could be attributable
to a single polymorphism in the INS region. They
also noted that because of the strong LD between the
VNTR, �23HphI, and 11140A/C, resolution of these
effects may not be achievable by association studies
of European populations.

The analysis carried out by Barratt et al. [2004]
provided no evidence for significant association
at the remaining genotyped polymorphisms, after
accounting for the effect of �23HphI or 11140A/C.
However, the possibility of further unknown var-
iants in this region contributing to type 1 diabetes
had not been tested. If other untyped variants are
directly associated with type 1 diabetes, they should
contribute to the linkage in the region. In that case,
association with either �23HphI or 11140A/C may
not explain all observed linkage at these loci. To test
whether this is the case, we applied the methods
described in this paper.

Analysis of 437 ASP families genotyped for
�23HphI, using the LAMP program (http://www.
sph.umich.edu/csg/abecasis/LAMP/) suggests that
association with �23HphI cannot explain all the

TABLE IV. Simulation results: haplotype analyses

Model Sample size LD level Kong and Cox LOD score

Type 1 error/powera

Haplotype extension of

Li-cpg Sun-cpgb

Null 1 500 Full 2.75 0.056 0.036
Null 2 500 Full 2.46 0.056 0.034
Alt 1 500 Mid 3.04 0.44 0.43
Alt 1 1,000 Mid 5.70 0.73 0.80
Alt 2 500 Low 2.36 0.62 0.70
Alt 2 1,000 Low 4.41 0.95 0.92

aType 1 error estimates for a test of nominal size 0.05 are based on 500 data replicates. Power estimates are based on 100 data replicates.
When the null hypothesis is true, the values in the table are estimates of type 1 error.
bThe extension of Sun-cpg methods for haplotypes used here is based on the NPL-type statistic with weights 5sG.
Here the same marker map was used as for simulations in Table II (markers with four equally frequent alleles at 0.0, 2.5, 5.0, 7.5, 10.0 cM;
candidate and disease SNPs at 5.2 cM).

TABLE III. Simulation models: haplotype analysis

Model Haplotype risksa LD D0b Haplotype frequencies

Null 1 (0.1, 0.3, 0.1, 0.3, 0.1, 0.3, 0.1, 0.3) 1.00 (0.20, 0.00, 0.15, 0.00, 0.15, 0.00, 0.00, 0.50)
Null 2 (0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.4, 0.4) 1.00 (0.00, 0.25, 0.00, 0.25, 0.00, 0.25, 0.00, 0.25)
Alt 1 (0.1, 0.3, 0.1, 0.3, 0.1, 0.3, 0.1, 0.3) 0.39 (0.10, 0.05, 0.10, 0.05, 0.10, 0.05, 0.15, 0.40)
Alt 2 (0.1, 0.3, 0.1, 0.3, 0.1, 0.3, 0.1, 0.3) 0.17 (0.09, 0.06, 0.09, 0.06, 0.09, 0.06, 0.25, 0.30)

aRisks are calculated by multiplying the risk contributions of a person’s two haplotypes. Risks and frequencies are given for haplotypes
(111, 112, 121, 122, 211, 212, 221, 222).
bHere D0 represents Hedrick’s D0 measure of LD for multi-allelic markers [Hedrick, 1987]. We use it to represent the LD between the loci 1
and 2 haplotype (treated as a four-allele marker) and the third locus, which is the disease SNP. Under the ‘‘Null 2’’ model the loci 1–2
haplotype is itself causal (rather than locus 3). Therefore in this case we report D0 between the candidate loci 1–2 haplotype and the causal
(loci 1–2) haplotype, which is clearly D05 1.
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linkage in the region (P 5 0.01). Using the same
approach, analysis of 317 ASP families genotyped
for 11140A/C suggests association with this SNP
also cannot account for all the observed linkage
(P 5 0.003). Analysis of the same two candidate
SNPs with the approach of Sun et al. [2002] also
leads to the rejection of the null hypotheses that one
of these may be the sole causal variant in the region
(P 5 0.01 and 0.005 for �23HphI and 11140A/C,
respectively). We note that the Sun et al. [2002]
analysis required pre-specification of candidate SNP
allele frequencies, and, as our simulations demon-
strated, results tend to be very sensitive to mis-
specification of these parameters.

