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The mother’s uterine immune system is dominated by uterine natural killer (NK) cells
during the first trimester of pregnancy. These cells express killer cell immunoglobulin-like
receptors (KIRs) of inhibitory or activating function. Invading extravillous trophoblast cells
express HLA-C molecules, and both maternal and paternal HLA-C allotypes are
presented to KIRs. Endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2)
shape the HLA class I immunopeptidome. The ERAPs remove N-terminal residues from
antigenic precursor peptides and generate optimal-length peptides to fit into the HLA
class I groove. The inability to form the correct HLA class I complexes with the appropriate
peptides may result in a lack of immune response by NK cells. The aim of this study was to
investigate the role of ERAP1 and ERAP2 polymorphisms in the context of KIR and HLA-C
genes in recurrent implantation failure (RIF). In addition, for the first time, we showed the
results of ERAP1 and ERAP2 secretion into the peripheral blood of patients and fertile
women. We tested a total of 881 women. Four hundred ninety-six females were patients
who, together with their partners, participated in in vitro fertilization (IVF). A group of 385
fertile women constituted the control group. Women positive for KIR genes in the Tel AA
region and HLA-C2C2 were more prevalent in the RIF group than in fertile women (p/pcorr. =
0.004/0.012, OR = 2.321). Of the ERAP polymorphisms studied, two of them (rs26653 and
rs26618) appear to affect RIF susceptibility in HLA-C2-positive patients. Moreover, fertile
women who gave birth in the past secreted significantly more ERAP1 than IVF women and
control pregnant women (p < 0.0001 and p = 0.0005, respectively). In the case of ERAP2, the
opposite result was observed; i.e., fertile women secreted far less ERAP2 than IVF patients
(p = 0.0098). Patients who became pregnant after in vitro fertilization embryo transfer (IVF-ET)
released far less ERAP2 than patients who miscarried (p = 0.0032). Receiver operating
characteristic (ROC) analyses indicate a value of about 2.9 ng/ml of ERAP2 as a point of
differentiation between patients who miscarried and those who gave birth to a healthy child.
Our study indicates that both ERAP1 and ERAP2 may be involved in processes related
to reproduction.
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INTRODUCTION

Despite the substantial progress in assisted reproductive
technologies (ARTs), a high percentage of embryos (50%) are
lost at once after implantation or shortly after as miscarriage (1).
However, the most stressful problem from the economic and
psychological point of view for embryologists and infertile
couples is recurrent implantation failure (RIF), which affects
10%–15% of couples having undergone several in vitro
fertilization embryo transfers (IVF-ETs). RIF is commonly
defined as a failure to achieve a pregnancy after three
subsequent IVF cycles, in which four good-quality embryos
were transferred in women under the age of 40 years (2–4).

Successful maternal tolerance to the semi-allogeneic fetus is a
complicated process. The fetal trophoblast cells come into direct
contact with the mother’s immune system in the uterus. They
constitute the layer that surrounds the blastocyst (5, 6). The
extravillous trophoblast (EVT) cells invade the decidua at
implantation and during placentation to transform the arteries
and establish blood supply to the placenta. Insufficient invasion
of trophoblasts and vascular alteration in the decidua are thought
to be the primary defect in recurrent miscarriage, preeclampsia
(PE), and fetal growth restriction (7, 8).

The mother’s uterine immune system is dominated by uterine
natural killer (NK) cells, CD56brightCD16−, the most common
leukocyte population during the first trimester of human
pregnancy (8–10). Decidual NK cells (dNKs) are poorly
cytolytic, and they release cytokines/chemokines and growth
factors that induce trophoblast invasion, tissue remodeling,
embryonic development, and placentation (8). These cells
express killer cell immunoglobulin-like receptors (KIRs). In
general, KIR nomenclature is based on the arrangement of the
extracellular immunoglobulin-like (Ig) domains (2D or 3D
indicates the Ig domain number) and the length of the
intracytoplasmic tail (S and L indicate a short tail and a long
tail, respectively). The length of the cytoplasmic fragment relates
to the type of NK function mediated by particular KIRs.
Activating receptors have a short cytoplasmic fragment with
the immunoreceptor tyrosine-based activation motif (ITAM),
and are marked with the letter S (short). In turn, inhibitory
receptors have a long cytoplasmic tail with an immunoreceptor
tyrosine-based inhibitory motif (ITIM) and are marked with the
letter L (long). The KIR2DL4 receptor is an exception, however,
as it may conduct both activation and inhibitory signals (11–13).
NK cell function depends on the balance between those
activating and inhibitory receptors (14).

KIRs are encoded by a family of genes on the leukocyte
receptor complex on chromosome 19q13.4 (15). KIR genes
exhibit extensive haplotypic polymorphism. Individuals differ
in both the number and kind (activating vs. inhibitory) of KIR
genes. KIR genes can be organized into two haplotypes: A and B.
Both haplotypes consist of framework genes: KIR3DL3 at the
centromeric end, KIR3DL2 at the telomeric end, and KIR3DP1
and KIR2DL4 in the middle of KIR gene cluster. Group A
haplotypes possess KIR2DL1, KIR2DL3, KIR3DL1, KIR2DS4,
and KIR2DP1 and exert inhibition of cell function. Group B
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haplotypes differ in the number and combination of KIR genes.
They may possess one or more of KIR2DL1, KIR2DL2,
KIR2DL5A/B, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS5, and
KIR3DS1 genes. An individual with two copies of haplotype A
is considered as AA genotype, while an individual with haplotype
B genes is considered as the Bx genotype (AB+BB). Thus, the AA
genotype is a set of genes for the largest number of inhibitory
receptors (16–18). The intensity of inhibition decreases with an
increase in the number and expression of genes for activating
KIRs (19). All necessary information regarding KIRs and genes is
available on the website: (https://www.ebi.ac.uk/ipd/kir/)
(accessed December 16, 2020).

