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Gödöllő, Hungary, 3 University of Veterinary Science, Faculty of Animal Hygiene and Herdhealth and

Veterinary Ethology, Budapest, Hungary

☯ These authors contributed equally to this work.

‡ These authors also contributed equally to this work.

* judit.cserepes@appcelltech.com (JC); horvath.akos@mkk.szie.hu (ÁH)

Abstract

Background

Cryopreservation of zebrafish embryos is still an unsolved problem despite market demand

and massive efforts to preserve genetic variation among numerous existing lines. Chilled

storage of embryos might be a step towards developing successful cryopreservation, but no

methods to date have worked.

Methods

In the present study, we applied a novel strategy to improve the chilling tolerance of zebra-

fish embryos by introducing a preconditioning hydrostatic pressure treatment to the

embryos. In our experiments, 26-somites and Prim-5 stage zebrafish embryos were chilled

at 0˚C for 24 hours after preconditioning. Embryo survival rate, ability to reach maturation

and fertilizing capacity were tested.

Results

Our results indicate that applied preconditioning technology made it possible for the chilled

embryos to develop normally until maturity, and to produce healthy offspring as normal, thus

passing on their genetic material successfully. Treated embryos had a significantly higher

survival and better developmental rate, moreover the treated group had a higher ratio of nor-

mal morphology during continued development. While all controls from chilled embryos died

by 30 day-post-fertilization, the treated group reached maturity (~90–120 days) and were

able to reproduce, resulting in offspring in expected quantity and quality.

Conclusions

Based on our results, we conclude that the preconditioning technology represents a signifi-

cant improvement in zebrafish embryo chilling tolerance, thus enabling a long-time survival.
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Furthermore, as embryonic development is arrested during chilled storage this technology

also provides a solution to synchronize or delay the development.

Introduction

Cryopreservation of gametes and embryos conserves biological resources. This technique has

successfully been applied in various areas, including assisted human reproduction [1–3], live-

stock breeding [4] and preservation of various species [5,6]. However, cryopreservation of zeb-

rafish embryos remains unsuccessful to date. Many obstacles prevent successful zebrafish

embryo cryopreservation:, a) highly impermeable chorion, b) high chilling sensitivity and c)

different water- and cryoprotectant permeability of various embryo compartments [7–9]. Sev-

eral cryopreservation techniques have been tested. Slow freezing has failed as a method

because intracellular ice formation was inevitable, regardless of cryoprotectants or the use of

aquaporins inserted into embryo membranes [10]. Several studies tested vitrification of

embryos from various fish species including zebrafish, however they resulted in either zero or

very limited survival, moreover none reported successful continued development passing the

larval stage [11–14].

Most studies focus on the high chilling sensitivity of fish embryos as one of the main obsta-

cles for a successful cryopreservation protocol. Various methods were used to reduce fish

embryo chilling injuries including embryonic dechorionation to facilitate cryoprotectant pene-

tration into embryos [14], selection of advanced embryonic stages that are more likely to sur-

vive [7,15,16], using of cryoprotectants to increase chilling tolerance [17–21], or partial removal

of the yolk from advanced-stage embryos [22], but none were successful. The major factors

affecting survival of chilled embryos include duration and temperature of exposure [16].

Over recent decades, zebrafish have gained prominence as an important model organism

across disciplines such as developmental biology, genetics, physiology, toxicology and environ-

mental genomics [23]. Additionally, comparative genomics between zebrafish and humans has

revealed a considerable amount of genetic homology. The high degree of similarity with the

human genome has propelled zebrafish as an important model organism for human disease

[24]. Consequently, the number of genetically modified zebrafish lines is rapidly growing.

However, the preservation of the numerous genetic variants is still the major problem.

