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Abstract

Background: Aortic aneurysm is a common but life-threatening disease among the elderly, for which no effective medical
therapy is currently available. Activation of prostaglandin E2 (PGE2) is known to increase the expression of matrix
metalloproteinase (MMP) and the release of inflammatory cytokines, and may thus exacerbate abdominal aortic aneurism
(AAA) formation. We hypothesized that selective blocking of PGE2, in particular, EP4 prostanoid receptor signaling, would
attenuate the development of AAA.

Methods and Findings: Immunohistochemical analysis of human AAA tissues demonstrated that EP4 expression was
greater in AAA areas than that in non-diseased areas. Interestingly, EP4 expression was proportional to the degree of elastic
fiber degradation. In cultured human aortic smooth muscle cells (ASMCs), PGE2 stimulation increased EP4 protein
expression (1.460.08-fold), and EP4 stimulation with ONO-AE1-329 increased MMP-2 activity and interleukin-6 (IL-6)
production (1.460.03- and 1.760.14-fold, respectively, P,0.05). Accordingly, we examined the effect of EP4 inhibition in an
ApoE2/2 mouse model of AAA infused with angiotensin II. Oral administration of ONO-AE3-208 (0.01–0.5 mg/kg/day), an
EP4 antagonist, for 4 weeks significantly decreased the formation of AAA (45–87% reduction, P,0.05). Similarly, EP4+/2/
ApoE2/2 mice exhibited significantly less AAA formation than EP4+/+/ApoE2/2 mice (76% reduction, P,0.01). AAA
formation induced by periaortic CaCl2 application was also reduced in EP4+/2 mice compared with wild-type mice (73%
reduction, P,0.001). Furthermore, in human AAA tissue organ cultures containing SMCs and macrophages, doses of the EP4
antagonist at 10–100 nM decreased MMP-2 activation and IL-6 production (0.660.06- and 0.760.06-fold, respectively,
P,0.05) without increasing MMP-9 activity or MCP-1 secretion. Thus, either pharmacological or genetic EP4 inhibition
attenuated AAA formation in multiple mouse and human models by lowering MMP activity and cytokine release.

Conclusion: An EP4 antagonist that prevents the activation of MMP and thereby inhibits the degradation of aortic elastic
fiber may serve as a new strategy for medical treatment of AAA.
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Introduction

Aortic aneurysm is the 13th leading cause of death in the United

States, with roughly 15,000 deaths per year [1]. After rupture

occurs, the probability of mortality is greater than 60% [1].

Ultrasonography screening studies of men over 60 years old have

shown that a small abdominal aortic aneurysm (AAA), i.e., 3 to

5 cm in diameter, is present in 4% to 5% of patients [2,3]. When

patients with a small AAA were followed for up to 6 years, AAA

diameter had increased in 55% of patients. The rate of increase in

diameter was more than 1 cm per year in 23% of patients, and

AAA diameter had expanded to 6 cm in 9% of patients, at which

point the risk of rupture significantly increases [3]. Although AAAs

typically continue to expand, increasing the likelihood of rupture

and consequent mortality, no effective pharmacological therapy to

prevent the progression of AAA is currently available.

The hallmarks of AAA are the presence of an inflammatory

infiltrate within the vascular wall, which is followed by proteolytic

degradation of extracellular matrixes (ECM) [4]. Proinflammatory

cytokines play an important role, particularly in the initiation of
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aneurysms [1]. Inflammatory mediators such as interleukin-6 (IL-

6), IL-1b and monocyte chemoattractant protein-1 (MCP-1) are

released in the AAA wall [5,6]. In an experimental AAA model of

ApoE2/2 mice infused with angiotensin II (AngII), IL-6 and

MCP-1 production were both increased [7]. In contrast, the

incidence of AAA was decreased after AngII infusion in mice

lacking either the IL-6 or MCP-1 receptor CCR2 [7]. Proteolytic

enzymes, together with inflammatory mediators, promote exten-

sive structural remodeling of the arterial wall, characterized by the

degradation of ECM such as elastic fibers [8]. Activation of

proteolytic enzymes, particularly matrix metalloproteinases-2

(MMP-2) and MMP-9 in the tunica media, is considered to be

an important cause. These MMPs exacerbate aortic dilatation, as

demonstrated in studies using human patients or genetically

engineered mice [8,9].