Having rejected the null hypothesis of direct
association with LAMP, we examined the parameter
estimates from LAMP analysis obtained under the
indirect association model. For analysis of the
�23HphI polymorphism, the relative risk estimates
for the disease locus were 2,322 and 11,911, with
an estimated attributable fraction for this locus of
0.9999. These point estimates seem unrealistic given
current beliefs about genetics of complex traits, and
given the fact that type 1 diabetes susceptibility can
be largely attributed to genes in the HLA region.
Analysis of the 11140A/C SNP using an indirect
association model leads to disease locus relative risk
estimates of 1.11 and 18.37, with the attributable
fraction estimated at 0.905, which again seems
unrealistic. Investigation of the properties of para-
meter estimates from LAMP, and estimation of
confidence intervals for these parameters, would
be of interest. These investigations are beyond the
scope of this paper.

We re-analyzed the INS gene data using the other
approaches studied in this paper. Analysis of 437
ASP families genotyped for �23HphI, using the
approach for joint modelling of linkage and associa-
tion with conditioning on parental genotypes
(Li-cpg), provided no evidence of linkage unex-
plained by association with this variant (P 5 0.31).
Using the same approach, analysis of 317 ASP
families genotyped for 11140A/C provided no
evidence of linkage unaccounted for by association
with 11140A/C (P 5 0.27). The model-free approach
to modelling linkage conditional on candidate SNP
genotypes with conditioning on parental genotypes
(Sun-cpg) also suggested that there is no evidence of
other associations further contributing to linkage in
the INS region after accounting for associa-
tion with either �23HphI or 11140A/C (P 5 0.300,
and 0.296 for the two SNPs, respectively).

The difference between the results from the
conditional and unconditional analyses suggest that
for these particular data, conditioning on parental
genotypes may be leading to a substantial power
loss. However, it is also possible that the Sun and

LAMP approaches are leading to false positive
results due to violations of some assumptions made
by these methods. For instance, methods that
condition on parental genotypes are expected to be
less sensitive to population stratification and depar-
tures from Hardy Weinberg Equilibrium. In the
presented simulations, all model assumptions were
satisfied. On the other hand, in an additional
simulation with preferential sampling of heterozy-
gous parents (results not shown), the Sun-cpg
method retained correct type 1 error while the Sun
approach resulted in highly inflated type 1 error.

Finally, we applied the haplotype methods
described in this paper to analyze the haplotype
composed of 11140A/C and �23HphI. Since these
approaches also condition on parental genotypes,
we expect they may also have insufficient power for
this data set. Using our haplotype extension of the
approach for joint modelling of linkage and associa-
tion, analysis of 304 ASP families revealed no evi-
dence of linkage unaccounted for by the association
of type 1 diabetes with the 11140A/C �23HphI
haplotype (P 5 0.28). Under the null hypothesis
(which could not be rejected) estimates of the d
parameters for haplotypes 11, 12, 21, and 22 were 0,
1, 0, and 1, respectively, with RR11 estimated at 0.35,
and RR12 at 0.55. This indicates that haplotypes 21
and 11 are the high risk haplotypes, and therefore
that the ‘1’ allele at �23HphI is associated with
increased risk of type 1 diabetes. Using our
haplotype extension of the Sun-cpg approach, we
also cannot reject the null hypothesis that association
with the 11140A/C �23HphI haplotype can fully
account for the observed linkage (P 5 0.62).