While research and development in cryopreservation mainly aims to modify or refine exist-

ing procedures, a recently published technique exists that puts the cells themselves into the

focus. This procedure involved a mild, cell-specific stimulus by hydrostatic pressure treatment

(PTAT: pressure triggered activation of tolerance, formerly referred to as HHP or HP treat-

ment) to prepare cells for an upcoming stress factor (e.g., the ones associated with cryopreserva-

tion such as mechanic and osmotic stresses and the toxic effects of the cryoprotectants). As a

consequence, cell competency is improved together with continued development, differentia-

tion and performance [25]. PTAT-related studies have shown improvement in the cryotoler-

ance of various cell types, e.g. mouse and bovine embryos [26–28]; porcine and bovine sperm

[29]; porcine, bovine, mouse and human oocytes [30,31]; and umbilical cord blood [32]. In gen-

eral, cells treated with PTAT perform better in terms of cryosurvival, speed of recovery, contin-

ued in vitro development, fertilizing ability, embryo quality (number of cells, ratio of necrotic,

picnotic index), in vitro and in vivo developmental potential and live birth rate [30,33–35].

Recently, a possible molecular mechanism was uncovered regarding how PTAT treatment

improves bovine embryo cryosurvival [26]. Gene ontology analysis indicated that proper
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PTAT treatment promotes embryo competence through down-regulation of genes involved in

cell death and apoptosis and up-regulation of genes involved in RNA processing, cellular

growth and proliferation. Overall, PTAT treatment enhanced the competence of blastocysts

through modest transcriptional changes.

The objective of our study was to investigate whether PTAT treatment improves the chilling

tolerance of zebrafish embryos in terms of post-hatch survival. We further hypothesized that

PTAT-treated chilled embryos can develop into adult fish and that their reproductive perfor-

mance would be physiological.

Materials and methods

Animals and housing conditions

Wild-type zebrafish (Danio rerio) embryos of AB strain were used in all experiments. Zebrafish

was obtained from the breeding unit of Department of Aquaculture, Szent István University,

Gödöllő, Hungary. Parents (egg/sperm donors) were housed according to standard procedures

at 25 ± 2˚C, pH 7.0 ± 0.2 and a conductivity of 525 ± 50 mS (system water) with a 14:10 hour

light-dark photoperiod in a ZebTec (Tecniplast, Buguggiate, Italy) recirculating zebrafish

housing system. The system water is RO water amended with artificial sea salts (30g/ L Coral

Ocean Plus salt from ATI GmBH, Germany and 30g/L NaHCO3 from Sigma-Aldrich, MO,

US). The housing system from Tecniplast supplied the water and automatically adjusted the

pH and conductivity. The fish were fed twice a day with SDS—Small Granular (Akronom,

Budapest, Hungary) or Zebrafeed by Sparos (Olhão, Portugal).

Parents were spawned in pairs each week in double breeding tanks (Tecniplast, Buguggiate,

Italy) that allow eggs to fall through the perforated bottom of the inner tank to avoid cannibal-

ism by the parents. Ninety pairs provided embryos for these experiments. Parents were placed

into the breeding tanks 15–16 hours prior to spawning, with males and females separated by a

transparent removable wall. Immediately before spawning, the wall was removed, and the

parents were allowed to spawn. Following spawning, the parents were removed from the

breeding tanks.

All eggs fertilized from the breeding tanks were pooled, and then groups of 200 embryos

were collected and incubated in 10-cm Petri-dishes at 26˚C until treatment. The age of the

embryos for the experiments was set to 26-somites or Prim-5 stage.

Each experimental embryo group was handled separately after the treatment until 5 day-

post-fertilization (dpf) and the start of exogenous feeding. The water around the embryos

was completely changed once a day. At the stage of 5 dpf, each group of larvae was individu-

ally placed into 15-cm Petri-dishes and fed once a day with a mixture of banana worms

(Panagrellus nepenthicola) and SDS 100 feed dissolved in system water. Banana worms

derived from the Banana Worm Starter Culture of the University of Veterinary Medicine,

Budapest. The water around the larvae was completely changed once a day, 90 minutes after

feeding. Larval development was monitored daily under a Leica M205FA stereomicroscope

(Leica, Wetzlar, Germany) following the water change. Mortalities and possible develop-

mental defects (tail malformations, pericardial edema, trunk curvature) were recorded.

