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Abstract

Sensitivity analysis (SA) is an essential tool for modelers to understand the influence of model 

parameters on model outputs. It is also increasingly used in developing and assessing 

physiologically based kinetic (PBK) models. For instance, several studies have applied global SA 

to reduce the computational burden in the Bayesian Markov chain Monte Carlo-based calibration 

process PBK models. Although several SA algorithms and software packages are available, no 

comprehensive software package exists that allows users to seamlessly solve differential equations 

in a PBK model, conduct and visualize SA results, and discriminate between the non-influential 

model parameters that can be fixed and those that need calibration. Therefore, we developed an R 

package, named pksensi, to make global SA more accessible in PBK modeling. This package can 

investigate both uncertainty and sensitivity in PBK models, including those with multivariate 

model outputs. It also includes functions to check the convergence of the global SA results. 

Overall, pksensi improves the user experience of performing global SA and can create robust and 

reproducible results for decision making in PBK model calibration.
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1. Motivation and significance

Sensitivity analysis (SA) is a mathematical technique to investigate how variations in model 

parameters affect model outputs. An increasing number of studies use SA to determine 

which model parameters contribute to high variation in model predictions [1]. This 
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technique has also been applied in pharmacology and toxicology research [2,3]. 

Pharmacokinetic models describe the changes in the concentrations or amounts of a 

substance in the body over time (the various terms for the kinetic models, including 

“pharmacokinetic”, “toxicokinetic”, and “biokinetic” models, are used exchangeably here). 

The goal of SA in physiologically based kinetic (PBK) research is to examine the sensitivity 

of output variables, such as chemical concentrations in blood or tissues, with respect to input 

parameters, such as anatomical, physiological, and kinetic constants [4]. In addition, SA can 

guide experimental design and the parameter estimation processes [5]. For instance, SA can 

identify “unidentifiable” parameters that can lead to problems with numerical procedures 

used in parameter estimation [6]. It can be further inform parameter prioritization and 

parameter fixing before model calibration [7].

In our earlier work [7], we developed an updated workflow to apply global SA to reduce the 

computational burden in the Bayesian, Markov chain Monte Carlo (MCMC)-based 

calibration process of a physiologically based pharmacokinetic (PBPK) model. We used 

GNU MCSim [8], an effective simulation package for Bayesian population PBPK modeling, 

to calibrate the model. We found that the extended Fourier Amplitude Sensitivity Test 

(eFAST), a type of variance-based global SA algorithm, had the best balance of efficiency 

and accuracy for a sophisticated, multi-compartment, multi-dataset, and multi-metabolite 

PBPK model. This method was first introduced in 1973, [9] in a study of the sensitivity of 

coupled reaction systems that are constructed by differential equations with the numerous 

rate coefficients (the classic FAST method with the first-order effect only). It then evolved to 

estimate the Sobol’ sensitivity measure (the eFAST method with first- and total-order 

effects) [10]. The FAST algorithm creates the multidimensional space of input parameters 

through a “search-curve”. It is more computationally efficient in calculating the influence of 

model parameters than other global SA methods such as the Monte Carlo-based approaches 

[11,12]. Our previous work also found some efficient visualization approaches that can be 

used to distinguish between “influential” and “non-influential” parameters. This approach 

addresses common identifiability issues of PBPK model parameter that increase the 

computational burden of Bayesian analysis [13], and thereby reduce computational 

efficiency. We also developed approaches for communicating parameter sensitivity in 

decision making.

Most SA tools are constructed using scientific computing software, such as Matlab [14], 

python [15], and R [16]. The R software is widely used and includes numerous developed 

packages, such as sensitivity [17], which include tools to conduct local and global SA. The 

sensitivity package includes some functions to generate the parameter sequences by using 

different computing algorithms. Also, it provides a feasible way to integrate external 

modeling results. This computational approach can effectively address the heavy computing 

burden of numerical solutions within the pure R environment.

Several other R packages include SA tools and are freely available in the Comprehensive R 

Archive Network (CRAN). Although these tools provide various approaches to perform SA, 

they each individually have limitations for application to PBK modeling. For example, the 

estimated index in SA is not robust when using an inadequate sample size. However, there 

are no software packages that provide tools for assessing convergence. In addition, the 
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existing eFAST function does not include the feature to generate the random sampling curve 

that is needed to assess convergence. We present here an R package, called pksensi, which is 

designed to make SA more accessible and reproducible for pharmacological and 

toxicological research.

2. Software description

Our package can investigate both parameter uncertainty and sensitivity in a PBK model with 

multivariate model outputs. Moreover, it seamlessly integrates with both general ODE 

solvers available in R or as external C code, as well as the GNU MCSim software used for 

conducting sophisticated PBK modeling, including MCMC. The analytical framework in 

pksensi includes not only global SA but also the uncertainty analysis and diagnostic tools to 

support the modeling process.