Cyclooxigenase-2 (COX-2)-dependent prostaglandin E2 (PGE2)

synthesis is induced during the development of aneurysms [5,10].

PGE2 synthesized by macrophages and smooth muscle cells

(SMCs) increases the production of MMPs [11,12] and stimulates

the production of cytokines [5]. Selective COX-2 inhibition, as

induced by celecoxib or genetic disruption of COX-2, decreased

AngII-induced AAA formation in mice [13,14]. Despite these

positive findings, however, administration of selective COX-2

inhibitors has increased the frequency of adverse cardiovascular

events, as reported in clinical studies [15,16]. Nonetheless,

inhibition of pathophysiologic COX-2-dependent PGE2 signaling

may still remain an attractive therapeutic strategy.

The present study was designed to examine the hypothesis that

the prostanoid receptor, which is downstream of COX-2-

dependent PGE2 signaling, plays a critical role in the formation

of AAA. We demonstrate that prostanoid receptor EP4 expression

was increased in SMCs from human AAA tissue, and that EP4

stimulation enhanced MMP-2 activation and IL-6 production.

Further, pharmacological inhibition or genetic disruption of EP4

signaling successfully attenuated AAA formation in mice. We also

demonstrate that an EP4 antagonist attenuated MMP-2 activation

and IL-6 production in the explants of human AAA.

Materials and Methods

Reagents
Antibody for EP4 was obtained from Cayman chemical (Ann

Arbor, MI, USA). Antibodies for a-smooth muscle actin and

CD68 were obtained from Sigma-Aldrich (St. Louis, MO, USA)

and Dako Cytomation (Glostrup, Denmark), respectively. ONO-

AE1-329 and ONO-AE3-208 were kindly provided by the ONO

pharmaceutical company (Osaka, Japan).

Human Aortic Samples
We obtained surgical specimens from individuals with AAA. We

performed ex vivo culture using fresh AAA samples during surgery as

described previously [17]. Briefly, tissues were minced to approx-

imately 1 mm thickness, and plated on 24-well plates with 10%

FBS/DMEM (Invitrogen, Carlsbad, CA, USA). Media was

changed 24 h after plating. We collected some conditioned media

after 48 h of incubation as a control for each well. Each well was

then treated with ONO-AE1-329 or ONO-AE3-208. Conditioned

media 48 h after treatment was obtained and subjected to gelatin

zymography and ELISA. To compare the effect of drugs among

samples, values for each well obtained from stimulated conditioned

media were normalized to values from control conditioned media.

To obtain the primary culture of human aneurysm aortic

smooth muscle cells (hAASMCs) from AAA tissue, the medial

layer of the AAA was cut into 1- to 2-mm3 pieces which were

placed in the explant culture on uncoated dishes in 10% FBS/

DMEM (Invitrogen). Culture medium was changed after 7 days

and thereafter every 3 days during a 3- to 4-week period until the

specimens became confluent. The purity of the hAASMCs was

confirmed by staining with a-smooth muscle actin. When

confluent, SMCs were transferred (at passage 2 or 3) onto

uncoated 6-well or 96-well plates for immunoblotting, gelatin

zymography, and ELISA. Human aortic SMCs (hASMCs) from

individuals who died of unrelated causes were obtained from

Lonza (Walkersville, MD, USA).

Cell Culture
THP-1cells were obtained from the Health Science Research

Resources Bank (Osaka, Japan). We maintained hAASMCs and

hASMCs in SmGM-2 containing 5% FBS and growth supple-

ments (Lonza) and maintained THP-1 cells in RPMI1640 (Wako,

Osaka, Japan) containing 10% FBS. For differentiation of THP-1

monocytes into adherent macrophages, cells were treated with

100 nM of phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich)

for 24 h as described previously [18].

AAA Mouse Models
The impact of genetic inhibition of EP4 on AAA formation was

examined using the heterozygous EP4 knockout mouse (EP4+/2)

since homozygous knockout is lethal [18]. AAA was induced by

periaoritc application of 0.5 M CaCl2 as described previously [17].