Health status was monitored daily, including normal feeding behavior and appetite, intact

skin and normal social behavior. Groups of larvae were placed into 3.5-L culture tanks in the

recirculating housing system on 15 dpf. The tanks were cleaned daily, and mortalities were

recorded.

Studies were conducted in the approved laboratory animal unit of Department of Aquacul-

ture of Szent István University, Hungary (permission number: PEI/001/1719-2/2015, issued by

Government Office for Pest County, Hungary).

Enhancement of chilling tolerance in zebrafish embryos
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Experiments including the breeding procedure were approved by the Animal Welfare

Committee of Szent István University, Hungary and by Government Office for Pest County,

Hungary (permission number: XIV-1-001/2301-4/2012, issued to Szent István University,

Hungary). We confirm that the embryo samples in this study did not originate from a third

party.

All treatments in this study were conducted on embryos in accordance with the 3R princi-

ple while independently feeding larval forms and adult fish were reared based on the Directive

2010/63/EU of the European Parliament and of the Council. The health status was monitored

daily. Regarding that survival rate was an endpoint as well, no euthanasia was applied during

the experiments. At the end of the experiments a decision to keep a fish alive was taken in

accordance with the Directive 2010/63/EU mentioned above. In case, selected fish would have

been euthanized using an overdose of tricaine methane sulfonate (MS222) by prolonged

immersion.

PTAT treatment

Embryos were aspirated in 2-ml luer lock syringes (B.Braun Melsungen AB, Melsungen, Ger-

many) in system water and locked by plastic luer lock caps. The syringes of the PTAT group

were then placed into the pressure chamber of a computer-controlled, programmable hydro-

static pressure device (GBOX 2010, Applied Cell Technology Ltd., Budapest, Hungary,

Fig 1A). The device was set to perform 5 MPa (one pascal (Pa), equal to one newton per square

metre [N/m2 or kg�m−1�s−2] or 145,04�10−6 psi) hydrostatic pressure for 90 min, at 25˚C. The

pressure build-up in the chamber and depressurization to atmospheric pressure was set to 6

sec / 10 MPa. The settings of the pressure device have been optimized in the preparatory phase

of this experiment. Several combinations of different pressure levels and durations have been

tested and the optimal settings have been defined based on the dose-response assay (unpub-

lished data).

Fig 1. Schematic diagram of the hydrostatic pressure device and the chilling curve applied for zebrafish embryos. (A) The capacity of the

pressure chamber is 100 cm3, the range of use is between 2 MPa and 90 MPa. The custom-made software runs the adjusted or cell-specific

preconditioning treatment by controlling hydrostatic pressure build up, holding and coming back to atmospheric pressure and the temperature in the

pressure chamber. The biological material is placed into an appropriate cell container (e.g. luer lock syringe) filled with the convenient fluid (this case

by system water). After proper closing cell container is merged into the pressure filled with water. (B) Groups of 26-somites or Prim-5 stage embryos

were placed on ice in zebrafish system water containing cryoprotectants. Cooling occurred according to the following cooling rates: 3.16˚C/min for

4.5 minutes, 0.28˚C/min for 22.5 minutes, 0.06˚C/min for 30 minutes, and 0.01˚C/min for 33 minutes. Embryos were kept at 0.0–0.3˚C for additional

22.5 hours (24 hours in total).

doi:10.1371/journal.pone.0171520.g001
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Chilled storage of embryos

Chilling was performed according to the modified protocol of Desai et al. [21]. Briefly, embryos

were placed into 50-ml screw-cap centrifuge tubes (Axygen, Union City, CA, USA) containing

10 ml of chilling medium (system water supplied with 1 M methanol and 0.1 M sucrose as cryo-

protectants) and placed on ice for 24 hours. The temperature was monitored (Fig 1B) and kept

constant at 0.0–0.3˚C during the entire chilling period. Cooling profile was measured using a

K-type thermocouple connected to a Digi-Sense DualLogR thermometer (Eutech Instruments,

Singapore). After the 24-hour exposure, embryos were transferred to a fine mesh dip net and

washed with system water for approximately 30 sec. The embryos were then placed into 10-cm

Petri-dishes, and further rearing was performed as described in section 2.1.

