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Abstract: Inflammation is an adaptive response in pursuit of homeostasis reestablishment triggered
by harmful conditions or stimuli, such as an infection or tissue damage. Liver diseases cause
approximately 2 million deaths per year worldwide and hepatic inflammation is a common factor
to all of them, being the main driver of hepatic tissue damage and causing progression from
non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH), cirrhosis and,
ultimately, hepatocellular carcinoma (HCC). The metabolic sensor SIRT1, a class III histone deacetylase
with strong expression in metabolic tissues such as the liver, and transcription factor NF-κB, a master
regulator of inflammatory response, show an antagonistic relationship in controlling inflammation.
For this reason, SIRT1 targeting is emerging as a potential strategy to improve different metabolic
and/or inflammatory pathologies. In this review, we explore diverse upstream regulators and some
natural/synthetic activators of SIRT1 as possible therapeutic treatment for liver diseases.

Keywords: SIRT1; NF-κB; inflammation; liver; NAFLD; cathepsins; AMPK; PPAR; NAD+; STACs

1. Introduction

Sirtuins are a family of class III histone deacetylases (HDAC) distinguished by possessing
a catalytic activity dependent on nicotinamide adenine dinucleotide (NAD+) cellular availability and,
therefore, being regulated by NAD+/NADH cellular ratio [1]. In mammals, this family includes seven
members (SIRT1-SIRT7) [2] and among them, Sirtuin 1 (SIRT1) has been the most studied.

SIRT1 has been considered as a cellular metabolic sensor due to its ability to couple the metabolic
status of the cell (NAD+ availability) to chromatin structure [3] and, hence, to gene transcription,
through modification of histones and non-histone proteins [4]. The non-histone protein targets
of SIRT1 are diverse (eg. p53, FOXO, PGC1-α, NF-κB, PARP1 . . . ) [5–9], and their modifications
result in different outcomes in the cell, such as apoptosis, stress oxidative response, mitochondrial
biogenesis and inflammatory response, among others [10]. Regarding its location, SIRT1 resides mostly
in the nucleus, but can shuttle from this organelle to the cytosol through its two nuclear localization
signals (NLS) and its two nuclear exportation signals (NES) [11]. Moreover, subcellular localization of
SIRT1 may change depending on cell type, tissue and in response to physiological and pathological
stimuli [11].

SIRT1 has been involved in numerous metabolic pathways, such as gluconeogenesis, glycolysis,
fatty acid oxidation and synthesis, oxidative phosphorylation or urea cycle [12,13], and in several
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fundamental and homeostatic processes like mitochondrial biogenesis, inflammation, apoptosis [14]
or tumorigenesis [5]. The role of SIRT1 in cancer comes from its association with p53, its first known
non-histone substrate. However, recent studies suggest that SIRT1 may act as a tumor suppressor or
tumor promoter, depending on SIRT1 localization and cell type [5]. Consequently, SIRT1 expression
and regulation has been described in different organs including adipose tissue, pancreas, brain, muscle
or liver [14].

2. SIRT1 in Liver Metabolism

In the liver, SIRT1 partially regulates glucose, lipids and cholesterol metabolism. Of note, changes
in the concentration of nutrients and hormones during fasting/intake periods control the expression of
SIRT1 [15].

During fasting, there is an initial increase in glucagon levels, produced by pancreatic alpha cells,
which leads to a rise in gene transcription of both SIRT1 and gluconeogenesis genes in the liver, through
the cyclic AMP response element-binding protein (CREB) and its co-activator protein, CREB-regulated
transcription coactivator 2 (CRTC2) [12,15]. Gluconeogenesis is an anabolic pathway of metabolism
that allows glucose biosynthesis from different sources: glucogenic amino acids, lactate, glycerol or
tricarboxylic acid (TCA) cycle intermediates [16]. If fasting is prolonged, SIRT1 first deacetylates
CRTC2 protein, which results in its targeting for ubiquitinization and degradation by the proteasome.
Secondly, SIRT1 deacetylates peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α) and
forkhead box O1 (FOXO1), key participants in β-oxidation and gluconeogenesis regulation, increasing
their transcriptional activity [17]. On the one hand, deacetylation and activation of PGC1-α by SIRT1
results in increased fatty acid oxidation and improved glucose homeostasis [18]. On the other hand,
the activation of FOXO1, by its deacetylation by SIRT1, increases gluconeogenesis [19]. In this way,
the maintenance of both metabolic processes can supply the body’s energy needs during prolonged
fasting. In contrast, under nutrient intake conditions, carbohydrate-responsive element-binding protein
(ChREBP) transcription factor, induced by circulating high glucose and fatty acids levels, represses
the expression of SIRT1 [20].

SIRT1 not only regulates glucose metabolism in the liver, but also lipids and cholesterol homeostasis.
During fasting, free fatty acids are released from adipose tissue and subjected to β-oxidation in the liver
to provide energy [16]. By contrast, under fed conditions, liver synthesizes fatty acids (lipogenesis),
which are then stored in adipose tissue [16]. In a starving state, SIRT1 promotes fatty acid oxidation
by activating peroxisome proliferator-activated receptor α (PPAR-α) [12]. PPAR-α is a transcription
factor able to bind fatty acids, and whose union unleashes an increase in expression of genes related
to fatty acid catabolism in the mitochondrial matrix [12]. SIRT1 enhances PPAR-α activation by
deacetylating the co-activator of PPAR-α: PGC1-α [12]. Additionally, SIRT1 deacetylates sterol
regulatory element-binding protein 1 (SREBP1) transcription factor, targeting it for degradation via
ubiquitin/proteasome system, which results in hepatic repression of lipids and cholesterol synthesis [21].
SIRT1 also facilitates the action of oxysterols liver X receptor α (LXR-α), whose target gene, ATP-binding
cassette transporter A1 (ABCA1), is responsible for high-density lipoprotein (HDL) particle synthesis
and reverse cholesterol transport, from peripheral tissues to liver, where it can be secreted into
bile [22]. Finally, SIRT1 also regulates cholesterol homeostasis via farnesoid X receptor (FXR), important
for bile acids biosynthesis and cholesterol catabolic pathways. Deacetylation of FXR by SIRT1
produces, on the one hand, receptor activation, increasing bile acid synthesis and, on the other hand,
it has a positive feedback effect over SIRT1 transcription [23].

3. SIRT1 in a Liver Metabolic Disorder: NAFLD (Non-Alcoholic Fatty Liver Disease)

Non-alcoholic fatty liver disease (NAFLD) is considered as the hepatic evidence of the metabolic
syndrome [24], being the most common liver disease in Western countries. NAFLD affects 17–46% of
population, depending on diagnostic method, age, sex and ethnicity [25]. It is defined as the presence
of at least 5% of hepatic steatosis, in the absence of secondary causes that lead to an accumulation of
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intrahepatic lipids, such as an excessive alcohol consumption, congenital liver disorders or long-term
treatment with medication that induce steatosis as side effect. In addition, it is frequently associated
with metabolic disorders, such as obesity, diabetes mellitus or dyslipidemia [26]. If unresolved,
NAFLD may evolve into non-alcoholic steatohepatitis (NASH), cirrhosis and ultimately, hepatocellular
carcinoma (HCC) [24]. Currently, there is no approved drug for the treatment of NAFLD, although
randomized control trials are being conducted with some drugs that have shown improvement
in the regression of hepatic necro-inflammation and/or fibrosis [25,27].