DISCUSSION

In this paper, we describe methods for assessing
whether association between a candidate SNP,
multiallelic marker, or haplotype composed of a
number of SNPs can explain an observed linkage
result. For many diseases, data consisting of ASP
and parental genotypes have been collected for
linkage studies, with subsequent genotyping of
SNPs for fine-mapping in regions of interest. The
methods described in this paper can be applied to
such data. We considered the approaches proposed
by Li et al. [2005] and Sun et al. [2002] and extensions
of these methods. Our simulations showed that all
the methods studied provided correct type 1 errors,
except for the LAMP test for complete LD, which
was conservative for the models we studied.
Although in our simulations under multiplicative
models the method proposed by Sun et al. [2002]
tended to be most powerful, it can lead to highly
inflated type 1 errors when allele frequencies are
misspecified. LAMP [Li et al., 2005, 2006] was most
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powerful in our simulations under a recessive
model. In our simulations we assumed that parental
phenotypes were unknown. In additional simula-
tions (results not shown) we used LAMP to analyze
data with parental phenotypes, which produced a
slight power increase. We also note that if simula-
tion-based P value calculation was implemented in
the LAMP program, the LAMP test for complete LD
should no longer be conservative, and higher power
should therefore be achieved. Currentlly LAMP does
not have an option for calculating empirical P
values, presumably due to the high computational
demands this would introduce.

We extended the Li-cpg and Sun-cpg methods to
the case of haplotypes composed of two candidate
SNPs. Methods for assessing whether a haplotype
can explain all the linkage in a region are important
for two reasons. Even if the assumption of a single
causal SNP in the region is correct, the causal variant
may not have been genotyped, and a haplotype
composed of two or more SNPs may be in complete
LD with it even when none of the genotyped
SNPs are (i.e. haplotypes may be more useful for
studying indirect association). Also, in many situa-
tions, the idea of a single causal SNP in a region is
unrealistic.

The model-based approaches proposed by Li et al.
[2005] and extended in this paper require assump-
tions to be made about the number of disease
polymorphisms in the region and the number of
alleles at these loci. Having made the assumption of
a single causal SNP, the methods provide estimates
of genotype relative risk and LD parameters, which
can contribute to our understanding of the possible
role of the candidate SNP. Although parameter
estimation is possible, simulations (data not shown)
and results from the real data analysis suggest that
the point estimates are generally not very accurate.
The approach of Sun et al. [2002] and our extension
of this method do not provide estimates of para-
meters that describe the underlying genetic model,
with the benefit that no assumptions about the mode
of inheritance are necessary. Under a model with
three tightly linked causal SNPs, we found the
method of Sun et al. [2002] and the related approach
conditioning on parental genotypes to be more
powerful than the LAMP test of complete LD and
Li-cpg. The benefits of the lack of assumptions about
the underlying genetic model with the Sun and Sun-
cpg approaches extend to the haplotype analysis.
Our haplotype extension of the Li-cpg approach still
assumes a single underlying causal SNP that may
be in complete LD with the candidate haplotype,
whereas the haplotype extension of the Sun-cpg
approach makes no assumptions about the under-
lying disease model.

As discussed by Sun et al. [2002], one of the
weaknesses of their method is that sib pairs with
genotypes at the candidate SNP that are highly
informative in terms of IBD sharing are less informa-
tive for this method. This is because the power of the
method depends largely on EHA

½SjGC� � EH0
½SjGC�,

and when GC provides complete information on S,
EHA
½SjGC� ¼ S ¼ EH0

½SjGC�. As indicated by Sun et al.
[2002], when GC provides close to complete informa-
tion on S, power will be low. Consequently, this
approach may not be very powerful when applied to
microsatellite candidates or multiple tightly linked
candidates. As Sun et al. [2002] indicated, this loss of
power is the price paid for not making assumptions
about the underlying genetic model.

All of the methods discussed in this paper can
produce inflated type 1 errors if they are applied to
locations chosen based on the fact that the evidence
for linkage exceeds a given threshold, and the same
data are subsequently used for testing whether the
linkage is explained by the association. Li et al.
[2005] demonstrated that their ability to detect
complete LD was dramatically enhanced as the
evidence for linkage increased. However, they did
not point out that if those methods were applied
only at locations with lod scores exceeding some
threshold, elevated type 1 errors would result. This
issue was addressed by Sun et al. [2002].