The ligands for the inhibitory and activating KIRs constitute
HLA-A, HLA-B, HLA-C, and HLA-G allotypes (20). Invading
EVTs express HLA-C molecules in the decidua basalis, and both
maternal and paternal HLA-C allotypes are presented to KIRs
(7). The HLA-C gene is polymorphic. Generally, HLA-C alleles
may occur in two allotypes: C1 and C2 based on the presence of
asparagine or lysine at position 80 of the HLA-C a-domain.
HLA-C1 allotypes bind inhibitory KIR2DL2/3, while HLA-C2
allotypes bind KIR2DL1 and KIR2DS1. However, the interaction
of the former is weaker than in KIR2DL1-HLA-C2 (20–25).
Therefore, the balance of KIR genotypes in a given patient and
the HLA-C exposure in a given pregnancy may affect trophoblast
invasion, vascular remodeling, and the initiation of
normal placentation.

Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) and
2 (ERAP2) critically shape the HLA class I immunopeptidome.
The ERAPs remove N-terminal residues from antigenic
precursor peptides and generate optimal-length peptides (i.e.,
8–10-mers) to fit into the HLA class I groove (26). ERAPs can
also destroy the putative HLA class I ligands by reducing the
length of antigenic peptides below the threshold of 8–10 amino
acids when they are overactive (26). ERAP1/ERAP2 protein
expression is detected in many tissues and is induced by type I
and type II interferon (IFN) and tumor necrosis factor-alpha
(TNF-a) (27–30).

Like the KIR and HLA-C genes, ERAP genes are also
polymorphic with strong linkage disequilibrium (LD) across
the chromosome 5q15 locus, and many functional variants
appear to affect their enzymatic activity or the expression level
or both (27, 31). Polymorphic amino acids are located near the
catalytic site (residue 349—rs2287987), in the peptide binding
site (residue 730—rs27044), or in a location that can affect the
conformational changes associated with enzymatic activity
(residue 528—rs30187). In vitro studies have demonstrated
that 528R has lower enzymatic activity and protein expression
in contrast to 528 K (32–34). At the domain junction, there is
also rs26653 (R127P), which could alter the conformation
between open and closed forms and therefore impact
specificity and enzymatic activity (35). In turn, rs26618
(I276M) affects efficiency of a precursor peptide trimming for
the HLA-C*05-bound epitope (36). Polymorphism rs6861666
A>G appears in 100% LD with rs75862629, which influences the
expression level of ERAP2 and ERAP1 (37). The polymorphism
rs2549782 of ERAP2 coding for the K392N change affects ERAP2
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activity. The N392 allele has strong LD with single-nucleotide
polymorphism (SNP) rs2248374 G>A, a polymorphism that
favors nonsense mediated RNA decay and impairs protein
expression (38). Because both alleles of rs2248374 occur with a
similar frequency in the population due to balancing selection,
about 25% of individuals fail to express ERAP2 (39). Therefore,
these polymorphisms may influence ERAP1 and ERAP2
activities in multiple ways (33, 40).

The inability to form the correct HLA class I complexes with
the appropriate peptides may result in a lack of immune response
by CD8+ lymphocytes and NK cells. Therefore, ERAP1 and
ERAP2 polymorphisms may significantly contribute to the
interactions between KIR-HLA-C at the maternal–fetal interface.

The aim of this study was to investigate the role of ERAP1 and
ERAP2 polymorphisms in the context of KIR and HLA-C genes
in women suffering RIF in the Polish population. However, due
to a large number of research results, this article applies only to
women participating in IVF. Potential interactions between a
mother’s ERAP and KIR and her partner’s HLA-C will be the
subject of another publication.

In addition, for the first time, we want to show the results of
studies on the secretion of ERAP1 and ERAP2 into the peripheral
blood of IVF patients and fertile women, which indicate the
dependence of pregnancy success on the secretion of ERAP1
and ERAP2.
MATERIAL AND METHODS

Study Design
In our research, we tested a total of 881 women. Four hundred
ninety-six females were patients who, together with their
partners, participated in IVF, with a total of 1,859 assisted
reproductive cycles. A group of 385 fertile women constituted
the control group. Patients were qualified at the Gameta Assisted
Reproduction Clinic in Rzgów, a center certified by the European
Society of Human Reproduction and Embryology (ESHRE ART
Centre Certification for good clinical practice). Patients were also
recruited from the Department of Surgical, Endoscopic and
Oncologic Gynecology and the Department of Gynecology and
Gynecologic Oncology, Polish Mothers’ Memorial Hospital—
Research Institute in Łódź and Medical Centre Gynemed in
Łódź. Patients were included in the studies from 2015 to 2020.
The control group was qualified mainly from the 1st Department
of Obstetrics and Gynecology, Medical University of Warsaw, in
the years 2006–2014. The control group was also qualified at the
Institute of Immunology and Experimental Therapy of the Polish
Academy of Sciences in 2018–2020. These women and their
partners had at least one healthy child from natural conception.
All tested couples were of Polish origin. The clinical
characteristics of couples who participated in IVF and the
control group are presented in Table 1. Both IVF patients and
their partners differed significantly in mean age from fertile
couples (p = 0.0001 and p < 0.0001, respectively). Detailed
information on the preparation of patients for IVF [ovarian
stimulation, fertilization procedure, endometrial preparation,
Frontiers in Immunology | www.frontiersin.org 3
and frozen ET (FET)] has been described earlier by Nowak
et al. (41).

Luteal Phase Support and Steroid
Treatment
Patients undergoing standard IVF procedure were instructed to
routinely take 5 mg of prednisone (Encorton, Adamed, Poland)
once a day in the morning orally, starting from the day of ET
(ET/FET). Patients with RIF and elevated TNF-a level received
steroids in higher doses (10–20 mg) for 2–3 weeks before ET and
up to 8 weeks if pregnancy developed after transfer. In order to
supplement the luteal phase, patients were intravaginally
administered 2 × 200 mg micronized progesterone (Luteina,
Adamed, Poland) and oral dydrogesterone 3 × 10 mg
(Duphaston, Solvay Pharmaceuticals, Netherlands) until 12
weeks of gestation.