Spawning

Animals were spawned separately in spawning tanks with Leopard danio (Danio rerio var.

frankei) individuals at a sex ratio of 3:1 (three Leopard danio to one experimental fish) to keep

track of the zebrafish during experiments. Spawned Leopard danio fish derived from the same

source, from breeding unit of Department of Aquaculture, Szent István University, Gödöllő,

Hungary. Following spawning, fish were removed from the spawning tanks, and embryos

were incubated in 10-cm Petri-dishes until 10 dpf, as described in section 2.1.

Experimental design

Fish embryos were pooled on each experimental day. Then, embryos were randomly divided

and equally allocated to the experimental and control groups. Three consecutive experiments

were planned.

Experiment I. Safety of the PTAT treatment. The aim of the experiment was to test

whether PTAT treatment is safe and yields embryos that develop similarly to the untreated

controls. Embryos were either treated with PTAT (PTAT group) or kept at atmospheric pres-

sure (control group) for the same amount of time (n = 200 embryos per group) and then cul-

tured for 30 days. Hatching and/or embryo survival was compared on 6, 10 and 30 dpf. The

offspring morphology was compared on 10 and 30 dpf. Experiments were replicated four

times.

Experiment II. Embryo survival and continued development after PTAT treatment and

chilled storage. We hypothesized that PTAT treatment of embryos before chilled storage will

increase their survival rate. Experimental groups (n = 200 per group) were PTAT precondi-

tioned or incubated at 25˚C, then placed at 0.0–0.3˚C for 24 hours (PTAT chilled and control

chilled groups, respectively) and then cultured for 30 days. A third, untreated unchilled group

was used to monitor the breeding system.

Hatching rates on 6 dpf, survival rates every day, and morphology on 10 dpf and 30 dpf

were evaluated. Experiments were replicated four times.

Experiment III. Embryo development to maturity and ability to produce healthy off-

spring after PTAT treatment and chilled storage. We hypothesized that PTAT treatment

of embryos before chilled storage will actually enable them to develop to maturity and be able

to produce healthy offspring. Four experimental groups were created. Chilled groups (n = 100

per experimental groups) were treated with PTAT or incubated at atmospheric pressure and

then kept at 0.0–0.3˚C for 24 hours (PTAT chilled group and control chilled group, respec-

tively). Unchilled groups (n = 100 per group) were treated with PTAT or left at atmospheric

pressure and then incubated at 25˚C in parallel with the chilled storage of the chilled groups

(PTAT group and control group, respectively). Subsequently, all groups were cultured sepa-

rately until the proposed sexual maturity (~90–120 days), when the fish were spawned.

Enhancement of chilling tolerance in zebrafish embryos
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Ten fish from the unchilled groups and all fish from the PTAT chilled group that reached

maturity (n = 5) were propagated with six mating attempts for six consecutive weeks. After fer-

tilization, development of the offspring was evaluated on 5 dpf and 10 dpf. The morphological

characteristics of day 10 larvae were recorded and quantified. Fertilization experiments were

replicated six times.

The sample size used in each experiment was calculated based on the results of our pilot

study which aimed to develop the most effective treatment protocol (two sample mean and

standard deviation).

Statistical analysis

All data were analyzed using GraphPad Prism 6 software (GraphPad Software, Inc., La Jolla,

CA, USA). The survival data were analyzed by Kaplan-Meier nonparametric tests, nonpara-

metric logrank tests and Cox-regression tests (using Stata/SE 14 software, StataCorp LP, Col-

lege Station, TX, USA). To analyze morphology and fertility data, the appropriate ANOVA

followed by Tukey’s or Sidak’s post-hoc test as required or Student’s paired t-test (when com-

paring two variables) were performed. A probability value (p) of less than 0.05 was considered

significant. Values are presented as the mean ± SEM.