Analysis of the diabetes data in the INS gene
region demonstrates the need for further investiga-
tion of these methods. Some markers used for
estimation of linkage in the region in our analyses
were spaced quite densely, and therefore the LE
assumption may have been violated. Other potential
violations of assumptions made by the different
methods may have had an effect. For example, as
previously discussed, misspecification of allele
frequencies can lead to inflated type 1 errors for
the Sun et al. [2002] method. Results of the INS gene
data analysis indicate that examination of the
properties of parameter estimates is also needed.
An improved understanding of the estimator prop-
erties may help with interpretation of results from
the different methods. The INS data example further
indicates that in certain situations, conditioning on
parental genotypes may lead to larger power loss
than we observed in our simulations. This suggests
that a haplotype extension of the approaches of Li
et al. [2005] and Sun et al. [2002] without condition-
ing on parental genotypes may be useful. However,
the approaches that do not condition on parental
genotypes must be applied with greater caution, as
they are expected to be less robust to failures of
assumptions (e.g. Hardy Weinberg Disequilibrium).
Also, the sensitivity of the method of Sun et al.
(2002) to allele-misspecification would be of greater
concern if the method was extended to haplotypes,
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as accurate haplotype frequency estimation is more
difficult than accurate allele frequency estimation.

Another noteworthy approach that uses both
association and linkage information for relative risk
estimation is the MASC method introduced by
Clerget-Darpoux et al. [1988]. This approach can
also use additional information such as differential
risk of being affected for specific relatives of
probands, and allows the testing of goodness-of-fit
of various models. However, model specification
and selection with this approach is cumbersome and
requires the estimation of numerous parameters.
A comparison of the approaches described in this
paper with the MASC method would be interesting.

Although statistical analysis of linkage and asso-
ciation data cannot alone establish causality, the
analytical methods described in this paper can aid in
distinguishing variants that may be the sole causal
variants in a region, from those that are unlikely to
be. The hypothesis formulation in this problem may
appear rather ‘‘unusual’’, because the test will never
allow us to conclude that we have identified all the
causal variants in the region. Therefore, when the
null hypothesis is not rejected all we can say is that
we have insufficient evidence to conclude that the
candidate SNP is the sole causal SNP in the region.
This is not surprising, since statistically, we can
never accept a null hypothesis. However, it is
slightly unsatisfactory, since we would prefer to be
able to conclude (at a certain level of significance)
that the variant(s) tested do account for all the
linkage in a region—in other words to reject the null
hypothesis that there are other variants in the region.
Of course expecting a statistical method to have the
ability to lead to a conclusion that all causal variants
in a region have been identified is not reasonable.
Even if the key genetic factors have been identified,
there may always exist genetic variants with such
minute effects on the linkage signal that they are
essentially undetectable. A related approach, beyond
the scope of this paper, could be used to estimate
‘‘how much’’ of the observed linkage is accounted
for by the association. That raises the question of
how to quantify the observed/accounted for linkage.
Further research into such methods is warranted.
Nevertheless, the methods described in this paper
can be used to aid researchers in prioritizing SNPs
for further study, and to inform them when
genotyping of additional SNPs should be under-
taken.
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APPENDIX A

DETAILS OF THE LI-CPG METHOD

We assume an ASP design, with ASPs and their parents genotyped at M markers plus a candidate SNP.
Similar to Li et al. [2005], we assume that the M markers are in LE with one another and with the candidate
SNP, and there is one causal SNP in the region, closely linked to the candidate SNP, with no recombination
between the two loci. We would like to test whether the candidate SNP may be the sole causal polymorphism in
the region. We consider a model similar to that of Li et al. [2005], however we additionally condition on
parental genotypes. This means that our likelihood does not depend on the disease locus allele frequency
parameter. The likelihood contribution for each family, conditional on the parental genotypes, is

PrðXC;GCjXP;GP;ASPÞ;

where XP denotes the marker genotypes of the parents, XC denotes the marker genotypes of the sibs, and GP

and GC denote the candidate SNP genotypes of the parents and sibs, respectively. Below, we show this
likelihood can be parameterized in terms of two relative risk parameters:

RR11 ¼
PrðdiseasejgD ¼ 11Þ

PrðdiseasejgD ¼ 22Þ
;RR12 ¼

PrðdiseasejgD ¼ 12Þ

PrðdiseasejgD ¼ 22Þ
;

where gD is the genotype at the disease locus, and two LD parameters:

d1 ¼ Pr D ¼ 1jA ¼ 1ð Þ; d2 ¼ Pr D ¼ 1jA ¼ 2ð Þ

where D and A represent alleles on a disease SNP-candidate SNP haplotype. Note that these are the same
LD parameters as those used by Cantor et al. [2005], however their method is designed
for testing different hypotheses, and they model recombination and LD parameters, rather than association
and LD parameters. Also, let DC denote the (unknown) disease-locus genotypes of the sibs and ID denote
the (possibly unknown) extended IBD sharing by the ASP at the candidate SNP, which equals the extended
IBD sharing by the ASP at the disease-locus, under the assumption of no recombination between these two loci.
By extended IBD sharing we mean one of four IBD states: sharing zero alleles IBD, one allele IBD from the
mother, one allele IBD from the father, or two alleles IBD. We code these four IBD states as ID 5 1, 2, 3, 4,
respectively.

The likelihood contribution for each family, conditional on the parental genotypes, is

Pr XC;GC XP;GP;ASPjð Þ ¼
X4

ID¼1

Pr XC;GC; ID XP;GP;ASPjð Þ

¼
X4

ID¼1

Pr XC XP; ID;GC;GP;ASPjð ÞPr GC; ID XP;GP;ASPjð Þ

¼
X4

ID¼1

Pr XC XP; IDjð ÞPr GC; ID GP;ASPjð Þ

¼
X4

ID¼1

Pr ID XC;XPjð ÞPr XC XPjð Þ

Pr ID XPjð Þ
Pr GC; ID GP;ASPj Þ: ðA:1Þð

PrðIDjXC;XPÞ can be obtained using software such as Merlin [Abecasis et al., 1996]. PrðXCjXPÞ does not depend
on the disease model parameters and cancels out when the likelihood ratio statistic is calculated.
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PrðGC; IDjGP;ASPÞ can be calculated as

Pr GC; ID Gp;ASP
��� �

¼
Pr GC; ID;ASP Gp

��� �

Pr ASP Gp

��� �

¼
Pr GC; ID;ASP Gp

��� �
P

GC;ID

Pr GC; ID;ASP Gp

��� �

¼

P
DC

Pr DC;GC; ID;ASP Gp

��� �

P
GC;ID

Pr GC; ID;ASP Gp

��� �

¼

X

DC

Pr ASP DCjð ÞPr DC GC; ID;Gp

��� �
Pr GC ID;Gp

��� �
Pr ID Gp

��� �

P
GC;ID

P GC; ID;ASP Gp

��� �

¼

X

DC

Pr ASP DCjð ÞPr DC GC; ID;Gp

��� �
Pr GC ID;Gp

��� �

X

GC ;ID

X

DC

Pr ASP DCjð ÞPr DC GC; ID;Gp

��� �
Pr GC ID;Gp

��� � : ðA:2Þ

Note that we have assumed that PrðASPjDC;GC; ID;GpÞ ¼ PrðASPjDCÞ, so that the postulated disease locus is
the only causal locus in the region. We further assume that PrðASPjDCÞ ¼ PrðdiseasejDC1ÞPrðdiseasejDC2Þ,
where DC1 and DC2 are the disease locus genotypes of sibs 1 and 2, respectively. Thus we are assuming no other
shared genetic or environmental causes of disease. However, Li et al. [2005] pointed out that this is a reasonable
assumption when there are multiple disease-causing variants or shared environmental risk factors. Our
simulations (results not shown) also show that presence of other unlinked causal genes does not appear to
effect type 1 error or power. Because each term in the numerator and the denominator of the likelihood
contains the terms PrðdiseasejDC1Þ and PrðdiseasejDC2Þ, we may divide both the numerator and denominator
by PrðdiseasejDC1 ¼ 22ÞPrðdiseasejDC2 ¼ 22Þ. Therefore, we estimate the two relative risk parameters rather
than the three penetrances. PrðGCjID;GpÞ are constants, not depending on the disease model, which we have
tabulated for a biallelic locus. PrðDCjGC; ID;GpÞ are functions of the LD parameters, d1 and d2, as shown below.