The sham group received saline instead of CaCl2. Aortic

morphometry was performed 4 weeks after CaCl2 treatment.

AAA was also induced after crossing EP4+/2 [18] with the

apolipoprotein E knockout mouse (ApoE2/2) (The Jackson

Laboratory, Bar Harbor, ME, USA). Briefly, EP42/2 mice with

a C57BL/6 genetic background [18] were crossed with ApoE2/2

mice with the same genetic background, and the resulting mice

(EP4+/2/ApoE+/2) were intercrossed to generate EP4+/2/

ApoE2/2 mice and their littermate controls (EP4+/+/ApoE2/2).

To induce AAA formation, male EP4+/2/ApoE2/2 mice and

littermate EP4+/+/ApoE2/2 mice were infused with AngII

(1,000 ng/min/kg; Sigma-Aldrich) via an osmotic minipump

(Alzet, model 2004, Cupertino, CA, USA) for 4 weeks, as

described previously [19].

The effect of pharmacological inhibition of EP4 was examined

in ApoE2/2 mice infused with AngII. Simultaneously, mice were

orally administered ONO-AE3-208 (0.005, 0.01, 0.05, 0.5 mg/

kg/day) as a bolus for 4 weeks. At the end of AngII infusion, the

mice were sacrificed by an overdose of pentobarbital and were

perfusion-fixed with a mixture of 3.7% formaldehyde in PBS at

physiological perfusion pressure. Abdominal aorta were photo-

graphed to determine their external diameter, and also used for

histological analyses. All aortic morphometries were performed by

an investigator in a blinded manner. For gelatin zymography, we

used freshly isolated aortic tissues at the end of AngII infusion.

Ethics Statement
All protocols using human specimens were approved by the

Institutional Review Board at Yokohama City University and all

samples were obtained after receiving written informed consent.

All animal studies were approved by the Institutional Animal Care

and Use Committees of Yokohama City University.

Quantitative Reverse Transcriptase-Polymerase Chain
Reaction (RT-PCR)

Isolation of total RNA and generation of cDNA were performed

and RT-PCR analysis was done as described previously [20]. The

EP4 Signaling in Aortic Aneurysm

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e36724



primers were designed based on rat nucleotide sequences of

human EP1(NM_000955) (59-GGA TGT ACA CCA AGG GTC

CAG-39 and 59-TCA TGG TGG TGT CGT GCA TC-39),

human EP2 (NM_000956) (59-AGG ACT GAA CGC ATT AGT

CTC AGA A-39 and 59-CTC CTG GCT ATC ATG ACC ATC

AC-39), human EP3 variants 1–9,11(NR_028292-4, NM_198714-

Figure 1. EP4 expression is increased in human AAA tissue. A, Immunohistochemistry for EP4 in human AAA tissues and aortic tissue from
individuals who died of unrelated causes (upper panels). Brown areas indicate expression of EP4. Elastica van Gieson-stained aortic tissues (lower
panels). Scale bars: 100 mm. B, Representative correlations between EP4 protein expression and elastic fiber formation in human AAA tissues. C,
Immunofluorescent staining for EP4 (green, left panel) and a-smooth muscle actin (red, middle panel). Merged image is shown in the right panel.
Arrows indicate EP4- and a-smooth muscle actin-positive cells. D, Immunofluorescent staining for EP4 (green, left panel) and CD68 (red, middle
panel). Merged image is shown in the right panel. Arrows indicate EP4- and CD68-positive cells. Scale bars: 20 mm. E, Expression of EP1–4 using
quantitative RT-PCR in hASMCs and hAASMCs. n = 5. F, Immunoblotting for EP4 and GAPDH in hASMCs incubated in the presence or absence of 1 mM
of PGE2 for 72 h. G, Quantification of F. n = 4–5. *, P,0.05; **, P,0.01; NS, not significant.
doi:10.1371/journal.pone.0036724.g001
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9, NM_001126044) (59-GGA CTA GCT CTT CGG ATA ACT-

39 and 59-GCA GTG CTC AAC TGA TGT CT-39), human EP4

(NM_000958) (59-AAC TTG ATG GCT GCG AAG ACC TAC-

39 and 59-TTC TAA TAT CTG GGC CTC TGC TGT G-39),

and mouse EP4 (59-TTC CCG CAG TGA TGT TCA TCT-39

and 59-CGA CTT GCA CAA TAC TAC GAT GG-39). Each

primer set was designed between multiple exons, and PCR

products were confirmed by sequencing. The abundance of each

gene was determined relative to the 18S transcript.