DNA Preparation and Genotyping
Genomic DNA was isolated from venous blood using the
Invisorb Spin Blood Midi Kit (Invitek, Germany) or QIAamp
DNA Mini Kit (Qiagen, Germany) according to the
manufacturer’s instructions. KIRs were genotyped using KIR
Ready Gene kits (Inno-train Diagnostics, Germany) following
the manufacturer’s instructions [for details, see reference (42)
and Table 2)] or multiplex PCR described elsewhere (43, 44).
Our KIR typing was validated three times per year by the
International KIR Exchange program organized by the
Immunogenetics Center of the University of California, Los
Angeles. KIR AA genotype was estimated by the presence of
KIR2DL1, KIR2DL3, KIR2DS4, and KIR3DL1 and the absence of
KIR2DL5, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS5, and
KIR3DS1, which may be found in the KIR Bx genotype. KIRs
were also divided according to presence in the centromeric or
telomeric part of KIR gene cluster: CenA-KIR2DL3, CenB-
KIR2DL2 and KIR2DS2, TelA-KIR3DL1 and KIR2DS4, and
TelB-KIR2DS1 and KIR3DS1 (45). The genes of the Cen AA/
Tel AA combination constitute the AA genotype, while all other
combinations constitute the Bx genotype. HLA-C1 and C2
allotypes were detected by a PCR-SSP method described in
detail elsewhere (46). ERAP genotyping was performed using
the TaqMan SNP Genotyping Assay (Applied Biosystems, USA)
as described in more detail previously (45). Characteristics of the
ERAP SNPs examined in this study are shown in Table 3.

ERAP Measurement
We measured ERAP1 in 121 plasma samples collected before
IVF-ET and 108 plasma samples after IVF-ET during testing of
the beta-subunit of human chorionic gonadotropin. However,
the concentration of ERAP2 was measured in 243 samples taken
before IVF-ET and 192 samples taken from patients after IVF-
ET. Plasma levels of ERAP1 and ERAP2 were also tested in 40
samples from fertile women who had previously given birth to
healthy children from natural conception and 27 who were
pregnant at the time of plasma collection.

Plasma samples were stored at −80°C until the time of assay.
The concentration of ERAP1 and ERAP2 (ng/ml) in plasma of
patients was tested with a sandwich ELISA kit following the
October 2021 | Volume 12 | Article 755624
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TABLE 2 | KIR allele specificity.

KIR gene type Allele specificity

2DL1 *001–022, 024–026N
2DL2 *001–003, 005, 007–010, 012/2DP1*012
2DL3 *001–003, (004), 005–009, 011–017, 019–024/2DS4*013
2DL4 norm *0001–006, 010, 012, 014–016, 018, 021–026
2DL4 deleted *007–009, 011, 013, 017, 019, 020, 027
2DL5 all A*all (001, 005, 012, 014, 015), B*all (002–004, 006–011, 013, 016–018)
2DL5 (group 1) A*001, 012, 014, 015, B*003, 004, 006–008, 011, 013, 018
2DL5 (group 2) A*005, B*002, 009, 010, 016, 017
2DL5 expressed A*001, 005:01:01, 005:01:03, 005:01:04, 012, (014, 015)/3DP1*004, (002, 011–014)
2DL5 null B*002, 004, 006:01, 006:03, 007–011, 013 (0070102, 00803, 01303, 016–018)/3DP1*001, 007, 009:01, (011–014)
2DS1 *002, 003, 005, 006
2DS2 *001–008
2DS3 *001–007
2DS4 norm *001, 011, 014, 015
2DS4 (del-22bp) *003–010, 012, 013
2DS5 *001–012
3DL1 *001–008, 015–026, (028), 029–041, 043–056, 059–076/3DS1*014
3DL2 *001–017, 019–063
3DL3 *001–057
3DS1 *010–058
2DP1 *001–014
3DP1 norm *003, 005, 006, 008, 010, 013, 014
3DP1 variant *001, 002, 004, 007, 009, 011, 012
Frontiers in Immunology | www.frontiersin.org
TABLE 1 | Clinical characteristics of couples participating in IVF-ET and fertile control.

Aspect ALL IVF RIF SIVF Unclassified Fertile control

N = 496 N = 283 N = 161 N = 52 N = 385
Age of woman Mean ± SD 33.67a ± 4.14 34.51b,c ± 4.11 32.11 ± 3.82 34.09 ± 3.91 32.81 ± 5.98

Range 22–46 23–46 22–41 25–45 19–68
Age of partner Mean ± SD 35.51d ± 4.89 36.27e,f ± 4.85 34.32 ± 4.72 36.89 ± 4.89 34.15 ± 6.3

Range 24–53 25–53 24–53 28–51 25–70
Indications for IVF-ET Only male factor 145 (29.23) 78 (27.57) 58 (36.02) 9 (17.31) N/A

Only female factor 131 (26.41) 70 (24.73) 45 (27.95) 16 (30.77) N/A
Both factors 75 (15.13) 49 (17.31) 19 (11.80) 7 (13.46) N/A
Unknown factor 145 (29.23) 86 (30.39) 39 (24.23) 20 (38.46) N/A

Number of IVF-ET Mean ± SD 3.37 ± 2.05 4.64 ± 1.76 1.63 ± 0.71 1.62 ± 0.68 N/A
Range 1–15 3–15 1–3 1–3 N/A

Number of embryos Mean ± SD 3.81 ± 2.55 5.33 ± 2.29 1.69 ± 0.79 1.76 ± 0.65 N/A
Range 1–19 3–19 1–5 1–3 N/A
4
 Octob
er 2021 | Volume 12
Values in bold indicate significant differences. Values in parentheses are in percentages.
IVF-ET, in vitro fertilization embryo transfer; RIF, recurrent implantation failure; SIVF, successful pregnancy after IVF-ET; SD, standard deviation; p, probability.
ALL vs. Fertile: women: ap = 0.0001, partner: dp < 0.0001; RIF vs. Fertile: women: bp < 0.0001, partner: ep < 0.0001; RIF vs. SIVF: women: cp < 0.0001, partner: fp = 0.0001.
TABLE 3 | Characteristics of the ERAP SNPs examined in this study.