The pathology of the disease courses with excessive initial deposition of triglyceride in the form of
lipid droplets within the hepatocytes. This deposition is caused by an imbalance in the control of liver
lipids which, in turn, is caused by an increase of fatty acids/triglycerides uptake and/or enhanced de
novo lipogenesis, together with an impaired fatty acids β-oxidation, and/or decreased export through
very low-density lipoprotein (VLDL) particles [28].

Steatosis, entails the activation of the transcription factor nuclear factor kappa B (NF-κB), with
the consequent production of pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α),
IL6 or IL1β. The production of these cytokines triggers the recruitment and activation of immune
system cells that influence inflammation and also promotes the creation of hepatic insulin resistance.
Moreover, excess intrahepatic lipids induce lipotoxicity and lead to mitochondrial dysfunction and
endoplasmic reticulum stress. In turn, mitochondrial dysfunction favors the production of reactive
oxygen species (ROS) causing oxidative stress that eventually damages hepatocytes [29].

The role of sirtuins in NAFLD and other metabolic diseases has been described in both, animals
and patient studies. Some in vivo studies with animals with various genetic modifications on hepatic
Sirt1 gene have highlighted the importance of this protein at a metabolic level. Among them,
Rodgers et al. [30] reported that a liver-specific SIRT1 knockout (KO) mice fed with a standard-diet
presented increased systemic glucose levels together with insulin sensitivity, decreased glucose
production and increased hepatic free fatty acid and cholesterol content, among other effects. Meanwhile,
Wang et al. [31] described a very similar result with a liver-specific SIRT1 KO (exons 5 and 6 deleted)
that developed fatty liver under a normal feeding condition starting at two months of age. Moreover,
Purushotam et al. [32] observed that mice with a specific deletion of Sirt1 gene in hepatocytes resulted
in animals presenting a damagedβ-oxidation due to an impaired PPAR-α/PGC1-α pathway, developing
liver steatosis, inflammation and endoplasmic reticulum stress when fed with a high fat diet.

Likewise, a study with patients with NAFLD have revealed a lower expression of several
sirtuins, including SIRT1, and an increase of expression of lipogenic proteins, such as SREBP1,
acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) in comparison with the control group [33].
Furthermore, another study with patients performed by Mariani et al. [34] evaluating the relationship
between serum SIRT1 levels and the degree of liver steatosis in obese patients, showed that SIRT1
levels were quite low in patients with severe hepatic steatosis when compared to obese patients with
mild hepatic steatosis. Similarly, serum levels of SIRT1 were inferior in the group of obese patients as
compared to those in lean patients.

4. SIRT1 in NF-κB Mediated Inflammation

Inflammation is an adaptive response aimed at restoring homeostasis altered by harmful stimuli,
such as infection or tissue damage [35]. During the inflammatory response, several phases develop,
starting with an initial pro-inflammatory phase, passing through the adaptive phase and ending with
the reinstatement of homeostasis [35]. The switch between the pro-inflammatory and adaptive phase
requires a metabolic change from an anabolic state to a catabolic state that depends on the sensing of
adenosine monophosphate (AMP) and NAD+ levels by AMP-activated protein kinase (AMPK) and
sirtuins, respectively. In this way, AMPK and sirtuins are able to couple inflammation and metabolism
with chromatin state and gene transcription [36].

The nuclear factor kappa B (NF-κB) is a family of inducible transcription factors present
in numerous cell types and integrated by seven different members, which form homo and heterodimers:
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NF-κB1 (p105 and p50), NF-κB2 (p100 and p52), RelA (p65), RelB and c-Rel [37]. NF-κB is considered
as a major regulator of the inflammatory response due to its ability to regulate the transcription of genes
involved in the establishment of immune and inflammatory response [37,38]. Its regulation occurs at
several levels and, to date, three ways have been identified for NF-κB activation: (1) the canonical
one, triggered mainly by cytokines such as TNF-α or IL1, and by toll-like receptor (TLR) agonists;
(2) the non-canonical one, with an important function in B lymphocytes and (3) the activation induced by
DNA damage [39,40]. A second level of regulation is post-translational modifications of NF-κB subunits,
carried out by various proteins, including the IκB kinase (IKK) complex. Some of these modifications
include processes of phosphorylation, acetylation, ubiquitination and prolyl isomerization, which
regulates NF-κB activity by modulating its nuclear translocation, DNA binding, transactivation and
interaction with CBP/p300-interacting transactivator 1 [41].

In quiescent cells, NF-κB is located in the cytoplasm, associated with inhibitory proteins (IκB-α,
IκB-β, IκB-γ, IκBNS, Bcl-3) and some precursor proteins such as p100 and p105 (which, once cleaved,
give rise to p52 and p50 subunits, respectively) [40]. In the canonical activation pathway, upon
arrival of a stimulus to the cell, a phosphorylation occurs, followed by ubiquitination and degradation
of its inhibitory proteins, in a proteasome dependent-manner. This releases NF-κB, which is then
translocated to the nucleus, where it functions by activating gene transcription [42].

Both, NF-κB and SIRT1 signaling pathways are evolutionarily conserved mechanisms for
the maintenance of homeostasis and whose interaction allows energy balance to be coupled with
the immune/inflammatory response [43]. However, the nature of this relationship is antagonistic, so
that SIRT1 is capable of inhibiting NF-κB signaling, and vice versa. This antagonism is explained based
on two reasons. On the one hand, the body needs to adapt the metabolism to a rapid energy generation
system that allows it to respond quickly to a harmful stimulus (such as an infection or tissue damage).
On the other hand, it is necessary to re-establish homeostasis conditions once the harmful stimulus has
disappeared [43]. Failure to resolve the inflammation would lead to a chronic inflammatory condition,
typical of chronic liver diseases [44].

A direct association between SIRT1 and RelA/p65 subunit of NF-κB has been described: SIRT1 is
able to deacetylate lysine 310 of RelA/p65 subunit, affecting its transcriptional activity and decreasing
expression of its anti-apoptotic and pro-inflammatory target genes [45]. Additionally, deacetylation
of RelA/p65 at lysine 310 facilitates methylation at lysines 314 and 315, which is important for
the ubiquitination and degradation of RelA/p65 [46,47]. The different acetylations/ deacetylations of
RelA/p65 can have various effects on NF-κB regulation but, particularly, deacetylation of RelA/p65 by
SIRT1 favors the association of p65/p50 complex (the most abundant heterodimer of NF-κB [39,46,47])
with IκB-α (an inhibitor of NF-κB). This association triggers the transport of the NF-κB complex from
the nucleus back to the cytoplasm and, therefore, inactivates the activity of NF-κB [48]. Furthermore,
several authors have observed the possibility of forming complexes between PGC1-α/PPARs and
NF-κB, enhanced by SIRT1, triggering repressive effects on the development of the inflammatory
response (reviewed by Kauppinen et al. [43]).