Immunoblot Analysis
Proteins from whole cells were analyzed by immunoblotting as

described previously [20].

Tissue Staining and Immunohistochemistry
Elastic fiber formation was evaluated by elastica van Gieson

staining. Immunohistochemical analysis was performed as de-

scribed previously [20,21]. A color extraction method using

Keyence software was performed to quantify elastic fiber

formation and expression of EP4.

Gelatin Zymography
MMP activity was examined by gelatin zymography as

described previously [17].

ELISA
IL-6 and MCP-1 in conditioned media were measured using

ELISA (R&D Systems, Minneapolis, MN, USA) according to the

manufacturer’s instructions.

Statistical Analysis
Data are shown as the mean 6 SEM of independent

experiments. Unpaired Student’s t-test, one-way ANOVA fol-

lowed by Student-Newman-Keuls multiple comparison test, and

Pearson’s Correlation Coefficient were used to determine the

statistical significance of the data. A value of P,0.05 was

considered significant.

Results

Prostaglandin E Receptor EP4 Was Up-regulated in
Aneurysmal Areas of Human Abdominal Aortas

In human tissue samples obtained from AAA surgeries, we

found that EP4 expression and elastic fiber degradation were both

enhanced in aneurysmal areas relative to that in normal areas.

Indeed, statistical analysis revealed that the correlation was

significant between the amount of EP4 expression and the degree

of elastic fiber degradation (p,0.0001 to 0.0168) (Figures 1A
and B, and Table 1).

Previous studies have demonstrated that EP4 is abundantly

expressed as primary PGE2 receptors in macrophages in

aneurysmal areas [22]. However, whether or not other cell types

such as ASMCs also express EP4 and other subtypes was not

determined. We found, by immunohistochemistry of tissue

samples, that EP4 was abundantly expressed in both a-smooth

muscle actin-positive cells, i.e., ASMCs, (Figure 1C) and in

CD68-positive cells, i.e., macrophages (Figure 1D). EP subtype

expression was further characterized in cultured hAASMCs

isolated from AAA tissue (Figure 1E). We found that EP4

mRNA expression was much greater than that of other EP

subtypes such as EP1, EP2, and EP3. In contrast, when hASMCs

isolated from normal aorta were examined, EP4 mRNA expres-

sion was not increased, suggesting that EP4 was increased only in

aneurysmal ASMCs. When normal hASMCs were stimulated with

PGE2, however, EP4 protein expression was significantly increased

(Figures 1F and G). Thus, we can tentatively speculate that local

production of PGE2 increased EP4 in the ASMCs in aneurysmal

areas, which might play a role in AAA exacerbation.

EP4 Stimulation Increased MMP-2 Activity and IL-6
Production in hAASMCs and Human AAA Tissue Organ
Cultures

Previous reports have demonstrated that MMP-2 and MMP-9,

which are respectively derived from SMCs and macrophages, play

important roles in the progression of aortic aneurysms [9]. We also

found that MMP-2 and MMP-9 were both abundant in the

supernatants of human AAA tissue organ cultures (Figure 2A).

We also confirmed that MMP-2 was produced exclusively by

hASMCs, and MMP-9 by THP-1 macrophage cells [9]. When

hAASMCs or human AAA tissue organ cultures were stimulated

with the EP4 agonist ONO-AE1-329, we found that MMP-2

activity was significantly increased in both preparations

(Figure 2B and C). In contrast, EP4 stimulation did not alter

MMP-9 activation in organ cultures (Figure 2D). We also

examined the effect of EP4 stimulation on cytokines and

chemokine because vascular inflammation is another prominent

feature of atherosclerotic AAA [1]. We found that EP4 stimulation

increased IL-6 production but decreased MCP-1 production in

both hASMCs (Figures 2E and G) and human AAA tissue organ

cultures (Figures 2F and H). These findings suggest that

enhanced EP4 signaling may increase MMP activity and

inflammatory response in AAA.