Locus Gene SNP SNP
variation

Protein
variation

Potential effect Assay ID

5q15 ERAP1 rs26653 G>C P127R Enzymatic activity, expression level (35) C:794818_30
5q15 ERAP1 rs2287987 T>C M349V Interactions with the substrate (35) C:3056893_20
5q15 ERAP1 rs30187 C>T R528K Enzymatic activity, expression level (34) C:3056885_10
5q15 ERAP1 rs27044 C>G E730Q Enzymatic activity, substrate length preference (35) C:3056870_10
5q15 ERAP1 rs26618 T>C I276M Affects efficiency of a precursor peptide trimming for the HLA-C*05-bound epitope (36) C:3056894_10
5q15 ERAP1/

ERAP2
rs6861666 A>G – rs6861666 in 100% LD with rs75862629 which influences the expression level of ERAP2

and ERAP1 (37)
C:29091789_20

5q15 ERAP2 rs2248374 A>G – Lack of expression of functional forms of the enzyme (38, 39) C:25649529_10
LD, linkage disequilibrium; SNP, single-nucleotide polymorphism.
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manufacturer’s protocols (Wuhan EIAab Science Co., China).
Standard curve measured the concentration of ERAP1 from 0.15
to 10.0 ng/ml and ERAP2 from 0.31 to 20.0 ng/ml. The limit of
ERAP1 detection in this test was 0.085 ng/ml, while ERAP2 is
less than 0.16 ng/ml.

Statistical Analysis
For the analysis of KIR, HLA-C, and ERAP genotype frequencies,
we used the two-tailed Fisher’s exact test (R software). The
Hardy–Weinberg equilibrium was estimated using the chi-
square test with one degree of freedom. All tested genotype
frequencies were in the Hardy–Weinberg equilibrium except for
the ERAP1 rs2287987 polymorphism in the control group. A p-
value <0.05 was considered significant. The odds ratio (OR) and
its 95% confidence interval (95% CI) were computed as the
measure of effect size. For multiple comparison tests, Bonferroni
correction was done. Haplotypes were generated by FAMHAP19
software (http://famhap.meb.uni-bonn.de).

Statistical analyses concerning ERAP1 and ERAP2
concentration in the plasma of patients before and after ET
were performed using the Mann–Whitney test (GraphPad Prism
5 software). To identify a cut-off level of ERAP suggestive of
likelihood of miscarriage, receiver operating characteristic
(ROC) curve analysis was performed (GraphPad Prism
5 software).

Ethical Approval
Experimental protocols were approved by Local Ethics
Committee (on agreement of Polish Mothers’ Memorial
Hospital—Research Institute in Łódź), and informed consent
was obtained from all individual participants included in
the study.
RESULTS

Comparison of KIR, ERAP, and HLA-C
Genes and Haplotype Frequencies in
In Vitro Fertilization Patients and
Fertile Control
Wefoundnostatistically significantdifferences in the frequencies of
both single KIR genes, AA and Bx genotypes, and KIR divided into
centromeric and telomeric regions between IVF patients and fertile
control. Also, the frequencies of HLA-C allotypes did not differ in
the tested groups (Supplementary Table 1). In the case of ERAP
genes, we observed weak differences for rs27044 C>G and rs26618
C>T when we compared the RIF group with the fertile control
group (Supplementary Table 2). Moreover, we estimated 27
different ERAP1/ERAP2 haplotypes. For three haplotypes, we
found significant differences between the studied groups, albeit
weak and losing significance after Bonferroni correction
(Supplementary Table 3). Potential interactions were found
between associated KIR and ERAP genes and HLA-C allotypes.

When we analyzed the potential interactions between the
studied genes, we obtained interesting results that are
summarized in Table 4 and in detail presented in Supplementary
Frontiers in Immunology | www.frontiersin.org 5
Tables 4–15. Due to the fact that we made a large number of
comparisons, we applied Bonferroni corrections. The summary in
Table 4 includes only those analyses that were still statistically
significant after the correction.

First, we considered the differences in the KIR/HLA-C
combinations between the studied groups. When we divided
the patients with the AA genotype in terms of HLA-C genotypes,
we observed that women positive for KIR genes in the Tel AA
region and HLA-C2C2 were more prevalent in IVF and RIF
groups than in fertile women (p/pcorr. = 0.009/0.026, OR = 2.020;
p/pcorr. = 0.004/0.012, OR = 2.321, respectively; Supplementary
Table 4). Therefore, having a female HLA-C2 allotype positive
also for KIR genes in the Tel AA region is not favorable for
becoming pregnant.

In subsequent stages of the analyses, we considered the
differences in the frequency of individual ERAP in double and
triple combinations with KIR and HLA-C genes. We have
obtained many significant but weak statistical results. Analyses
for ERAP1 rs26653, rs26618, rs2287987, and rs6861666 deserve
attention. Women carrying rs26653 ERAP1 GG/HLA-C2C2
combination are protected from infertility and RIF (p/pcorr. =
0.002/0.022, OR = 0.343, and p/pcorr. = 0.001/0.005, OR = 0.252,
respectively; Supplementary Table 5), while those with CG/
HLA-C2C2 are predisposed to RIF (p/pcorr. = 0.002/0.016, OR =
3.661). The protection against infertility and RIF is also observed
in women with GG ERAP1 rs26653/HLA-C2C2/KIR AA
combination (p/pcorr. = 0.003/0.025, OR = 0.093, and p/pcorr. =
0.004/0.036, OR = 0.084, respectively; Supplementary Table 13).

Women positive for rs26618 TT and HLA-C2+ were
more often observed in the RIF group than in the fertile group
(p/pcorr. = 0.005/0.029, OR = 1.741; Supplementary Table 5). On
the other hand, carriers of the rs26618 CC and HLA-C2+
combination were protected against infertility despite the fact
that they had the KIR AA+ genotype (p/pcorr. = 0.005/0.031,
OR = 0.084; Supplementary Table 13). However, when we
considered only the rs26618 ERAP1 and KIR combination, we
found statistically significant differences between women with
rs26618 TT and KIR genotypes from the Cen BB region. This
combination was more common in the fertile control group than
in the RIF group (p/pcorr. = 0.005/0.045, OR = 0.239;
Supplementary Table 6).

The rs2287987 ERAP1 CT/KIR Tel BB combination protects
against infertility and RIF (p/pcorr. = 0.001/0.007, OR = 0.111,
and p/pcorr. = 0.002/0.016, OR = 0.055, respectively;
Supplementary Table 10).

Carriers of ERAP1 rs6861666 AA and KIR in the BB
centromeric region are at risk of infertility and RIF (p/pcorr. =
0.001/0.010, OR = 7.435, and p/pcorr. = 0.003/0.029, OR = 12.373,
respectively; Supplementary Table 11). In contrast, those with
rs6861666 AG are less likely to experience infertility (p/pcorr. =
0.002/0.020, OR = 0.149; Supplementary Table 11).