Results

Experiment I. Safety of PTAT treatment

The impact of PTAT treatment on embryo survival, development and morphology was studied

by examining two matching groups of animals (control and PTAT) cultured according to stan-

dard housing conditions.

Embryo survival and further development was not adversely affected by PTAT. Control

and PTAT-treated groups showed similar development without any differences in the hatch-

ing rate by 6 dpf (99.3 ± 0.3% for control and 98.7 ± 0.2% for PTAT). Similarly, survival was

the same on 10 dpf (98.1 ± 0.6% for control and 95.4 ± 2.4% for PTAT) and 30 dpf

(69.8 ± 0.8% for control and 69.1 ± 4.8% for PTAT) after fertilization. The morphological char-

acteristics (prevalence of normal morphology, occurrence of tail abnormalities and pericardial

edema) of the two groups were identical, both groups showed normal morphology.

Experiment II. Embryo survival and development after PTAT treatment

and chilled storage

The chilling sensitivity of 26-somites or Prim-5 stages zebrafish embryos with or without

PTAT preconditioning was next examined. The effects of PTAT and chilling on development,

hatching, survival and morphology were evaluated compared to control (chilled without

PTAT preconditioning).

Chilling for 24 hours has arrested the development of embryos and in both groups embryos

remained in the 26-somites or Prim-5 embryo stages by the end of the chilling process (Fig 2).

As it is shown in Fig 3, chilling survival was significantly improved by PTAT precondition-

ing. By 6 dpf, 37.6 ± 3.4% of embryos had hatched in the PTAT chilled group, compared to the

23.0 ± 3.8% for the control chilled group. By 10 dpf, heartbeat was detected in 17.1 ± 3.5% of

PTAT chilled larvae compared to 4.3 ± 1.7% of controls. On one hand, all chilled controls died

by 19 dpf. On the other hand, the average survival rate in the PTAT chilled group on 30 dpf

was 2.3 ± 1.0%. Kaplan-Meier analysis and the logrank test based on daily individual data until

30 dpf (Fig 3) revealed that the PTAT preconditioning was statistically significant for fish sur-

vival (p<0.0001). A semi-parametric Cox-regression provided similar results (p<0.001).

Enhancement of chilling tolerance in zebrafish embryos
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Embryo morphology was evaluated 10 days after fertilization by registering normal mor-

phology, the occurrence of tail abnormalities and pericardial edema. More morphologically

normal embryos were detected in the PTAT chilled group than in the control chilled group

(42.5 ± 23.7% vs. 22.1 ± 14.3% normal morphology; p = 0.1919; Fig 4). By 30 dpf, 66.7 ± 19.2%

of PTAT chilled individuals showed normal morphology.

Experiment III. Embryo development to maturity and ability to produce

healthy offspring after PTAT treatment and chilled storage

Knowing that PTAT preconditioning was successful, we next hypothesized that this treatment

would enable fish to reach maturity and produce healthy offspring.

Fig 2. Appearance of zebrafish embryos before and after PTAT treatment and after chilling. Zebrafish embryos at

26-somites and Prim-5 stages were submitted to PTAT treatment (A). The preconditioning caused no morphological changes on

embryos (B). The 24 hour long storage on ice arrested the development, after chilling (C) the embryos showed the same

developmental stages as before. The beneficial effect of PTAT treatment was remarkable right away after the chilled storage.

doi:10.1371/journal.pone.0171520.g002
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In the third experimental phase, all fish in the control chilled group died by 30 dpf (as in

Exp. II), whereas the PTAT chilled group grew to maturity. Thus, fertility results, viability and

morphology of the offspring were compared to the unchilled control and PTAT groups.

The two unchilled groups and the PTAT chilled group didn’t differ in terms of fertilization

rates (77.8 ± 2.9% for control, 73.5 ± 4.0% for PTAT and 67.2 ± 7.3% for PTAT chilled group;

Fig 5A), and the viability of offspring on 10 dpf (88.1 ± 2.2% for control, 87.3 ± 2.8% for

PTAT, and 78.1 ± 4.3% for PTAT chilled group; Fig 5B). Larvae with normal morphology on

10 dpf were similar in all groups (data not shown).