Genetic Deletion of EP4 Reduced AAA Formation in vivo
Since the above experiments implied that EP4 stimulation has

an exacerbating effect on AAA formation, we hypothesized that

inhibition of EP4 signaling might have a salutary effect. We

therefore examined the effect of genetic disruption of EP4

signaling by using EP4+/2 mice, because the total knockout of

EP4 is lethal during the neonatal period [18]. EP4 expression in

EP4+/2 mice was decreased to 4366% (aorta) and 63610%

(heart), relative to that of wild-type mice (n = 6, P,0.05).

Table 1. Correlation between elastic fiber formation and EP4
expression in AAA tissues.

age gender r

number of
sampling
point P value

1 76 M 20.5386 35 0.0008***

2 63 M 20.5645 41 0.0001***

3 76 M 20.8000 25 ,0.0001***

4 80 M 20.4607 29 0.011*

5 70 M 20.5454 39 0.0003***

6 76 M 20.7571 60 ,0.0001***

7 70 M 20.4333 30 0.0168*

8 89 F 20.5200 44 0.0003***

r: correlation coefficient; n: number of sampling points.
*, P,0.05;
**, P,0.01;
***, P,0.001.
doi:10.1371/journal.pone.0036724.t001
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When CaCl2 was applied to the mouse abdominal aorta [17],

aneurysmal formation with elastic fiber degradation was induced.

However, these changes were significantly decreased in EP4+/2

mice (Figures 3A and B). In the absence of CaCl2 application,

however, no significant difference between EP4+/2 and EP4+/+

mice was seen. Similarly, we examined AAA formation in EP4+/2

mice crossed with ApoE2/2 mice (EP4+/+/ApoE2/2), with AAA

induced by continuous AngII infusion [19]. We found that the

incidence of aortic aneurysm formation as well as elastic fiber

degradation was significantly decreased in EP4+/2/ApoE2/2

mice (Figures 4A and B). In the absence of AngII infusion,

however, no significant difference between EP4+/2/ApoE2/2 and

EP4+/+/ApoE2/2 mice was observed. Thus, in two distinct

models, EP4 deletion decreased AAA formation.

EP4 Antagonist Reduced AAA Formation in vivo
We also examined the effect of pharmacological inhibition of

EP4 by ONO-AE3-208, an EP4 antagonist [23], with AAA

Figure 2. EP4 signaling increased MMP-2 activation and IL-6 production in hAASMCs and human AAA tissues. A, Representative
images of gelatin zymography of human AAA tissue, hASMCs, and THP-1 treated with 100 nM of PMA. B, E and G, MMP-2 activation, IL-6, and MCP-1
production in supernatant of hAASMCs treated with or without 1 mM of ONO-AE1-329 (AE1–329) for 48 h, respectively. n = 5–7. C, D, F, and H, MMP-2
and MMP-9 activation, IL-6 and MCP-1 production in supernatant of human AAA tissue organ cultures incubated in the presence or absence of 1 mM
of ONO-AE1-329 (AE1–329) for 48 h, respectively. n = 10–11. *, P,0.05; **, P,0.01; ***, P,0.001; NS, not significant.
doi:10.1371/journal.pone.0036724.g002
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formation induced by AngII infusion in ApoE2/2 mice. ONO-

AE3-208 (0.005–0.05 mg/kg/day) was administered orally for 4

weeks. We found that elastic fiber degradation and thus AAA

formation were inhibited by ONO-AE3-208 in a dose-dependent

manner (Figures 5A, B and C). MMP-2 and MMP-9 activation

were increased by AngII infusion, but activation was decreased in

the presence of ONO-AE3-208 (0.05 mg/kg/day) (Figures 5D
and E).

EP4 Antagonist Inhibited MMP-2 Activation and IL-6
Production in Explants of Human AAA

We further examined the effect of the EP4 antagonist on

cytokine and chemokine production in human AAA tissues. ONO-

AE3-208 significantly decreased MMP-2 activation in a dose-

dependent manner (1028 M to 1027 M) (Figure 6A), which was

most likely related to ASMCs. MMP-9 activation was unaltered,

which was most likely related to macrophages (Figure 6B). IL-6

production was decreased in a dose-dependent manner at dosages

between 1029 M and 1027 M (Figure 6C), but MCP-1

production was unchanged (Figure 6D).