In the case of ERAP2 rs2248374 and KIR, we found
differences between the RIF and successful pregnancy after
IVF-ETs (SIVF) groups in carriers of the GG/Cen AB/Tel AB
combination (p/pcorr. = 0.002/0.051, OR = 6.262; Supplementary
Table 12). We did not find statistically significant results
October 2021 | Volume 12 | Article 755624
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regarding comparisons of ERAP haplotype combinations with
both HLA-C and KIR (Supplementary Tables 14 and 15).

Summarizing the genetic portion of this work, among the
ERAP polymorphisms studied, rs26653 and rs26618 had the
greatest influence on infertility susceptibility and RIF in HLA-C2
allotype-positive patients.

Comparison of ERAP1 and ERAP2
Secretion in In Vitro Fertilization Patients
and the Fertile Control Group
We observed that fertile women who had given birth in the past
secrete significantly more ERAP1 than women who underwent
IVF, and women who were pregnant at the time of blood
collection for the tests (p < 0.0001, median 0.316 vs. 0.000 ng/
ml, respectively; and p = 0.0005, median 0.316 vs. 0.000 ng/ml,
respectively; Figure 1). On the other hand, in the case of ERAP2,
we observed the opposite situation; i.e., fertile women who had
given birth in the past had statistically far less ERAP2 than IVF
patients, regardless of whether the patient was before or after the
ET (p = 0.0098, median 2.444 vs. 1.150 ng/ml, respectively; p =
0.02, median 2.444 vs. 2.311 ng/ml; Figure 1). ERAP2 levels were
also increased in women who became pregnant naturally and
were currently pregnant at the time of the study as compared
with fertile women who had given birth in the past (p = 0.06,
median 2.690 vs. 1.150 ng/ml, respectively; Figure 1).

ERAP1 Secretion Impact on the Outcome
of Pregnancy
IVF patients did virtually not secrete ERAP1; therefore, we found
statistically significant differences between those patients and
women from control groups. The following results were found: in
patients with pregnancy after IVF versus fertile control group
who had given birth in the past (p < 0.0001, median 0.000 vs.
0.316 ng/ml), and versus those women in a current natural
Frontiers in Immunology | www.frontiersin.org 6
pregnancy (p = 0.0035, median 0.000 vs. 0.000 ng/ml). Also
patients who suffered a miscarriage after IVF-ET differed from
control groups (p<0.0001,median0.000 vs.0.316ng/ml forwomen
who had given birth in the past and p = 0.03,median 0.000 vs. 0.000
ng/ml for women with a current natural pregnancy) (Figure 2).

ERAP2 Secretion Impact on the
Pregnancy Outcome
The concentration of ERAP2measured before and after ET did not
differ in patients who became pregnant, as well as in those who
miscarried. We observed a decrease in concentration after ET in
patients who did not become pregnant, although not statistically
significant (median 2.260 vs. 1.390 ng/ml; Figure 3). Moreover,
patients who became pregnant after IVF-ET secrete far less ERAP2
than patients who miscarried (p = 0.0032, median 2.072 vs. 3.580
ng/ml; Figure 3). Both those patients who became pregnant after
IVF-ET and those who miscarried were different from women
having given birth in the past (p = 0.037, median 2.072 vs. 1.150 ng/
ml and p = 0.0003, median 3.580 vs. 1.150 ng/ml, respectively;
Figure 3). It should be emphasized that womenwhowere pregnant
during the ERAP2 level test had a median level of 2.690 ng/
ml (Figure 3).

ROC analysis was performed to determine the borderline
ERAP2 value differentiating IVF patients with a successful
pregnancy and patients who miscarried after IVF-ET. As a result
of this analysis, we established 2.920 ng/ml of ERAP2 as the
threshold value (area under the curve (AUC) = 0.64, p = 0.0033,
sensitivity 65.38%, specificity 64.39%, and likelihood ratio (LR) =
1.84; Figure 4A).When we compared all fertile women (regardless
ofwhether theyhad given birth in the past or are currently pregnant
from natural fertilization) with those whomiscarried after IVF-ET,
the result of the ROC analysis turned out to be stronger (AUC =
0.72, p = 0.00028, sensitivity 65.38%, specificity 73.68%, and LR =
2.48), but the threshold value was similar to the previous analysis
TABLE 4 | Summarized effect of ERAP, HLA-C, and KIR combined polymorphisms on the susceptibility to infertility and recurrent implantation failure.

ERAP, HLA-C, KIR combination Associated combination Compared groups p pcorr. OR 95% CI Effect Table

KIR/HLA-C TelAA/C2C2 ALL vs. Fertile 0.009 0.026 2.020 1.16–3.61 ↑ Suppl.4
TelAA/C2C2 RIF vs. Fertile 0.004 0.012 2.321 1.26–4.35 ↑ Suppl.4

ERAP1 rs26653 G>C/HLA-C GG/C2C2 ALL vs. Fertile 0.002 0.022 0.343 0.16–0.72 ↓ Suppl.5
GG/C2C2 RIF vs. Fertile 0.001 0.005 0.252 0.10–0.59 ↓ Suppl.5
CG/C2C2 RIF vs. Fertile 0.002 0.016 3.661 1.56–8.89 ↑ Suppl.5

ERAP1 rs26653 G>C/KIR GG/telBB RIF vs. SIVF 0.001 0.006 0.049 0.00–0.38 ↓ Suppl.7
CG/telBB RIF vs. SIVF 0.003 0.023 14.540 2.00–191.36 ↑ Suppl.7

ERAP1 rs26653 G>C/HLA-C/KIR GG/C2C2/AA+ ALL vs. Fertile 0.003 0.025 0.093 0.01–0.54 ↓ Suppl.13
GG/C2C2/AA+ RIF vs. Fertile 0.004 0.036 0.084 0.01–0.55 ↓ Suppl.13
CG/C2C2/AA+ ALL vs. Fertile 0.002 0.020 17.289 2.08–823.60 ↑ Suppl.13
CG/C2C2/AA+ RIF vs. Fertile 0.001 0.008 25.017 2.69–1275.24 ↑ Suppl.13