Interestingly, a possible regulatory action of NF-κB on SIRT1 has also been suggested, since
regions flanking the SIRT1 gene, both in mice and humans, contain numerous NF-κB binding
elements [49,50]. In fact, some authors have already described this possible interaction. For example,
Yamakuchi et al. [51] showed that the microRNA 34a (miR-34a) inhibits the expression of SIRT1 by
binding to its 3′ UTR region; and Li et al. [52] described the mechanism by which NF-κB, through
binding to the promoter region of miR-34a, is able to increase its level of expression. It should be noted
that another miR-34a-controlled gene is AXL, a tyrosine kinase receptor that our group has implicated
in the development of liver fibrosis [53], particularly in experimental NASH models and patients [54].
A link between AXL expression and SIRT1 has recently been reported in tissue macrophages [55] and
may provide new targets for clinical treatment. Whether SIRT1/AXL can act in a coordinated manner
and play a role in the progression of chronic liver disease is an aspect that deserves further studies.
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Moreover, some factors, as oxidative stress or interferon γ (IFN-γ), can also suppress SIRT1
transcription or activity [52,56,57]. At the same time, NF-κB could induce oxidative stress through
the enhancement of expression of ROS generating enzymes, such as NADPH oxidase (NOX) [58,59].
Additionally, it seems that NF-κB could interact with IFN-γ promoter [60]. Similarly, another study
demonstrated that another microRNA, miR-378, is a key player in modulating NASH via TNF-α
signaling. In particular, miR-378 acts as an important component of the molecular circuit composed by
miR-378, AMPK, SIRT1, NF-κB and TNF-α to induce spontaneous activation of inflammatory genes
with potential implications in NASH pathogenesis [61].

5. Hepatic Inflammation

Liver diseases cause approximately 2 million deaths per year worldwide, of which 50% are due to
complications of cirrhosis and the other 50% are due to viral hepatitis and HCC, with some differences
in burden according to the geographic region, race, gender, ethnicity and socioeconomic strata [62].
One of the most important common triggers of liver diseases is hepatic inflammation.

Hepatic inflammation is an essential part of the wound-healing response of this organ to certain
noxious stimulus such as an excessive alcohol consumption, viral hepatitis, excessive fat intake or
cholestasis presence, among others [41]. In fact, liver inflammation has the ultimate goal of protecting
the hepatocyte from a harmful stimulus, repairing liver tissue and promoting the restoration of
homeostasis [63].

For a limited period of time, inflammation results beneficial in helping to combat a possible threat or
repair the damage caused by it. However, when inflammation gets chronic it can lead to an irreversible
damage to liver parenchyma as a consequence of an excessive secretion of pro-inflammatory cytokines
by non-parenchymal liver cells such as Kupffer cells (KCs), liver resident macrophages, or another
type of infiltrated immune cells that can induce apoptosis or necrosis in hepatocytes [41].

In turn, both the presence of apoptotic bodies coming from damaged hepatocytes and the presence
of certain molecules and inflammatory mediators produced by immune system cells participate
in inducing an inflammatory state. In this fashion, ROS, acetaldehyde, compounds resulting from
lipid peroxidation or cytokines such as TNF-α, IL1β or transforming growth factor β (TGF-β) may
induce activation and proliferation of hepatic stellate cells (HSCs), the main cells responsible for
extracellular matrix generation and, therefore, for give rise to liver fibrosis [64]. Moreover, hepatocytes
are characterized by possessing an elevated capacity of replication, which allows them to repair
and replace damaged tissue, leading chronic inflammation to increase the risk of suffering hepatic
carcinogenesis [65].

5.1. NF-κB in Hepatocytes: Survival and Proliferation

As previously mentioned, NF-κB has been related to a large number of processes at cellular
(adhesion, apoptosis, etc.) and physiological (angiogenesis, inflammation, control of the innate
immune response, etc.) level [66]. In the liver, NF-κB relevance in the proliferation/death of
hepatocytes by stimulation with TNF-α has been described [66–68]. Bacterial derivatives such as
LPS (lipopolysaccharide) or cytokines generated in response to these bacterial derivatives, such as
TNF-α, are toxic to the hepatocyte [41]. However, in the liver, TNF-α does not usually induce cell death
probably due to NF-κB anti-apoptotic response, ensuring hepatocyte viability while the appropriate
inflammatory and immune response are initiated [41], and promoting regeneration of hepatocyte
mass by stimulating its proliferation facing a possible damage [69]. Proof of the relevance of NF-κB
to hepatocyte survival was already provided many years ago by Beg et al. [70], when they showed,
in an in vivo KO mouse, that the absence of the p65 subunit of NF-κB caused embryonic death by
massive apoptosis of hepatocytes. A few years later, it was demonstrated that this massive loss of
hepatocytes was due to the presence of TNF-α, since double TNF/p65 KO mice turned out to be viable
and presented a normal liver [71].
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The anti-apoptotic actions of NF-κB in hepatocytes are mainly caused by increased transcription
of anti-apoptotic genes, including cellular inhibitors of apoptosis (cIAPs), x-linked inhibitor of
apoptosis protein (XIAP), B-cell lymphoma (Bcl-2 family member A1), B-cell lymphoma-extra-large
(Bcl-XL), cellular FLICE-like inhibitory protein (cFLIP), TNF associated receptor associated factor 1
(TRAF1), TNF receptor associated factor 2 (TRAF2) and growth arrest and DNA damage inducible
45β (GADD45β). Moreover, some stress-related pathways, such as c-Jun-(N)-terminal kinase (JNK)
and p38 mitogen-activated protein kinase (MAPK) signaling cascades, were also shown to participate
in anti-apoptotic NF-κB-mediated effects [72].

Interestingly, and contrary to most publications defending the relevance of NF-κB in hepatocyte
survival, some authors have also reported a pro-apoptotic role of NF-κB in the hepatocyte.
Luedde et al. [73] showed in a murine model of partial ischemia/reperfusion injury (I/R), that
conditional deletion of the subunit IKK2 of IKK complex in hepatocytes entailed a deficient activation
of NF-κB and this, in turn, attenuated liver necrosis and inflammation in comparison to wild-type
mouse. In the same study, the use of an IKK2 inhibitor was able to protect the mouse from damage
caused by I/R injury without sensitizing them to TNF-induced apoptosis.

Nevertheless, the beneficial function of NF-κB in protecting hepatocytes against TNF-induced
apoptosis could also promote the survival of transformed hepatocytes, in this way, supporting
malignancy and cancer progression [74]. It is estimated that approximately 80% of HCCs develop
in fibrotic or cirrhotic livers, characterized by the existence of chronic damage and inflammation [37].
Activation of NF-κB is known to occur frequently and early in human liver cancers, both of viral
and non-viral etiology, and that such activation is associated with the acquisition of a transformed
phenotype during hepatocarcinogenesis [41].

A chronic infection with the hepatitis B/C virus results in the death of hepatocytes and this,
consequently, generates infiltration of immune cells and inflammation. In addition to the death of
hepatocytes by the virus infection itself, there is the death of the infected hepatocytes by the action
of immune system cells. This triggers compensatory mechanisms to repair liver mass loss through
regeneration and repair processes that could eventually lead to the generation of fibrosis and cirrhosis,
which in turn can generate HCC [37]. Although the mutations and intracellular signaling pathways
involved in the development of HCC from livers infected with the hepatitis B/C virus are still being
deciphered, it is known that the activation of NF-κB has a relevant role in this development. An example
of this is reported by Kim et al. [75] in which they described the participation of the hepatitis B viral X
(HBx) protein, capable of activating NF-κB by upregulating of TANK-binding kinase 1 (TBK1) protein.
Regarding HCC of non-viral etiology, conditions such as the presence of NAFLD [76], obesity [77] or
diabetes [78], among others, have been described as risk factors for HCC development and in which
increased hepatic activation of NF-κB has also been reported [78–81].