Discussion

Our study demonstrated that EP4 expression was increased in

the aneurysmal areas of human AAA tissues, both in ASMCs as

well as in macrophages in the lesion. Importantly, EP4 expression

was not increased in normal human ASMCs, but was induced

when normal cells were stimulated by PGE2. When EP4 was

stimulated in hAASMCs and AAA tissue organ cultures, both

MMP-2 activity and IL-6 production were increased. With these

findings in mind, we examined the effect of EP4 inhibition, either

by EP4 gene disruption (EP4+/2) or the use of an EP4 antagonist

(ONO-AE3-208). In various models of AAA, induced by CaCl2 or

AngII infusion in ApoE2/2 mice, EP4 inhibition significantly

decreased AAA formation. Furthermore, the EP4 antagonist

inhibited IL-6 production and MMP-2 activation in human AAA

tissues, suggesting a mechanism for EP4 antagonist-mediated

inhibition of AAA formation. Accordingly, we propose that EP4

inhibition may serve as an effective pharmacological therapy to

prevent the exacerbation of AAA in humans.

Many molecules have been explored as potential targets for

a pharmacological therapy of AAA. TGFb and AngII, for

Figure 3. CaCl2-induced AAA formation is attenuated in EP4+/2 mice. A, Representative images of elastica van Gieson-stained tissue of EP4+/2

and EP4+/+ mice treated with saline or CaCl2. Lower panels (Scale bars: 100 mm) show higher magnification portions of upper panel images (Scale
bars: 200 mm). B, Maximum aortic external diameter of AAA formation induced by CaCl2 in EP4+/2 and EP4+/+ mice treated with saline or CaCl2. n = 5–7.
***, P,0.001; NS, not significant.
doi:10.1371/journal.pone.0036724.g003
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example, are well known to be increased in AAA. However, it

remains controversial whether pharmacological inhibition of

these signals can provide effective therapy in AAA [24].

Because it is also well known that COX-2-dependent PGE2

synthesis is increased, leading to exacerbation of AAA, we

hypothesized that this may serve as a possible target for

pharmacotherapy as well. Indeed, a previous study demon-

strated that COX-2 inhibition by non-steroidal anti-inflammatory

drugs prevented AAA exacerbation [5]. Similarly, Gitlin et al.

showed that COX-2 deficient mice exhibited decreased AngII-

induced AAA formation [14]. These findings are in agreement

with the fact that PGE2 is synthesized via COX-2 at high

concentration in AAA walls [5,10], so inhibiting it may impede

AAA exacerbation.

Because recent clinical studies have shown that COX-2

inhibition per se can induce multiple cardiovascular adverse events

[15,16], we aimed in this study to inhibit processes further

downstream from the COX-2/PGE2 signal. For PGE2, there are

four receptor subtypes: EP1, EP2, EP3, and EP4 [25]. EP4 is

dominantly expressed in macrophages [26], and is a major

stimulator of cytokines and proteolytic enzymes production such as

MMPs. EP4 is therefore importantly involved in AAA pathophys-

iology, and many studies have demonstrated that EP4 signaling

increases MMP-9 activation in macrophages [27,28,29], leading to

exacerbation of AAA [9]. Thus, inhibition of EP4, particularly in

macrophages, may be of benefit in preventing AAA. Unexpect-

edly, however, a very recent study demonstrated that EP4

disruption in bone marrow-derived cells augmented elastin

fragmentation and exacerbated AAA formation [30]. Possible

reasons for this unfavorable finding may include that EP4

disruption increased MCP-1 because EP4 stimulation can inhibit

MCP-1 production in macrophages [31,32]. Consequently,

macrophage-selective inhibition of EP4 may not provide an

effective therapy for AAA.