ERAP1 rs26618 T>C/HLA-C TT/C2+ RIF vs. Fertile 0.005 0.029 1.741 1.16–2.61 ↑ Suppl.5
ERAP1 rs26618 T>C/KIR TT/cenBB RIF vs. Fertile 0.005 0.045 0.239 0.07–0.72 ↓ Suppl.6
ERAP1 rs26618 T>C/HLA-C/KIR CC/C2+/AA+ ALL vs. Fertile 0.005 0.031 0.084 0.00–0.66 ↓ Suppl.13
ERAP1 rs2287987 T>C/KIR CT/telBB ALL vs. Fertile 0.001 0.007 0.111 0.02–0.46 ↓ Suppl.10

CT/telBB RIF vs. Fertile 0.002 0.016 0.055 0.00–0.47 ↓ Suppl.10
ERAP1 rs6861666 A>G/KIR AA/cenBB ALL vs. Fertile 0.001 0.010 7.435 1.87–43.47 ↑ Suppl.11

AA/cenBB RIF vs. Fertile 0.003 0.029 12.373 1.68–553.07 ↑ Suppl.11
AG/cenBB ALL vs. Fertile 0.002 0.020 0.149 0.03–0.60 ↓ Suppl.11

ERAP2 rs2248374 A>G/KIR GG/cenAB/telAB RIF vs. SIVF 0.002 0.051 6.262 1.66–35.58 ↑ Suppl.12
Octob
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(2.910 ng/ml; Figure 4B). The third ROC analysis concerned the
ERAP2 secretion of pregnant women fromnatural fertilization and
patients who miscarried after IVF-ET. Threshold value was 2.890
ng/ml,AUC=0.64, p=0.05, sensitivity 65.38%, specificity 56%, and
LR = 1.49; Figure 4C. All ROC analyses indicate a value of about
2.900 ng/ml as a point of differentiation between patients who
miscarried and those who became pregnant and gave birth to
healthy children.
DISCUSSION

We found the association between a female’s KIR genes from the
telomeric region AA and HLA-C2C2 with infertility as well as
Frontiers in Immunology | www.frontiersin.org 7
RIF in our population. In our study, there are twice as many
patients with KIRs from Tel AA genotype (KIR2DL4, KIR3DL1,
KIR2DS4, KIR3DL2) than in the control group (Table 4 and
Supplementary Table 4). Of these genes, two are framework
genes (KIR2DL4 and KIR3DL2). KIR3DL1 has no function in the
development of pregnancy due to the lack of HLA-B ligand
expression on trophoblast cells (47). On the other hand,
KIR2DS4 occurs in 80% of the Polish population in the form
of a 22-nucleotide deletion that encodes a soluble protein, not a
membrane receptor (44). Thus, the lack of activating genes, i.e.,
those found in haplotype B (including KIR2DS1), may be the
reason for the lack of NK cell activation in Tel AA patients that
would lead not to NK cytotoxicity but to the secretion of
FIGURE 2 | Impact of ERAP1 secretion on the pregnancy outcome. Red
points mean measurement before embryo transfer; blue, after embryo
transfer; black points, fertile control; gray points, fertile pregnant control.
FIGURE 3 | Impact of ERAP2 secretion on the pregnancy outcome. Red
points mean measurement before embryo transfer; while blue, after embryo
transfer; black points, fertile control; gray points, fertile pregnant.
FIGURE 1 | Comparison of ERAP1 and ERAP2 secretion in IVF patients and fertile control. Red points mean measurement of ERAP1; blue, ERAP2. IVF, in vitro
fertilization; ET, embryo transfer.
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cytokines and growth factors that promote the development of
pregnancy. Unfortunately, the analyses concerning Cen AA/Tel
AA (AA genotype) lost their significance after the Bonferroni
correction, but the percentage of patients in the RIF group and
control women is also twice as high. Perhaps if the test groups
were even greater in number, this significance would be
maintained. Our study is consistent with the research by Hiby
et al. (7), which showed a lower frequency of pregnancy-related
Frontiers in Immunology | www.frontiersin.org 8
diseases in the presence of the gene from the telomeric part of the
KIR B haplotype — KIR2DS1. We were unable to demonstrate
such an association with recurrent miscarriage after natural
fertilization in a previously published study, precisely because
of the even smaller sample size (45).

A higher miscarriage rate per cycle with own double ETs
(DETs) in mothers with the KIR AA genotype compared with
those with KIR AB and KIR BB genotypes was found by
A

B

C

FIGURE 4 | ROC analyses of ERAP2 secretion in IVF patients and fertile control. AUC, area under curve; p, probability value; T, threshold value; LR, likelihood ratio;
IVF, in vitro fertilization; ROC, receiver operating characteristic. (A) ROC analysis of ERAP2 secretion into the plasma of pregnant patients and patients who
miscarried after IVF-ET. IVF-ET, in vitro fertilization embryo transfer. (B) ROC analysis of ERAP2 secretion into the plasma of women who became pregnant naturally
and gave birth to healthy child in the past and patients who miscarried after IVF-ET. (C) ROC analysis of ERAP2 secretion into the plasma of women who were
pregnant from natural conception at the time of the test and patients who miscarried after IVF-ET.
October 2021 | Volume 12 | Article 755624
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Alecsandru et al. (48). Also, a significantly decreased live birth
rate per cycle was observed after DET using donated oocytes.
Moreover, elective single ET (SET) was proposed to improve
reproductive outcomes compared with DET (49). In our study,
KIR AA genotype was significant only in HLA-C2-positive RIF
patients, but again after Bonferroni correction, the significance
was lost. It would seem that a group of almost 500 women is
large, but in the case of such KIR gene polymorphisms and the
combination with HLA-C, it is still insufficient. Summarizing,
having KIR genes from haplotype A by the mother is unfavorable
for embryo implantation, because receptors from this haplotype,
when bound to the appropriate HLA-C2 ligand on trophoblast
cells, inhibit NK cells. As a result, cytokines and growth factors
promoting pregnancy development are not secreted. The risk of
pregnancy disease is the greatest if the fetal HLA-C2 is inherited
from the father (7, 50).