2.1. Installation

This package can link with the R deSolve package, which includes a comprehensive 

integrator to solve ODE. The GNU MCSim can be installed by following the instruction in 

GNU MCSim’s manual on https://www.gnu.org/software/mcsim/mcsim.html or using the 

built-in function in pksensi.

2.2. Parameter matrix generation

We adopted eFAST, the widely used analysis of variance (ANOVA)-like global SA approach 

to decompose the variance to partial variances for multidimensional parameters in numerical 

models in this package. Most of the available eFAST functions, such as the algorithm to 

generate the parameter space and to set the sampling frequency, were sourced from the R 

sensitivity package [17]. The eFAST method computes the sensitivity index (SI) via 

ANOVA-like decomposition of the function for analysis. This type of global SA approach 

and the corresponding SI are also know as the Sobol’ method and Sobol’ index. Since the 

estimated SI is not stable (high variation) when using smaller sample sizes, we included a 

random phase-shift approach to conduct replicating sampling from random starting points 

across parameter space to test the convergence and robustness of the sensitivity indices. 

Considering the model that is built under y = f (xi). The sampling scheme can describe as,

xi = 1
2 + 1

πarcsin sin ωis + φi

where xi is the nominal value of the ith parameter, and ωi is a vector giving the set of 

frequencies, one frequency for each parameter, and φ is a random phase-shift coefficient 

ranged from 0 to 2π . For a given sample size, the SA should give similar SIs across each 

replication with random phase-shifts in order to be considered robust, or “converged”. For 

most Sobol’-based SA algorithms, a larger sample size is needed to reduce the probability of 

having negative SI estimates. However, eFAST estimates are always positive due to how it is 

constructed.

To investigate the convergence of SI, we adopted the “exam” approach that proposed 

previously [18]. This method quantitatively assesses convergence by computing the width of 
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95% confidence intervals of computed SI for all parameters across all time-points and output 

variables. Through the random phase-shift procedure, the replicated SI values can be 

repeatedly sampled independently. Therefore, they can be used to investigate the 

convergence of SI as,

CIi, t = max SIi, tub − SIi, tlb

where SIi, t
ub and SIi, t

ub are the upper and lower bound of the SI from the specific model output 

(i) at time (t). CIi,t is the corresponding convergence index.

In pksensi, we integrate the random phase-shift with eFAST to perform the sensitivity test 

for the whole modeling process. A function can sample and generate the testing parameter 

matrix based on a given argument of sample size and probability distribution (e.g., mean/s.d. 

of normal distribution, meanlog/sdlog of log-normal distribution, and minimum/maximum 

of uniform distribution). The number of model evaluations is equal to the sample size times 

the number of model parameters.

2.3. Modeling

pksensi also provides a useful function to solve ODEs in PBK models using analytical and 

numerical approaches. The solution can be calculated under the pure R programming 

environment by linking with R deSolve package [19]. However, the most efficient way to 

achieve high computational speed is through compiled, lower-level languages, such as 

FORTRAN, C, or C++ . Therefore, pksensi includes a function to compile and create 

dynamic-link libraries (.dll) on Windows and shared objects (.so) on Unix-liked systems 

(e.g., Linux and MacOS). This compiled program can load and execute through the build-in 

function in R. However, Windows users need to install Rtools to compile the source code by 

using the GNU GCC compiler. The C implementation of the example model can be found as 

an example within GNU MCSim [8]. The pksensi can also link with GNU MCSim to create 

the model program, which is used in solving each system of equations.

2.4. Uncertainty analysis

The general workflow of uncertainty and SA in pksensi is illustrated in Fig. 1. The 

uncertainty analysis is a crucial modeling process within SA. Sometimes, it is difficult to 

have informative data to set up the parameter distribution. An overly wide range for a 

parameter distribution might cause a numerical error at extreme values. On the other hand, 

overly narrower ranges might lead to predictions that cannot cover the range observed in the 

calibration data. Uncertainty analysis using Monte Carlo is an appropriate approach in the 

data-driven modeling process to address this problem. Before fitting the data to model, the 

Monte Carlo can be applied with a given distribution of model parameters to examine 

whether the experimental data are within the “rational” range of the distribution of model 

output. The pksensi also has a function that can link to GNU MCSim to conduct Monte 

Carlo analysis, which is built-into GNU MCSim, and then examine the simulation result. In 

addition, the users can also examine the model output that was generated by the parameter 

matrix from eFAST.
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2.5. Sensitivity analysis

Through the plotting functions in pksensi, time-dependent sensitivity measurements of first 

and total effects for all parameters can be plotted simultaneously. If the computed sensitivity 

indices show different values across replications under the same sample size, this indicates 

an inadequate sample number, which can create an unreliable result. It is essential to use a 

sufficient sample size to prevent incorrect judgments in parameter fixing. The package 

includes functions to check the convergence and sensitivity of model parameters, providing a 

means to assess the robustness of the sensitivity measurement. We also developed a “cut-

off”-based approach in this package to distinguish between “influential” and “non-

influential” parameters. Finally, this package also provides visualization tools for effective 

investigation and communication of results in decision support.