5.2. NF-κB in Kupffer Cells (KCs): Inflammation

Activation of NF-κB is necessary for the development of the innate immune response, being
essential for the activation and function of the different cells of the hepatic immune system that
participate in this response, including mast cells, dendritic cells and KCs [82]. When NF-κB is activated
in these cells, an increased expression of cytokines and chemokines occurs, with the aim of recruiting
other cells of the immune system, such as neutrophils, leading to the development of an inflammatory
response [82]. Although, activation of KCs results of vital importance in the liver response to infection
or damage, the end of this activated state is of equal importance, since its non-resolution leads to
the development of an uncontrolled inflammatory process and, therefore, to the possible generation of
an inflammatory liver disease [83].

Thus, various studies confirm that regulation of the functional phenotype of KCs (from a normal
“tolerogenic” condition to a pro-inflammatory activated state) is associated with the progression
of various liver pathologies, including alcoholic liver disease (ALD) [84], NAFLD [85], NASH [86],
the development of fibrosis [87] and HCC [88], among others. A proof of the relevance of KCs and
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the activation of NF-κB in the generation of liver disease has been reflected in the publication by
Son et al. [89]. This work shows in livers of animals that had been treated with the toxic CCl4 that
selective inactivation of NF-κB, mainly in macrophages with an NF-κB decoy, reduced liver damage and
fibrosis. Accordingly, we have been able to corroborate in a mouse model of acute liver inflammation
induced by LPS that the increase of certain pro-inflammatory cytokines, such as MCP1 (monocyte
chemotactic protein, also known as CCL2) and IL6, was markedly reduced by liposomal chlodronate
administration, capable of killing KCs [8].

KCs can be activated by various types of stimuli, such as pathogen-associated molecular patterns
(PAMPs) and damage-associated molecular patterns (DAMPs), from microbial antigens or damaged
hepatocytes [82,88]. Thus, due to the wide repertoire of signals that KCs are able to identify and
integrate, they will respond differently depending on the tissue microenvironment. Among these
multiple responses, it is worth highlighting the activation of the TLR4 by LPS. LPS or endotoxin,
a typical PAMP, triggers an NF-κB-dependent response that is the leading cause of inflammation
in various types of liver injury, including endotoxemia, alcoholic liver injury, I/R injury, and systemic
viral infection [87]. The KCs have a key role in the elimination of endotoxins in the liver and also
in the inflammatory response to LPS through the secretion of cytokines such us TNF-α, IL1β, IL6, IL18,
IL12 or IL10 [90]. Some of these cytokines contribute to hepatocyte injury, such as the pro-inflammatory
TNF-α or IL1β. KCs, hepatocyte and HSCs secrete chemokines, such as MCP1, that promote
recruitment of other monocytes/macrophages into the liver, which amplify the inflammatory response
initiated by KCs, secreting inflammatory cytokines and ROS and promoting the progression of liver
injury [88]. In addition, macrophages (including KCs) not only stimulate the creation of an inflammatory
response, but also lead to a fibrogenic response. KCs release of pro-fibrotic cytokines, such as TGF-β,
platelet-derived growth factor (PDGF), connective tissue growth factor (CTGF) or tissue inhibitor
of matrix metalloproteinase (TIMPs) and trigger HSCs activation [88]. However, KCs also produce
anti-inflammatory and regenerative cytokines to reestablish homeostasis. Among these cytokines IL6,
a hepatocyte mitogen that is crucial for liver regeneration [91] and IL10, with potent anti-inflammatory
and immunoregulatory effects, are key in restoring hepatic homeostasis [92].

Ultimately, the phenotype and functionality of KCs and other liver macrophages will depend
on the tissue microenvironment, which will determine the balance between the mechanisms of
progression and resolution of tissue injury.

5.3. NF-κB in Hepatic Stellate Cells (HSCs): Activation, Survival and Inflammation

Furthermore, the involvement of NF-κB has also been implicated in the activation of HSCs,
their survival, and inflammatory response. Under physiological conditions, HSCs are in a quiescent
state, being their main function to accumulate vitamin A in the form of lipid droplets [93]. However,
in response to noxious stimuli, these cells are capable of rapid activation and transdifferentiation
into fibrogenic, contractile and proliferative myofibroblast-like cells [93]. Certain signals, such as
the presence of apoptotic bodies derived from damaged hepatocytes and some mediators (ROS,
TNF-α, PDGF, IL1β, TGF-β) secreted by KCs, platelets, neutrophils and other cells of the immune or
inflammatory system, such as endothelial cells or cholangiocytes, contribute to induce the activation
and proliferation of HSCs. Furthermore, an altered extracellular matrix also represents a powerful
stimulus for the migration/proliferation of activated HSCs, through the expression of integrins,
among other signaling pathways [93]. Once activated, HSCs increase the amount and composition
of extracellular matrix, contributing to its deposition in the liver, and leading to fibrosis. Moreover,
activated HSCs secrete numerous inflammatory, proliferative and fibrogenic cytokines, in both autocrine
and paracrine mode of action. To name a few, these include: TGF-β, capable of exerting a positive
feedback effect on HSCs themselves, stimulating their activation and proliferation; MCP1, that favors
the infiltration and accumulation of immune cells; IL6, important in amplifying the acute phase
response; IL10, an anti-inflammatory and anti-fibrogenic cytokine; and numerous adhesion molecules
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such as intercellular adhesion molecule 1 (ICAM1) or vascular cell adhesion molecule 1 (VCAM1) that
are involved in the immune system cells adhesion at the site where liver damage has occurred [93].

Both TGF-β and PDGF are considered as the main cytokines responsible for the activation and
proliferation of HSCs. The most potent stimulus in inducing the production of type I collagen and
other constituents of the extracellular matrix by HSCs is TGF-β, which is autocrine secreted by
HSCs [87], but also paracrine secreted by KCs or platelets [94]. The participation of NF-κB is very
important in the pro-fibrogenic role of HSCs, since NF-κB activation by LPS/TLR4 pathway in these
cells triggers downregulation of TGF-β pseudoreceptor BAMBI, in this way enhancing TGF-β signaling
and cell activation [95]. For its part, PDGF represents the most powerful factor involved in inducing
the proliferation, differentiation and migration of HSCs, in addition to promoting production and
deposition of collagen [96]. During liver injury, HSCs increase their PDGF generation, and also,
upregulate PDGF receptors [93]. Platelets are as well potent producers of PDGF [97]. Downstream
pathways of PDGF signaling include factors as activator protein 1 (AP-1) and NF-κB, which regulate
the expression levels of certain genes involved in cell division, proliferation, fibrogenesis and apoptosis,
including type I collagen, TIMPs, matrix metalloproteases (MMPs), the apoptosis regulator Bcl-2 and
the E3 ubiquitin-protein ligase XIAP, among others [96].

Furthermore, NF-κB is a pivotal mediator of HSCs survival during the fibrogenic response,
as several studies show. In a dynamic environment, HSCs attempt to restore their quiescent state
through molecular interconnections involving reversal of the activated phenotype to a quiescent state,
apoptosis and premature senescence [98]. Nevertheless, regarding apoptosis, a resistance of activated
HSCs to suffer this phenomenon has been observed through the activation of signaling pathways
that involve NF-κB and that induce expression of anti-apoptotic proteins such as Bcl-2 [99]. In fact,
treatment with NF-κB or proteasome inhibitors has demonstrated to be able to reduce liver fibrosis
in vivo in a murine model of bile duct ligation [100].