In general, there is little research into the association of ERAP
polymorphism and reproductive diseases. The only pregnancy-
related disease in which the role of ERAP has been studied is PE.
Johnson et al. presented a weak association for ERAP1, and a
significant association for ERAP2 with PE susceptibility in
Norwegian and Australian cohorts (51). In the Australian
cohort, an association for the ERAP1 gene (rs3734016) and for
the ERAP2 gene (rs2549782) was found. In turn, in the
Norwegian cohort, associations for other ERAP1 rs34750 and
ERAP2 rs17408150 polymorphisms were observed. However,
they did not detect any associations with PE for rs27044,
rs26653, and rs26618 of ERAP1 and rs2248374 of ERAP2 as
we did for RIF and infertility. rs30187 of ERAP1 seems to play a
role in susceptibility to recurrent miscarriage after natural
fertilization. This effect was strengthened in women with the
genotype KIR Bx and HLA-C2 and was shown in our own
research (45). However, we have not demonstrated the role of
this polymorphism in RIF after artificial fertilization.

In addition, a case–control study in Chilean and African
American samples was reported by Hill et al. for associations
between two SNPs in ERAP2, rs2549782, and rs17408150 with PE
(52). An increased risk for PE in the African American population,
but not in the Chilean population, was found. In addition, fetal
ERAP2 SNP rs2549782 polymorphismwas associatedwith a higher
risk for PE in African American women (53).

Some of the combinations of the ERAP, KIR, and HLA-C
genes and their association with infertility and RIF need to be
discussed, as there is no published research to date on the effect
of such complex variants on reproductive success. Women
carrying the rs26653 ERAP1 GG/HLA-C2C2 combination
were protected from infertility and RIF, while those with GC/
HLA-C2C2 were predisposed. The protective effect deepened
when the woman in terms of KIR genotype was AA (the most
inhibiting NK function) (Table 4, Supplementary Tables 5 and
13). Perhaps the GG rs26653 ERAP1 genotype in HLA-C2C2-
and KIR AA-positive women had an impact on the production of
peptides that were not of optimal length (8–10 residues),
meaning there was no proper interaction between self-HLA-C
and KIRs from haplotype A. The role of maternal, self-HLA-C in
regulation of dNK responsiveness was presented in a study by
Frontiers in Immunology | www.frontiersin.org 9
Sharkey et al. (54). They detected the expression and function of
five inhibitory NK receptors in dNK, which were influenced by
maternal HLA-C. Moreover, they found a decreased expression
frequency of the cognate receptor, KIR2DL1, in dNK cells
isolated from women carrying a HLA-C2 epitope. Production
of the defective peptides by individuals with ERAP1 rs26653 GG
in HLA-C2C2 and KIR AA women may lead to a lack of NK cell
inhibition by KIR2DL1. However, we do not consider a possible
semi-allogeneic response here because we did not analyze the
partner’s HLA-C in this research. We will be able to draw such a
conclusion when the analyses include the partner’s HLA-C and,
additionally, their ERAP polymorphism.

Women positive for ERAP1 rs26618 TT and HLA-C2 were
more often observed in the RIF group than in the fertile group,
while the opposite was observed with CT and HLA-C2 (Table 4
and Supplementary Table 5). However, we observed that the TT
genotype of ERAP1 rs26618 in combination with KIR Cen BB
was more frequently observed in the fertile control group than in
IVF patients (Table 4 and Supplementary Table 6). Cen-BB
genotype means the presence of KIR2DS2 and KIR2DL2 and
maybe KIR2DL5B, KIR2DS3, and KIR2DL1, suggesting their
impact on protection against RIF when a woman is positive for
the rs26618 TT genotype.

Moreover, carriers of the rs26618 CC and HLA-C2
combination were protected against infertility despite the fact
that they had the KIR AA genotype (Table 4 and Supplementary
Table 13). The ERAP1 rs26618 affects the efficiency of a
precursor peptide trimming for the HLAC*05-bound epitope,
and it was displayed in a fraction of atopic dermatitis patients
(36). Moreover, rs26618C (276Met) is a component of ERAP1
haplotypes of low enzymatic activity (55, 56). Low activity can
affect the processing efficiency of the antigen and result in the
production of an altered repertoire of peptides that cannot fit the
HLA-C2 molecules. This can lead to a lack of inhibition during
the HLA-C2 and KIR AA interactions, which is desirable for the
development of pregnancy. If rs26618 TT provides the proper
enzymatic activity, we can expect that the resulting antigenic
peptides should guarantee the interaction with HLA-C2 and KIR
AA and thus predispose to RIF, but it should protect in the
combination with KIRs from Cen BB genotype.

Carriers of the genotype ERAP1 rs6861666 AA and KIR Cen
BB are predisposed to infertility and RIF. On the other hand,
women with the rs6861666 AG genotype in combination with
KIR Cen BB are protected against infertility (Table 4 and
Supplementary Table 11). rs6861666 indirectly affects the
expression of both ERAP1 and ERAP2 (37).

In turn, the rs2287987 ERAP1 CT/KIR Tel BB combination
protects against infertility and RIF (Table 4 and Supplementary
Table 10). The polymorphic amino acid of ERAP1 is located
near the catalytic site (residue M349V) and therefore could
influence the interaction of the enzyme on the substrate (35).
In this case, we can only suppose that this combination, on the
one hand, has KIR genes from the Tel BB region (favorable for
pregnancy) and, on the other hand, the CT ERAP1 genotype,
which will be responsible for correct substrate interaction
(precursor peptide) with the enzyme.
October 2021 | Volume 12 | Article 755624
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It is also worth noting that in the case of ERAP2 rs2248374
and KIR combination analysis, we found differences between the
RIF and SIVF groups in carriers of the rs2248374 GG/Cen AB/
Tel AB combination. Patients who gave birth after IVF-ET have
statistically less of such a combination than patients with RIF,
while for those with rs2248374 AA, the opposite was observed
(Table 4 and Supplementary Table 12). In general, the ERAP2
gene appears in two haplotypes: A and B. Haplotype A contains
the rs2248374-A allele, while haplotype B contains the
rs2248374-G allele. The ERAP2 mRNA derived from
haplotype A encodes a full-length ERAP2 protein. In contrast,
ERAP2 mRNA derived from haplotype B produces a truncated
protein lacking catalytic domain and therefore without function
(38). In the above-mentioned combination, patients are
predisposed to RIF despite having a favorable KIR gene set
(Cen AB/Tel AB) for the development of pregnancy; perhaps
their ERAP2 gene encodes an inactive form of the enzyme.