We may perform tests similar to those proposed by Li et al. [2005]. The likelihood for all the ASP families is
the product of the individual family likelihoods. To fit this likelihood (under the alternative hypothesis) we
constrain the RR parameters to be greater than or equal to 1 and the d parameters are restricted to lie in [0,1]. To
fit the likelihood under the null hypothesis, we restrict the parameters d1 and d2 to their null values of 0 and 1
or 1 and 0. Under the null hypothesis the candidate SNP is the sole causal polymorphism, or is in complete LD
with the sole causal polymorphism in the region, and therefore association with the candidate SNP can fully
account for the linkage signal. Li et al. [2005] refer to this situation of complete LD as ‘‘plausible causality’’. In
that case either the observed candidate locus is the causal variant, or there is a one-to-one correspondence
between the alleles at the candidate and disease SNPs, such that only two haplotypes occur in the population.
Rejection of complete LD for a candidate SNP suggests that this SNP cannot fully account for the observed
linkage signal; there is at least one other polymorphism in the region which directly affects the trait. Because of
the complexity of the parameter space, we do not derive the null distribution analytically, and suggest
assessing significance empirically by simulating data under the null hypothesis. We use the following
procedure to generate data under the null hypothesis.

* For each ASP, fix candidate SNP genotypes of sibs and parents at observed values. Also fix parental marker
genotypes at observed values.

* Sample the IBD configuration at the candidate SNP, given the observed SNP genotypes of the ASP and their
parents. (Similar to the scheme used by Li et al. [2005], but parental SNP genotypes also stay fixed.)

* Generate IBD status at markers, conditional on the IBD status at the SNP.
* Generate marker data for children, given the marker IBD status and parental genotypes at the markers.

Using the above scheme, we generate a large number of data sets, calculate the test statistic for each one, and use
the resulting distribution to empirically estimate the P value for the test statistic obtained from the original data.
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APPENDIX B

COMPUTATIONAL DETAILS FOR SECTION ON ‘‘EXTENSION TO TWO-SNP GENOTYPES WITH
POSSIBLY UNKNOWN PHASE’’

In the case of testing for complete LD between a haplotype composed of two SNPs and a single causal SNP,
the numerator of

PrðGC; IDjASP;GPÞ ¼
PrðGC; ID;ASPjGPÞ

PrðASPjGPÞ

can be calculated as
X

Dc

PrðASPjDcÞ
X

hc;hp

PrðDcjhc; hp; IDÞ

PrðIDjhc; hpÞPrðGCjhcÞPrðhc; hpjGPÞ:

We estimate Prðhc; hpjGPÞ using ZAPLO software [O’Connell, 2000], which provides all possible haplotypes,
including information on the parental origin for the children’s haplotypes, and their probabilities. Since we use
ZAPLO to estimate the haplotype probabilities from an ascertained sample, these probability estimates may not be
unbiased estimates of the true probabilities. However, since we use this same procedure to analyze all the
simulated data generated under the null hypothesis for computing the P values, this issue does not appear to have
a negative impact on type 1 errors of our approach.

We calculate a likelihood ratio statistic and assess significance by simulation. To generate data under the null
hypothesis, for each ASP we first obtain the distribution PrðIDjGC;GPÞ using a new version of Merlin that
estimates IBD sharing taking into account the LD between markers [Abecasis and Wigginton, 2005]. We
generate ID from this distribution for each ASP, then generate IBD sharing at all markers, conditional on IBD
sharing at the candidate haplotype, and finally marker genotypes for the sibs, conditional on the marker IBD
and parental marker genotypes.
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