Discussion

The only promising way to preserve zebrafish embryos to date, despite all attempts, is the cryo-

preservation of isolated blastomeres. However, these cells do not develop after thawing, there-

fore germ-line chimerism was a suggested method to preserve embryonic genetic material

[36].

As cryopreservation trials failed, most of the experiments focuses on developing cold- or

chilled storage methods, however this area needs major developments as well. Lahnsteiner

tested different temperature and exposure times at different stages of embryo development

[16]. The maximal survival rate detected was from the Germ-ring stage to the Prim-25 stage

after short (60–180 min) exposure at 4˚C–8˚C (above 70%). However, 5-somite stage embryos

chilled at 1˚C became nonviable within 6 hours.

A remarkable improvement was reported by Desai and his colleagues [37]. They tested the

impact of chilling on 50% epiboly stage embryos exposed to 0˚C for different times using

methanol as a cryoprotectant. Survival was evaluated in terms of the hatching rate. As was

shown, 3–6 hours of chilling resulted in no significant differences in hatching rates (over

85%), while 18 and 24 hours of exposure, even with cryoprotectant, significantly decreased the

hatching rates (to less than 10%).

Fig 3. PTAT preconditioning decreases chilling sensitivity, and enhances embryo survival after

chilling. Kaplan-Meier estimates of zebrafish embryo survival in the first 30 day-post-fertilization. 200–200

embryos were randomized to PTAT and control groups, experiments were replicated four times. Embryos at

26-somites and Prim-5 stages were exposed to PTAT for 90 minutes or incubated at atmospheric pressure,

then were chilled on ice for 24h (PTAT chilled and CTRL chilled, respectively). No viable control embryo in the

CTRL chilled group was found after 19 dpf in any of our experiments. PTAT preconditioning was statistically

significant for fish survival (p<0.0001).

doi:10.1371/journal.pone.0171520.g003
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Fig 4. PTAT treatment improves the ratio of fish with normal morphology after 24 h chilled storage. Larval/fish morphology was evaluated

on 10 dpf and 30 dpf. (A) Mean values (± SEM) of ratio of morphologically normal larvae/fish per experiments (four repetitions) are presented.

Remarkably higher percentage of morphologically normal larvae/fish was detected in the PTAT-treated chilled group, compared to the untreated

chilled controls. No viable fish was found in the control chilled groups on 30 dpf. (B) Illustration of morphological abnormalities detected on 10 and

30 dpf.

doi:10.1371/journal.pone.0171520.g004
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Fig 5. PTAT helps to preserve fertility potential of chilled embryos. (A) Average fertilizing capacity of

adults developed from embryos chilled after PTAT (PTAT chilled), compared to the unchilled control (CTRL)

and unchilled PTAT (PTAT) groups. The fertilization rates are comparable. (B) Percentage of viable offspring

on 10 dpf. The offspring of fish derived from PTAT treated chilled embryos develop in the normal pace and

have normal morphology. Mean values (± SEM) of four replicates are presented.

doi:10.1371/journal.pone.0171520.g005
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PLOS ONE | DOI:10.1371/journal.pone.0171520 February 6, 2017 10 / 14



Compared to the former experiments a substantially different approach was taken in our

present study. Instead of fine-tuning the various steps of the chilling/cryopreservation proce-

dure, we applied a preconditioning treatment to the embryos before chilling. Thus, embryos

gained increased tolerance to the effects of chilling, survived and developed significantly better

compared to untreated controls.

In order to prove the beneficial effect of the PTAT preconditioning, we have tested the tech-

nology on a single selected developmental stage. Regarding that former results published by

Liu et al. [38] and Lahnsteiner et al. [18] showed the highest chilling tolerance around 24 hour-

post-fertilization stage, the chilling experiments were performed on embryos at this stage.