3. Illustrative examples

We show two example models to illustrate the use of pksensi in PBK modeling. In the first 

example, we used a generic, one-compartment model from httk package [20] to explain the 

overall workflow and the details in the simulation process. Users can refer to online 

vignettes and user manual in the CRAN (https://cran.r-project.org/web/packages/pksensi/

index.html) or the pksensi website (https://nanhung.rbind.io/pksensi/) for the detailed usage 

examples. The partial example of the R code and its result is given in Appendix and Fig. 2 

that comprises the following essential steps in the process.

1. Construct the model

2. Define initial conditions, output time steps and variables

3. Set parameter distributions

4. Conduct simulation

5. Uncertainty analysis

6. Check and visualize SA result

The first step is to prepare and construct the model. The model code can be written based on 

R deSolve and GNU MCSim format to provide the flexibility for the user. Then, one must 

set up the model variables and their initial conditions. Furthermore, the simulation time 

points have to provided in this part.

The next step is to identify the model parameters that will be examined in global SA and 

create the parameter matrix. After parameter selection, we have to assign each parameter a 

probability distribution over which to evaluate, such as a uniform distribution with specified 

min and max. The users then can use rfast99() with the above assignments (e.g., parameter 

names, sample number, parameter distribution, and its corresponding properties) to create 

the parameter matrix.

The final step is to solve the ODEs in the model by using the solve_fun() function and 

visualize the results. The result of the one-compartment model shows that body weight 

(BW) is a non-influential parameter for the blood concentration in the simulation (see 
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Appendix). In addition, use of the model code and solving engine from GNU MCSim 

(solve_mcsim()) can provide the fastest computational speed.

The second example uses the acetaminophen (APAP)-PBPK model, a complex model with 

multiple compartments, to demonstrate the reproducibility of our previous publication [7] 

and the capability of pksensi. The APAP-PBPK model describes the pharmacokinetics of 

parent APAP and its two metabolites, a glucuronide AG and a sulfate AS. We applied the 

comprehensive global SA workflow to the original published model with 21 model 

parameters [21]. Fig. 3 shows the time-dependent total SI computed for the global SA 

method. The heat map provides an alternative way to visualize the estimated results. Some 

parameters (e.g., CYP_Km) showed non-influential impact across all three output variables 

across the investigation time interval.

4. Impact and conclusions

Computational modeling has become an essential technique in modern scientific research to 

support hypotheses, experiments, and discoveries. Uncertainty and SA are essential tools for 

modelers in the conduct of model development and evaluation. Several packages on the 

CRAN repository and other software platforms had been built to perform global SA with a 

variety of algorithms, but none have included integration with ODE-based models, such as 

PBK models.

We initiated pksensi in order to facilitate a comprehensive and efficient global SA workflow 

in PBK modeling, filling a crucial gap for open-source modeling communities. It provides a 

straightforward application to investigate the impact of parameters on model outputs across 

simulation time-points and variables. We adopted the eFAST method, a common variance-

based SA that we found to have the best balance of efficiency and accuracy. In addition, the 

package also includes the ability to assess the convergence of SA results, which is rarely 

addressed in most global SA studies and software packages. We also developed functions to 

visualize the output results and help distinguish “influential” parameters from “non-

influential” parameters that can be fixed in model calibration. Our package makes global SA 

more accessible in PBK modeling.

The current version of pksensi includes both GNU MCSim and deSolve package as the 

main ODE solvers. We chose to integrate SA with GNU MCSim because the latter is a 

powerful open-source software package for dynamical simulation of biological-based 

models, mainly built for PBK research with probabilistic approaches [8]. Compared with the 

deSolve package, the GNU MCSim can provide better speed and efficiency to solve the 

ODEs in PBK models. Although pksensi provides the essential features and functions to 

install and link with GNU MCSim, conducting the uncertainty and SA in PBK modeling, the 

overall learning curve of this workflow might be steep for users that are not familiar with 

GNU MCSim from model development, debugging, and testing. Therefore, the general 

package, such as deSolve, can be an alternative option for R users. The flexibility of our 

package can help modelers quantify the influence of model parameters on model outputs. It 

addition, pksensi also has the potential to be applied in an interactive PBPK modeling 

platform that was mentioned in the recent study [22].
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It is worth noting that the current global SA results are conditional on the specific model and 

the given range of the model parameters. Other factors, such as the number of parameters 

examined, the parameter distributions/ranges, and the given dosing level in the PBK model 

might also have a potential impact on the level of importance of each parameter, but these 

“meta-uncertainties” are not currently addressed. Complex models with high parameter 

dimensionality are also challenging in global SA as they have higher computer demands. As 

approaches are developed to address these complexities, we hope to incorporate them into 

pksensi.