Summarizing this part of the Discussion, ERAP
aminopeptidases cut peptides to the appropriate length, which
are then presented in the context of HLA-C to KIR receptors; i.e.,
they have a direct role in shaping the correct HLA-C molecule,
later indirectly influencing the interaction with KIR. Therefore,
we believe that the ERAP genotype combination with HLA-C is
more important than the combination with KIR. We believe that
among the ERAP polymorphisms studied, rs26653 and rs26618
have the greatest influence on infertility susceptibility and RIF in
HLA-C2-positive patients.

It is extremely interesting that the aminopeptidases that reside in
the ER are secreted into peripheral blood. We discovered, for the
first time, differences in the secretion of ERAP1 andERAP2 into the
plasma of patients who underwent an IVF procedure and fertile
women who became pregnant naturally. Moreover, elevated levels
of ERAP2, above 2.9 ng/ml, indicated a miscarriage.

There are reports of a multifunctional role for ERAP1 and
ERAP2. ERAPs are involved in a variety of biological processes
including the final trimming of peptides in the ER for presentation
on MHC class I molecules (57), shedding of several cytokine
receptors (58, 59), postnatal angiogenesis, and regulation of blood
pressure (60). In addition, there are reports showing that they can
trim receptors for proinflammatory cytokines such as TNF-a and
the type I IL-6 cytokine receptor (IL-6Ra) and the type II IL-1 decoy
receptor (IL-1RII) (59). Cui et al. also reported that ERAP1 binds to
the extracellular domain of the TNFR1, facilitating TNFR1
shedding through the formation of a TNFR1/ERAP1 complex
(58). The authors showed that overexpression of ERAP1
produces a soluble TNFR1 that competes with TNF receptors on
the cell surface, thereby weakening the bioactivity of TNF-a when
ERAP1 levels are elevated and restoringTNF-awhen levels decline.
TNF receptor shedding may also decrease the number of cell-
surface receptors available for ligand binding. Thus, overexpression
of ERAP1 would attenuate inflammation. Surprisingly, our IVF
patients didnot secrete ERAP1. The lack of ERAP1 secretion in IVF
patients can be explained by the fact that the patients were taking
steroids during the IVF procedure. Steroids have an anti-
inflammatory effect. We can assume that their use reduces TNF-
a (30) and IFN-g levels (29), which are necessary for the expression
Frontiers in Immunology | www.frontiersin.org 10
and activity of ERAP1. Indeed, 85% and 95% of our patients who
were tested for ERAP1 in plasma did not secrete IFN-g and TNF-a,
respectively. Forpatientswhowere tested for the level ofERAP2, the
percentage was 76% and 95%, respectively (our unpublished data).
Two questions arise: Does it make sense to use steroids in all IVF
patients? The adjuvant administration of steroids in women
undergoing controlled IVF/intracytoplasmic sperm injection
(ICSI) cycles is unclear (61, 62). Only patients with the higher
levels of IFN-g and TNF-a should be considered to benefit from
glucocorticoid adjuvant therapy. However, further clinical trials
are needed.

And the second question is: Why did steroids suppress the
secretion of ERAP1 and not ERAP2? Studies by Saveanu et al.
(63) and Evnouchidou et al. (64) reported a physical interaction
between ERAP1 and ERAP2, which results in a shift of their
enzymatic properties and an increased efficiency in processing
antigenic precursors (63, 64). In addition, a study by Tanioka
et al. showed that ERAP2 (L-RAP) might compensate for the
knockdown of ERAP1 in trimming antigenic peptides. ERAP2
was the dominant trimming enzyme in tissues with low ERAP1
expression, which mimics the effect of ERAP1 siRNA treatment
(65). Perhaps in our IVF patients, a similar situation exists. In the
case of silencing the expression and secretion of ERAP1, it is
ERAP2 that takes over. However, overexpression of ERAP2 (as
in our patients with miscarriage) is unfavorable.

Studies in syngeneic mice indicate rejection of T-cell
lymphoma RMA following the inhibition of ERAP1 through a
tumor-specific NK cell response due to impaired pMHC class I
engagement of Ly49C/I NK cell-inhibitory receptors (66). Ly49
receptors are the equivalent of KIR receptors in humans.
Moreover, elimination of ERAP1 from LIF-treated human
choriocarcinoma cell line, JEG-3 cells, reduced the cell surface
HLA-G1 expression and soluble HLA-G1 secretion. ERAP1 was
localized in the ER of trophoblasts and involved in the regulation
of cell surface HLA-G expression (67). Therefore, ERAP1 may
have an effect on the peptide repertoire presented in the context
of HLA-G1 in trophoblasts. Our research on sHLA-G secretion
in IVF patients may prove this thesis. Patients who did not
become pregnant or who experienced a miscarriage secreted
significantly less sHLA-G than patients who gave birth as a result
of IVF-ET (41), although it should be noted that Xu et al. showed
that ERAP1 expression was significantly elevated in placental
tissues of PE and that hypoxia increased ERAP1 expression in
trophoblasts (68). However, in our study, ERAP1 secretion seems
desirable because we have demonstrated its presence in the
plasma of fertile women who gave birth in the past. A lower
ERAP1 secretion, but nevertheless secretion, was observed in
pregnant women after natural conception. Aldhamen et al. (69)
analyzed the functional properties of secreted ERAP1. They
confirmed secretion of ERAP1 from RAW264.7 cells upon
lipopolysaccharide (LPS)-induced IFN-g. Moreover, they
treated peripheral blood mononuclear cells with catalytically
active ERAP1 and showed activation of NK cells, dendritic
cells, and T cells (69). This shows that when ERAP1 is secreted
outside the cell, it has an effect on the activation of immune cells,
including NK cells.
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Our study on the secretion of ERAP2 into plasma suggests that
the ERAP2 protein is needed for proper embryo implantation,
especially whenERAP1 expression is suppressed. This is confirmed
by the fact that women pregnant from natural conception secrete
ERAP2. Since the secretion of ERAP2 is necessary for the proper
development of a pregnancy, one final question arises: What
percentage of ERAP2 released into the blood of patients and
fertile controls is enzymatically active? We think this will be the
topic of our next research as soon aswe collect newplasma samples.

Thus, the expression and secretion of both ERAP1 and
ERAP2 must be optimal for the correct implantation and
development of the embryo. Our genetic and protein study on
ERAPs indicates that both ERAP1 and ERAP2 may be involved
in processes related to reproduction, including RIF.
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