To prove the beneficial preconditioning effect, we conducted three experiments focusing

on 1) the safety of PTAT treatment (Experiment I—no chilling was involved), 2) the efficiency

of PTAT preconditioning to support embryo survival and continued development after chilled

storage (Experiment II), and 3) the long-term effects from pretreatment reaching maturity as

well as having offspring after the chilled storage (Experiment III).

Experiment I showed no difference in survival, development or morphology of the PTAT-

treated zebrafish embryos compared to untreated controls. This study is in agreement with

previous findings where gamete or embryo survival was not adversely affected by the optimal

hydrostatic pressure treatment [reviewed in: 30,34,35].

As shown in Experiment II, PTAT preconditioning significantly improved chilling toler-

ance of 26-somites or Prim-5 stage zebrafish embryos. Our results demonstrate that embryos

chilled without PTAT pretreatment are able to hatch; however, none of the untreated controls

survived beyond 19 day-post-fertilization, while several in the PTAT-preconditioned group

grew past 30 dpf. Moreover, the beneficial effects of the PTAT treatment were noticeable in

the increased ratio of larvae with normal morphology.

In comparison, previous studies reported very limited chilling survival of embryos from

zebrafish or other fish species even though they used either hatching [17,19–21] or stages close

to hatching [39] as endpoints of the experiments. To our knowledge, the present study is the

first to report that fish embryos survive until 30 dpf after 24 hours of chilled storage. These

results indicated that PTAT preconditioning significantly improves fish embryo chilling and

thus encouraged us to extend the examination period until maturity and to test spawning.

In the third experimental round (Experiment III), we investigated if PTAT-treated and

chilled zebrafish embryos can develop to sexual maturity and produce viable offspring. Our

findings suggest that not only does PTAT treatment improve chilling tolerance and enhance

survival, but fish developed from PTAT-pretreated and chilled embryos preserve their fertility

potential and are able to produce healthy offspring. Because offspring of chilled fish developed

at a normal pace with normal morphology, PTAT is also a safe procedure regarding

reproduction.

Currently, no direct information is available on the exact molecular mechanism of how

PTAT preconditioning enhances the chilling tolerance of zebrafish embryos. However, the

possible mechanism might be outlined based on scientific publications. As reported recently

(23), zebrafish embryos possess the ability to improve their cold tolerance: mild cold stress pre-

conditioning (16˚C for 24 hours) of 96 hpf embryos could significantly increase the survival

rate of forthcoming severe cold stress (exposure to 12˚C). Gene ontology enrichment analysis

revealed that RNA processing, ribosome biogenesis and protein catabolic processes were the

most highly overrepresented pathways after cold-induction. Parallel to these results, hydro-

static pressure pretreatment (PTAT treatment) of bovine embryos increased the recovery rate

of forthcoming vitrification accompanied by analogous gene expression changes: genes

involved in RNA processing, cellular growth and proliferation were up-regulated, while genes

belonging to cell death and apoptosis were down-regulated [26]. Increased gene expression of
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RNA processing and ribosome biogenesis processes indicates that embryos respond to the pre-

conditioning and prepare cells for the upcoming detrimental procedures. Similarly, down-reg-

ulation of cell death or apoptotic processes, while up-regulating catabolic processes of

denatured or misfolded proteins, can improve cellular integrity.

Unlike all other environmental stresses, the main advantage of hydrostatic pressure used in

PTAT treatments is that it acts immediately and uniformly at each point of the sample. There

are no penetration problems or gradient effects, and the PTAT can be applied with high preci-

sion, consistency and reliability [30].

Based on our results presented in this paper, we conclude that PTAT preconditioning has a

significant beneficial effect to enhance general resistance and developmental competence of

chilled zebrafish embryos. Regarding that the embryonic development is arrested during

chilled storage this technology provides a solution to synchronize or to delay the development

for experimental purposes. Moreover, treatment made it possible to create viable offspring,

which is a unique and remarkable step forward. Further improvement of PTAT-chilling/cryo-

preservation procedures have the potential for application in zebrafish shipment and trade

between laboratories as well as gene preservation.
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