Figure 4. AngII-induced AAA formation is attenuated in EP4+/2/ApoE2/2 mice. A, Representative images of elastica van Gieson-stained
tissue of EP4+/2/ApoE2/2 and EP4+/+/ApoE2/2 mice treated with saline or AngII. Lower panels (Scale bars: 100 mm) show higher magnification
portions of upper panel images (Scale bars: 200 mm). B, Maximum aortic external diameter of AAA induced by AngII in EP4+/2/ApoE2/2 and EP4+/+/
ApoE2/2 mice treated with saline or AngII. n = 4–6. **, P,0.01; ***, P,0.001; NS, not significant.
doi:10.1371/journal.pone.0036724.g004

EP4 Signaling in Aortic Aneurysm
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Our study, in contrast, demonstrated the effectiveness of

systemic administration of an EP4 antagonist, which inhibits the

EP4 signal in all cell types, particularly those with high EP4

expression. Importantly, our study demonstrated, for the first time,

that normal ASMCs can increase EP4 expression when stimulated

by PGE2. Thus, inflammation in AAA lesions may have increased

EP4 expression in ASMCs. The effectiveness of EP4 signaling

inhibition in ameliorating AAA exacerbation is also supported

by other findings in this study. EP4 stimulation increased IL-6

production and MMP-2 activation in ASMCs, and the use of

an EP4 antagonist inhibited IL-6 production and MMP-2

activation in human AAA tissue organ cultures. Although it is

known that MMP-2 is mainly expressed in hASMCs [9], PGE2-

mediated regulation of MMP-2 has not been demonstrated

previously. Here, we demonstrated that EP4 is a potent regulator

of MMP-2 in ASMCs and that this regulation can be indirectly

enhanced by IL-6. Our study also indicated that EP4 signaling is a

potent inducer of IL-6 production in ASMCs. Because IL-6 per se

can increase MMP-2 production [33], an EP4 antagonist might

indirectly inhibit MMP-2 production by regulating IL-6 in

ASMCs as well.

From the view point of pharmacological therapy, when 10 mg/

kg/day of ONO-AE3-208 was administered orally as a bolus, the

peak plasma concentration was 677 ng/ml (1.7 mM) after

0.25 hours, as shown in a previous study describing a different

use [23]. Accordingly, when 0.01 mg/kg/day of ONO-AE3-208

was orally administered in our study, the peak expected plasma

concentration in mice was approximately 1.7 nM. Since the Ki

value of ONO-AE3-208 was 1.3, 30, 790, and 2,400 nM for EP4,

EP3, FP, and TP, respectively [23], our dosages of the EP4

Figure 5. EP4 antagonist attenuated AngII-induced AAA formation in ApoE2/2 mice. A, Representative image of aorta of ApoE2/2 mice
treated with saline, AngII, or AngII+ONO-AE3-208 (AE3–208) (0.05 mg/Kg/d). Scale bar: 1 mm. B, Elastica van Gieson–stained tissue of aortas shown in
A. Lower panels (Scale bars: 100 mm) show higher magnification portions of upper panel images (Scale bars: 500 mm). C, Maximum aortic external
diameter of AngII-induced AAA formation induced by AngII in ApoE2/2 mice treated with saline, AngII or AngII+ONO-AE3-208. n = 8–20. D,
Representative images of gelatin zymography of AAA tissues of ApoE2/2 mice treated with saline, AngII, or AngII+ONO-AE3-208 (0.05 mg/Kg/d). E,
Quantification of D. n = 8–12. *, P,0.05; **, P,0.01; ***, P,0.001; NS, not significant.
doi:10.1371/journal.pone.0036724.g005
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antagonist are likely to have inhibited EP4 in a selective manner.

Indeed, this EP4 antagonist was effective in 0.01–0.5 mg/kg/day

in our mouse study.

In conclusion, this study demonstrated that selective EP4

inhibition was efficacious in inhibiting the exacerbation of AAA

formation in a number of mouse models. In particular, pharma-

cological inhibition of EP4 signaling by an EP4 antagonist was

effective at relatively low doses. Although we have not examined

the effect of EP4 inhibition on other tissues or organs that also

express high EP4, our study suggests, at the very least, that

pharmacological EP4 inhibition may serve as a new therapeutic

strategy for aneurysmal diseases for which effective medical

therapy is currently unavailable.
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