Overall, pksensi provides a comprehensive suite of features and functions for performing 

global SA for PBK models and can create robust and reproducible results for decision 

making in model development and calibration. Although pksensi used here is mainly for 

PBK modeling, it can also be applied to other ODE-based dynamic models in order to 

investigate the sensitivity of model outputs to input parameters.
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Appendix.: Example code

library(pksensi) 

library(httk)

# Example: One-compartment pbtk model

    ------------------------------------

# Step 1. Construct 1-cpt pbtk model for deSolve package

pbtk1cpt <- function(t, state, parameters) { 

 with(as.list(c(state, parameters)), {

  dAgutlument = - kgutabs * Agutlument 

  dAcompartment = kgutabs * Agutlument - ke *

     Acompartment

  dAmetabolized = ke * Acompartment 

  Ccompartment = Acompartment / vdist * BW;

  list(c(dAgutlument, dAcompartment, dAmetabolized), 

     “Ccompartment “ = Ccompartment)

 })

}

# Step 2. Define initial conditions, output time steps and variable

initState <- c(Agutlument = 10, Acompartment = 0,

  Ametabolized = 0)

t <- seq(from = 0.01, to = 24.01, by = 1)

outputs <- c(“Ccompartment “)
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# Step 3. Generate parameter matrix

## 3.1. Extract parameter value from httk package

pars1comp <- (parameterize_1 comp(chem.name = “

  acetaminophen “))

## 3.2. Set parameter distributions

q <- c(“qunif “, “qunif “, “qunif “, “qnorm “)

q.arg <- list(list(min = pars1comp$Vdist / 2, max

  = pars1comp$ Vdist * 2),

        list(min = pars1comp$kelim / 2, max =

          pars1comp$ kelim * 2),

        list(min = pars1comp$kgutabs / 2, max =

          pars1comp$kgutabs * 2),

        list(mean = pars1comp$BW, sd = 5))

## 3.3. Create parameter matrix 

set.seed(1234)

params <- c(“vdist “, “ke “, “kgutabs “, “BW “)

x <- rfast99 (params, n = 200, q = q, q.arg = q.arg,

  replicate = 10)

# Step 4. Conduct simulation (will take few minutes) 

out <- solve_ fun(x, time = t, func = pbtk1cpt,

  initState = initState, outnames = outputs)

# Step 5. Uncertainty analysis

pksim(out) # Use to compare with “real “ data (if any)

# Step 6. Check and visualize the result of

  sensitivity analysis

plot(out) # Visualize result 

check(out) # Print result to console
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Fig. 1. 
The proposed workflow for performing uncertainty and sensitivity analysis in the Bayesian 

MCMC model calibration process.
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Fig. 2. 
Example R script and its corresponding results for the application of the pksensi in one-

compartment pharmacokinetic modeling. Results can be checked directly in the R console 

through check() function, and the visualization result can output by plot() function.
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Fig. 3. 
Heat map representation of time-dependent total SI computed from 21 substance-specific 

parameters in APAP-PBPK model.
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Code metadata

 Current code version 1.2.0

 Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2020_29

 Legal Code License LPGL-3.0

 Code versioning system used git

 Software code languages, tools, and services used R

 Compilation requirements, operating environments & dependencies ggplot2, data.table, deSolve, dplyr, getPass, magrittr, 
foreach, parallel, doParallel, reshape

 If available Link to developer documentation/manual https://nanhung.rbind.io/pksensi/

 Support email for questions d99622005@ntu.edu.tw

Software metadata

 Current software version 1.2.0

 Permanent link to executables of this version https://cran.r-project.org/web/packages/pksensi

 Legal Software License GPL-3

 Computing platforms/Operating Systems Linux, MacOS, Microsoft Windows

 Installation requirements & dependencies ggplot2, data.table, deSolve, dplyr, getPass, magrittr, 
foreach, parallel, doParallel, reshape

 If available, link to user manual - if formally published include a reference to 
the publication in the reference list

https://cran.r-project.org/web/packages/pksensi/
pksensi.pdf

 Support email for questions d99622005@ntu.edu.tw
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