Finally, and as might be expected, NF-κB also has a role in the induction and secretion of
inflammatory mediators in HSCs. Such inflammatory mediators include chemokines such as MCP1
(CCL2), C-C motif chemokine ligand 3 (CCL3), C-X-C motif chemokine ligand 2 (CXCL2) and C-X-C
motif chemokine ligand 5 (CXCL5), with capacity to increase the infiltration of inflammatory cells to
the liver, such as macrophages, which can interact with HSCs and establish a positive feedback on
HSCs activation [41].

6. Upstream Regulators of SIRT1

The results of diverse research groups [101–103] emphasize the relevance of acting
on the SIRT1-NF-κB axis as a possible therapy in the treatment of inflammatory diseases. Numerous
mechanisms capable of regulating the activity of SIRT1 have been described, among which
are: (1) metabolic regulation by NAD+; (2) protein-protein interactions; (3) transcriptional and
post-transcriptional modulation; (4) post-translational modifications [104]. In this review, we will focus
on some upstream regulators of SIRT1 as possible therapeutic targets for modulating inflammation
through the SIRT1-NF-κB axis.

Among different proteins capable of interacting with SIRT1 are positive and negative regulators.
Some of the most cited are endogenous activators, such as active regulator of SIRT1 (AROS) nuclear
protein, or inhibitors, such as endogenous deleted in breast cancer 1 (DBC1) protein, or Tat protein of
the human immunodeficiency virus 1 (HIV-1) [105].

Other studies regarding upstream regulators of SIRT1, such as IRF9/PPAR-α, NAMPT/NMNAT,
HuR, AMPK, PARP1, CK2 and cathepsins have pointed to these proteins as possible therapeutic targets
for the treatment of various inflammatory pathologies, including liver diseases.

6.1. IRF9/PPAR-α

Interferon regulatory factors (IRFs) are a transcription factors family integrated by nine members
that regulate the expression of genes implicated in creation of innate and acquired immune
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responses [106]. IRF9, capable of inducing liver damage in a model of hepatic I/R injury, stimulates
p53-mediated apoptosis and inflammation by suppressing SIRT1 expression via interaction with its
promoter [106].

Interestingly, it seems that IRF9 is able to increase the expression of PPAR-α target genes
through an interaction with its promoter region. This interplay improves insulin sensitivity and
reduces inflammation and steatosis in obese mice [107]. At the same time, SIRT1 is a target gene
of PPAR-α. In heart, the suppression of SIRT1 expression by PPAR-α has been shown to cause
cardiac dysfunction [108] by compromising mitochondrial biology and energy homeostasis, which
could be palliated with the use of the activator of SIRT1, resveratrol. For this reason, the IRF9-SIRT1
axis could be a promising therapy in treatment of liver inflammation and injury in some hepatic
pathologies. However, further investigation is necessary in order to determine the specific participation
of the IRF9-SIRT1 axis in liver, and also in order to avoid undesired effects in other organs.

6.2. NAMPT/NMNAT

The NAD+ synthesis is mainly carried out from five precursor molecules and intermediate
compounds: tryptophan, nicotinamide, nicotinic acid (NA), nicotinamide riboside (NR),
and nicotinamide mononucleotide (NMN) [1]. In mammals, the salvage pathway of NAD+ biosynthesis
from nicotinamide is performed by two enzymes: nicotinamide phosphoribosyltransferase (NAMPT)
and nicotinamide mononucleotide adenyltransferase (NMNAT) [109].

The first one, NAMPT, the rate-limiting enzyme in the NAD+ biosynthetic pathway, is the catalyst
for the synthesis of NMN from nicotinamide and 5-phosphoribosyl pyrophosphate (PRPP). The second
one, NMNAT, converts the NMN to NAD+ [110]. These enzymes, due to their involvement in NAD+

synthesis, are able to directly regulate SIRT1 activity and, therefore, they can affect processes in which
SIRT1 has shown participation such as glucose tolerance, lipid metabolism or inflammatory response,
among others.

One example of this is represented by Wang et al. [111], in which they demonstrate that inhibition
of NAMPT aggravates the high fat diet (HFD)/oleic acid induced hepatic steatosis via suppression of
SIRT1-mediated signaling pathway. Moreover, administration of NMN, in a murine model of type 2
diabetes (T2D), restores HFD-induced p65 subunit acetylation of NF-κB and the inflammatory gene
response, improving also hepatic insulin sensitivity, via SIRT1 activation [112]. Similarly, the study by
Caton et al. [113] has reported that NMN administration has anti-inflammatory effects in pancreas
and improves insulin secretion in a mice model of diabetes fed with fructose-rich diet and that these
beneficial effects are partially blocked by inhibition of SIRT1.

Furthermore, other NAD+ precursors, such as NR, have also been tested for the treatment of
metabolic and/or inflammatory diseases. When NR enters the cell, it is metabolized into NMN
through a phosphorylation step catalyzed by the nicotinamide riboside kinases (NRKs) [114]. Some of
the beneficial effects that NR treatment has shown include to enhance the oxidative metabolism and
protect against metabolic abnormalities in mice fed a high-fat diet [115] or to attenuate inflammation
markers in hepatocytes treated with palmitic acid [116].

Finally, and given the promising beneficial effects obtained in murine models through
the application of NAD+ precursors, some clinical trials for evaluating safety and efficacy of these
compounds have also been conducted with healthy volunteers [117] (the results showed that chronic
NR supplementation is well-tolerated and elevates NAD+ levels) and patients suffering from different
pathologies such as Parkinson’s disease [6], cardiovascular disease [118], type 2 diabetes [119] or
NAFLD [120,121].

6.3. HuR

RNA-binding protein human antigen R (HuR) is a member of the embryonic lethal abnormal-vision
family of mRNA-biding proteins that contains three RNA-recognition motifs with capacity of linking
to 3′ UTR regions of the SIRT1 mRNA, providing stability to it [122].
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It is known that levels of HuR decreases significantly with age and that damage to DNA by
oxidative stress is able to trigger phosphorylation of HuR by checkpoint kinase 2 (Chk2), a protein
kinase activated in response to oxidative stress, causing the dissociation between HuR and SIRT1
mRNA [115]. In this way, a balance is maintained between DNA damage, apoptosis and senescence,
so that when significant DNA damage accumulates, the half-life of the SIRT1 mRNA is reduced by
HuR dissociation, thus favoring apoptosis [123].

HuR has been related not only with processes like oxidative stress or apoptosis but also with
promoting inflammation. The pro-inflammatory properties of HuR are linked to its interaction
with mRNAs encoding pro-inflammatory proteins, being TNF-α and IL6 the most prominent [124].
HuR stabilizes mRNAs of these pro-inflammatory cytokines and enhances their expression in different
cell types, including fibroblasts, T-cells and macrophages [124]. However, it has been established that
HuR is able to provide stability to SIRT1 mRNA, fact that could be translated into an anti-inflammatory
action of HuR due to the antagonistic relationship between SIRT1 and NF-κB. The study of
Wang et al. [125] shows that the relationship between HuR and SIRT1 around the inflammatory response
is more complex than might be expected. This manuscript shows that a knockdown of hepatic Slu7,
a splicing regulator, ameliorates inflammation and liver injury in a model of alcoholic steatohepatitis
in ethanol-fed mice. Reduced Slu7 expression increases the expression of SIRT1 full-length transcript
instead of the alternative splicing SIRT1-∆Exon 8 isoform induced by ethanol intake and that likely
contributes to hyper-acetylation of NF-κB resulting in transcription of NF-κB-dependent inflammatory
genes. In addition, it seems that HuR presents binding affinity to exon 8 region of SIRT1 to stimulate
the alternative splicing of SIRT1 pre-mRNA, and ethanol exposure probably favors the up-regulation
of hepatic HuR, thus reinforcing the pro-inflammatory properties of HuR [125].

6.4. AMPK

AMP-activated protein kinase (AMPK) is a serine/threonine kinase activated in response to
different types of cellular stresses [126]. This protein kinase is activated in response to low energy
levels conditions, in front of which it launches the catabolic pathways that lead to generation of ATP,
while suppressing anabolic pathways, in which ATP is consumed [126].

Most studies have established a negative association between AMPK and inflammation [127–129].
Moreover, various studies [130,131] describe how SIRT1 is a target protein of AMPK, being activated by
it. Thus, it is easy to find scientific publications in which researchers have tested different compounds
capable of activating the metabolic pathway of AMPK-SIRT1 as a therapeutic target for the treatment of
inflammatory liver diseases. The studies conducted by Chyau et al. [132], for example, used antrodan,
a purified β-glucan from the fungus species Antrodia cinnamomea, with potent hepatoprotective,
anti-inflammatory, hypolipidemic and anti-metastatic effects, among others, to treat fatty liver disease
in a murine model fed with a high-fat and high-fructose diet. The results showed antrodan alleviated
the HFD-induced NAFLD via the AMPK/SIRT1/PPAR-γ pathway. Antrodan, together with adiponectin,
induced conversion of AMPK into pAMPK, which, in turn, increased the ratio of NAD+/NADH and
upregulated SIRT1. This suppressed the hepatic insulin resistance, the level of triglycerides and de
novo lipogenesis, while enhanced β-oxidation, in addition to palliate, partially, the inflammatory cell
infiltration and the spotty focal necrosis at histological level.

Similarly, Nagappan et al. [133] administered cryptotanshinone, a diterpene originating from
the plant Salvia miltiorrhiza, to mice exposed to chronic alcohol feeding in order to evaluate anti-oxidative,
anti-fibrotic and anti-inflammatory properties of the compound in ethanol-induced liver injury.
The treatment with cryptotanshinone ameliorated ethanol-promoted hepatic steatosis and inflammation,
in addition to enhancing the expression of anti-oxidant genes. These effects are attributable to
the increase AMPK phosphorylation, triggered by the cryptotanshinone, that seems to be responsible
for the rise of phosphorylation and activation of SIRT1.
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6.5. PARP1

The poly[ADP-ribose] polymerase (PARP) family is composed by proteins implicated in processes
such as DNA damage response, cell death, cell cycle regulation and telomerase regulation [134]. Inside
this family, PARP1, a NAD+-dependent nuclear ADP-ribosyltransferase, is rapidly activated under
pathophysiological conditions in front of which it regulates the expression of disease-related genes
(as chemokines or pro-inflammatory mediators) via three mechanisms: (1) chromatin modulation;
(2) transcriptional regulation and (3) RNA regulation [135].

Both enzymes, PARP1 and SIRT1, use NAD+ as a cofactor in their catalytic activity. PARP1, once
activated, tends to maintain its activated status for a long time during which it can reduce NAD+

intracellular levels significantly. In fact, a correlation has been established between downregulation of
NAD+ by PARP1 and a decrease in SIRT1 activity level [128]. Conversely, activation of SIRT1 reduces
PARP1 activation [136]. But this antagonism between both enzymes is more complex than the simple
competition for the same molecule needed as a cofactor for their enzymatic activity. PARP1 and SIRT1
exert completely opposite regulatory effects over the same target proteins: while SIRT1 can activate
PGC-1α and FOXO [137], involved in regulation of mitochondrial biogenesis and oxidative metabolism,
PARP1 acts suppressing the activities of both transcription factors [137,138].

There are multiple examples of pharmacological modulation of PARP-SIRT1 axis, in any of the two
directions of the axis [139–141]. Focusing on the regulation of PARP1, numerous inhibitors have
been developed to treat cancer [142], cardiovascular disorders [143], metabolic disorders [144] and
autoimmune diseases [145], among other pathologies. Regarding the treatment of chronic inflammation
and liver diseases, pharmacological inhibition of PARP or genetic deletion of PARP1 was able to
reduce chronic inflammation and fibrosis induced by the treatment with CCl4 in mice [146], and also
attenuated the development of hepatic fibrosis, bile duct ligation-induced, in mice [146].

Moreover, treatment with an inhibitor of PARP1 in mice fed with a high-fat high-sucrose (HFHS)
diet reversed NAFLD through repletion of NAD+ [147]. The incorporation of PARP1 inhibitor to
the HFHS diet increased mitochondrial biogenesis and β-oxidation in the liver, in addition to reduce
ROS, endoplasmic reticulum stress, inflammation and fibrosis. Furthermore, using a hepatocyte
specific SIRT1 knockout mouse, it was shown that previous benefits found in mice fed with HFHS diet
supplemented with a PARP inhibitor were SIRT1-dependent [147].

6.6. CK2

Protein kinase CK2 is a constitutively expressed serine/threonine kinase which regulates many
cellular functions, including gene expression, translation, cell cycle progression and survival [148].
Also, the role of CK2 has been well characterized in signaling pathways involved in regulating
inflammatory responses [149]. In fact, CK2 activity promotes NF-κB activation acting at multiple levels
of its activation cascade, targeting not only the subunit p65 of NF-κB itself, but also the upstream
regulators of NF-κB: inhibitor of κB (IκB) and IKK complex [150]. For example, the treatment of
fibroblasts and hepatoma cells with IL1β leads to activation of NF-κB via phosphorylation of p65
subunit by CK2.

Anomalous CK2 signaling has been associated with development of numerous diseases with
inflammatory course, such as glomerulonephritis, atherosclerosis or cancer [151]. A good example of
this is represented by the study of Roelants et al. [152]. They observed an upregulation of the CK2
catalytic subunits in samples from renal cell carcinoma (RCC) tumors that did not correlate with
the amount of mRNA of these subunits present in most of the samples. Additionally, the positive
results that they obtained from the use of a CK2 inhibitor, in vitro, on a hypertriploid RCC cell line
revealed this strategy as promising for the treatment of this pathology. Another interesting example
is the one offered by the study of Choi et al. [153] in which they not only show the participation of
CK2 in inflammatory pathologies, such as obesity and NAFLD, but also identify the obesity-linked
Ser-164 phosphorylation of SIRT1 by CK2 as the main responsible mechanism for inhibiting the nuclear
localization of SIRT1 and for affecting, to some extent, its enzymatic activity. On the other hand,
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the report by Shu et al. [154] proves that in vitro stimulation with TNF-α on vascular smooth muscle
cells (VSMC) acts enhancing the axis CK2-SIRT1-smooth muscle 22α (SM22α), an actin-associated
protein suppressor of NF-κB signaling cascades in VSMCs, which limits the inflammatory response
in these cells and supposes a promising therapeutic pathway in preventing cardiovascular diseases.
Thus, these studies reveal the complex roles of CK2 in the pathogenesis of inflammatory diseases and
evidence the need to further research in order to evaluate the possibility of using CK2-SIRT1 axis as
therapy for a future possible treatment of inflammatory liver diseases.

6.7. Cathepsins

Cathepsins are a large and varied group of lysosomal proteases involved in the development of
numerous physiological functions such as bone resorption, innate immunity, apoptosis, angiogenesis,
and aging, among others [155,156]. Due to this, any deregulation in cathepsins entails the development
of numerous pathologies such as arthritis, periodontitis, pancreatitis, obesity, metastasis, stroke or
Alzheimer’s disease [155,156].

Although one of the mechanisms for the regulation of these enzymes is based
on the compartmentalization of them within the lysosomes, several authors have described the existence
of mechanisms involved in lysosomal permeabilization as a normal process mediating apoptosis
induced by diverse stimuli (oxidative stress, TNF-α or TRAIL cytokines, sphingosines, etc.) [157,158].

Moreover, various research groups, including ours [8], have demonstrated the proteolytic
rupture of SIRT1 by different cathepsins. Chen et al. [159] show in their study that SIRT1 is
degraded in embryonic progenitor endothelial cells subjected to different types of stress and
in which lysosomal permeabilization seems to occur. In addition, they also observe an in vitro
proteolytic processing of SIRT1 by cysteine cathepsins B, S and L. Oppenheimer et al. [160] have also
described a proteolytic processing of SIRT1 by cathepsin B, to generate a 75 kDa fragment in human
osteoarthritic chondrocytes exposed to TNF-α, with a relevant role in the survival of these cells after
inflammatory/apoptotic stimulation.

For our part, we described the existence of a cathepsin B/S-SIRT1 axis able to control inflammation
(Figure 1), in murine models of acute and chronic hepatic diseases, through its actuation over the key
transcription factor in regulating inflammation: NF-κB [8]. In our study, we observed, in vitro,
a progressive increase in the expression of cathepsins B and S during the activation of HSCs, the main
cells responsible for the generation of fibrosis in the liver. Furthermore, towards the end of the activation
process of HSCs, we could observe that SIRT1 expression levels decreased considerably with respect to
the initial stages of HSCs activation, coinciding with the maximum peak of cathepsins expression and
suggesting a possible proteolytic processing of SIRT1 by cathepsins. This was further corroborated by
using a cathepsin B inhibitor, Ca074-Me, and a cathepsin S inhibitor, Z-FL-COCHO, and whose presence
was sufficient to upregulate the protein level of SIRT1. Furthermore, the inhibition of cathepsins B and
S decreased the induction of inflammatory genes, induced by LPS/TNF treatment and dependent on
NF-κB, in HSCs [8].

Since different cell types participate in the inflammatory process, we decided to investigate
the expression and activity levels of cathepsins B and S, and of SIRT1 not only in HSCs but also
in hepatocytes and macrophages, in vitro, using primary cells and cell lines. We observed that
macrophages, in general, had the highest level of cathepsin B enzymatic activity. Of interest, this
high level cathepsin B activity coincided with the presence of processed isoforms of SIRT1 protein,
corresponding to two peptides of 75 and 35 kDa, instead of the full and active 110 kDa isoform, which
predominated in the other cell types. Therefore, our results suggested that, in macrophages, SIRT1
processing correlated with the highest degree of cathepsin B enzymatic activity present in these cells
and thus, with its potential inflammatory phenotype. Additionally, and as we expected, the use of
cathepsins B and S inhibitors was able to reduce in vitro the induction of certain inflammatory genes,
NF-κB- dependent, induced by LPS treatment in macrophages [8].
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Furthermore, we obtained similar results in vivo. The models of acute inflammation, induced
by LPS and of inflammation with presence of liver fibrosis, induced by LPS and CCl4, allowed us
to corroborate the results obtained with the use of cathepsins B and S inhibitors in a more complex
system than the one developed in vitro. In both models, LPS treatment induced the expression of
inflammatory genes encoding MCP1 and IL6, NF-κB dependent, which was significantly reduced
with the use of cathepsins B and S inhibitors. Treatment with cathepsins inhibitors also potentiated
SIRT1 activity, independently of LPS treatment, in both models, correlating increased SIRT1 activity
with decreased expression of NF-κB-dependent inflammatory genes. Furthermore, administration
of the cathepsin B inhibitor, Ca074-Me, in the acute inflammation model LPS-induced, decreased
liver damage generated by LPS treatment [8], underscoring the lysosomal permeabilization induced
by LPS/TNF [161] and the role of cathepsin B released to the cytosol, not only at the inflammatory
level, but also in hepatocyte apoptosis [162]. In addition, cathepsin B plays a relevant role in HSCs
activation and fibrogenesis. For instance, after chronic CCl4 administration, cathepsin B expression
increased in HSCs but not in hepatocytes, while its inactivation reduced inflammation and collagen
deposition [163] via an acid sphingomyelinase-dependent mechanism [164].

In summary, our results reveal the regulation that cathepsins B and S exert on the hepatic
inflammatory gene expression, NF-κB-dependent, through its inhibitory action on SIRT1. This opens
the door to the use of cathepsins inhibitors as one more possible therapeutic strategy for the treatment
of inflammatory liver diseases.

7. Other Modulators of SIRT1: From Resveratrol to STACs (Sirtuin Activating Compounds)

Finally, numerous pharmacological or natural (like resveratrol [165]) modulators of SIRT1 have
been reported to date, including sirtuin activating compounds (STACs, such as SRT1460, SRT1720,
SRT2183 or SRT2104) and sirtuin inhibiting compounds (STICs, such as splitomicin, tenovin or
EX-527) [166] (Figure 2).
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These STAC were investigated and designed as a result of the beneficial outcomes obtained,
at health level, in numerous studies in which overexpression of sirtuin was used in murine
models [167,168]. In fact, some of these synthetic STACs above mentioned, with much more potency
than resveratrol, have reached phase I and II of clinical trials, including SRT2104, SRT2379 and
SRT3025 [169] (www.clinicaltrials.gov). Even resveratrol and SRT501 (a micronized resveratrol
formulation) have reached phase IV of clinical trials. However, clinical trials with resveratrol showed
inconsistent beneficial effects between different trials [169], poor bioavailability [170] and problems
derived from its simultaneous activity on multiple targets [171,172]. In this sense, although SRT2104,
SRT2379 and SRT3025 have demonstrated a good tolerability in clinical trials with healthy volunteers,
only SRT2104 showed some beneficial effects in both healthy volunteers and in patients. SRT2104 proved
to improve the lipid profiles, although not the glucose and insulin control, of patients with diabetes
mellitus Type 2 [173]. It also demonstrated to reduce serum cholesterol, LDL levels and triglycerides
level in healthy cigarette smokers [174]. More important, SRT2104 was able to reduce LPS-induced IL6
and IL8 cytokines release after single and repeated administration in healthy volunteers [174].

Thus, further investigation on finding new SIRT1 activators or on improving current ones is needed.
But, it is also important to consider the need to investigate about SIRT1 activation at the multi-organ
level. SIRT1 is expressed in a wide variety of tissues, including metabolically active tissues, such as
liver, skeletal muscle, pancreas, adipose tissue, or brain, where it develops a wide range of physiological
processes [14]. For this reason, application of SIRT1 activators at systemic level should be carefully
studied, in order to avoid undesired effects due to activation of SIRT1 in multiple organs. An example
of this is that systemic SIRT1 activation promotes lipolysis in adipocytes, with the consequent release
of large amount of free fatty acids to circulation, that finally arrive to the liver, inducing or aggravating
a possible steatosis [12].

8. Other Considerations: Anti-Oxidant Properties of SIRT1

Another fact to keep in mind when talking about modulation of SIRT1 as anti-inflammatory
therapy for the treatment of liver diseases, specially metabolic ones, is the anti-oxidant properties
attributed to SIRT1 and other sirtuins (through deacetylation of transcription factors, such as FOXO
family or PGC-1α, with capacity to induce expression of numerous anti-oxidant enzymes) [175].
These properties could be beneficial because of the often-existing correlation between the presence
of metabolic diseases and an impairment of the antioxidant defense system in the liver and other
organs. For example, the presence of NAFLD in insulin-resistant subjects has been correlated with
existence of severe stress oxidative and endothelial dysfunction, independently from the presence of

www.clinicaltrials.gov


Int. J. Mol. Sci. 2020, 21, 3858 15 of 24

metabolic syndrome or adiposity [176]. At the same time, oxidative stress is associated with endothelial
dysfunction and cardiovascular disease, and in NAFLD patients, it triggers an inflammatory response
and deposition of extracellular matrix in the liver, favoring the development of NASH [177].

Moreover, there is evidence that oxidative stress and inflammation, processes that are
interconnected, are linked to senescence and aging. On the one hand, it seems that cells, during their
lifetime, gradually lose their ability to defend themselves from oxidative stress, with the consequent
accumulation of this over time [178]. On the other hand, it seems that as humans age, there is
a remodeling of the immune system that leads to the establishment of a chronic inflammatory state
(inflammaging) due to continuous exposure to different types of endogenous and environmental
stress [179]. Because of this, it would also be interesting to explore the benefits of SIRT1 modulators
in age-associated diseases, which share an inflammatory base and high levels of oxidative stress, such
as COPD (chronic obstructive pulmonary disease) or Alzheimer’s disease [180].

Finally, it would be interesting to note the differential effects of SIRT1 (pro-apoptotic or
cytoprotective) at the hepatic level, depending on the liver damage model being studied and
the consequences derived from a potentiation of SIRT1 taking into account these differences.
For example, publication of Farghali et al. [181] shows that in an in vivo acute model of
chemically induced hepatotoxicity by a single-dose treatment with D-galactosamine/lipopolysaccharide
(D-GalN/LPS) there is a downregulation of SIRT1 expression. In this model, the compensatory
anti-oxidant response generated to alleviate possible damage caused by the release of ROS and other
cytotoxic/inflammatory mediators by the immune system proves to be insufficient (at least at the doses
used in the study) and significant liver damage occurs. This decompensated ROS production can
negatively affect SIRT1 activity and expression level. Treatment of animals, prior to D-GalN/LPS
administration, with some STACs (quercetin and SRT1720) is sufficient to upregulate SIRT1 levels
and reduces D-GalN-LPS-induced hepatoxicity. However, in an in vivo chronic model of chemically
induced hepatotoxicity by repeated doses treatment with carbon tetrachloride (CCl4) in which there
is also an important liver damage and oxidative stress production by immune system cells and
derived from CCl4 metabolism, there is an upregulation of SIRT1 expression. In this case, authors
hypothesize that persistent oxidative stress induces SIRT1 expression via JNK-dependent FOXO1
activation and that elevated levels of ROS, as reported on CCl4-induced model of liver injury, can
initiate SIRT1-mediated apoptosis (through p53). This could be a good explanation of why, in this case,
when a STAC (quercetin) is administered repeatedly and in parallel with the administration of CCl4,
the liver damage produced in this model is mitigated even though quercetin reduces the expression of
SIRT1. So, it seems that quercetin is able to fine-tune SIRT1 expression to a lower but still effective level
to deal with xenobiotic-induced hepatotoxicity.

9. Conclusions

Sirtuin 1 (SIRT1) is a class III histone deacetylase whose catalytic activity is dependent on NAD+

cellular availability and that, therefore, can act as metabolic sensor. It has been reported high levels of
expression of SIRT1 in metabolic tissues such as liver, adipose tissue, brain, muscle or pancreas. In liver,
SIRT1 is crucial for glucose, lipids and cholesterol homeostasis. Consequently, it has been described
the participation of SIRT1, and other sirtuins, in some metabolic diseases, NAFLD (non-alcoholic fatty
liver disease) among them, both in animal models and humans.

The nuclear factor kappa B (NF-κB) is a family of inducible transcription factors present
in numerous cell types and whose main heterodimer is composed by p65/p50 subunits. It is considered
as a master regulator of the inflammatory response due to its capacity to regulate transcription of genes
involved in immune and inflammatory response.

Both, SIRT1 and NF-κB signaling pathways have evolved jointly for the maintenance of
homeostasis, allowing that body energy status to be coupled with inflammatory and immune response
in front of a possible noxious stimulus. However, the nature of this relationship is antagonistic and,
importantly, a direct association between SIRT1 and NF-κB has been established, in which SIRT1 is
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able to deacetylate p65 subunit of NF-κB, triggering the transport of NF-κB from nucleus to cytoplasm
and, therefore, suppressing its transcriptional activity. Interestingly, some authors have established
a possible association between the antagonistic relationship of SIRT1 and NF-κB in the hypothalamus,
a central regulator in maintaining the metabolic energy balance in the body, and the generation of
metabolic dysregulations in peripheral body tissues as potential sources of metabolic diseases [43].
For future studies, it would be interesting to explore whether NF-κB activation in the hypothalamus,
by over-nutrition, is accompanied by a decrease in SIRT1 and whether it may be the cause of metabolic
dysregulation in other organs, thus leading to metabolic diseases.

Diverse research groups have emphasized the relevance of SIRT1-NF-κB axis as a possible
therapeutic target for treatment of inflammatory diseases. In relation to this, it is necessary to highlight
that several upstream regulators of SIRT1 have been described, including IRF9, PPAR-α, NAMPT,
NMNAT, HuR, AMPK, PPAR1, CK2 and cathepsins, which are able to regulate inflammation through
SIRT1 modulation and that, as a consequence, have been involved in different inflammatory disorders,
including hepatic diseases. Also, some natural (resveratrol) or synthetic compounds (STACs) with
capacity to activating SIRT1 have been discovered and used to treat inflammatory diseases, some of
them even reaching I and II phase of clinical trials.

In addition, and due to known association between senescence and aging with oxidative stress and
inflammation, age-associated diseases could also benefit from the use of STACs. Of course, and in view
of the differential effects that SIRT1 can trigger depending on the nature and type of liver damage
present (acute or chronic), further research will be needed on studying the possible benefits/harms
that may result from the use of SIRT1 activators/inhibitors in each setting. While NF-kB is considered
a master regulator of inflammation in hepatic diseases, at the same time it can induce a pro-survival
response in hepatocytes, the main cell type present in the liver [41]. Therefore, it is important to
consider learning about the effect that these SIRT modulators have on the different types of cells present
in the liver, and not just inflammatory ones, and/or the use of the targeted delivery of these agents to
specific cell types, to better address their safe therapeutic use in liver diseases.

Given that the burden of liver pathologies throughout the world supposes numerous deaths every
year and that, until now, there is no effective cure for many of these pathologies, whose common
feature is usually the presence of inflammation to a greater or lesser extent, approaches attempting to
target the mechanisms that modulate inflammation, such as the SIRT1-NF-κB axis, could represent
a major breakthrough in the treatment of liver disease.
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