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Abstract. If T is a topology of open sets on a set X, a real-valued
function on X is of Baire class one over T , if it is the pointwise limit of a
sequence of functions in the corresponding ring of continuous functions
C(X). If F is a Bishop topology of functions on X, a constructive and
function-theoretic alternative to T introduced by Bishop, we define a
real-valued function on X to be of Baire class one over F , if it is the
pointwise limit of a sequence of functions in F . We show that the set
B1(F ) of functions of Baire class one over a given Bishop topology F on
a set X is a Bishop topology on X. Consequently, notions and results
from the general theory of Bishop spaces are naturally translated to the
study of Baire class one-functions. We work within Bishop’s informal
system of constructive mathematics BISH∗, that is BISH extended with
inductive definitions with rules of countably many premises.

1 Introduction

If T is a topology of open sets on a set X, a function f : X → R is of Baire
class one over T , if it is the pointwise limit of a sequence of functions in the
corresponding ring of continuous functions C(X). Such functions, which may
no longer be in C(X), were introduced by Baire in [2], suggesting the use of
functions, instead of sets, to tackle problems of real analysis. If B0(X) = C(X),
and if B1(X) is the set of all Baire class one-functions, one defines for every
ordinal α ≤ Ω, where Ω is the first uncountable ordinal Ω, the set

Bα(X) := Limp

( ⋃
β<α

Bβ(X)
)

,

where, if F(X) is the set of real-valued functions on X, Φ ⊆ F(X), and fn
p−→ f

denotes that f is the pointwise limit of (fn)∞
n=1, we set

Limp(Φ) :=
{
f ∈ F(X) | ∃(fn)∞

n=1⊆Φ

(
fn

p−→ f
)}

.

The theory of Baire class-functions is a function-theoretic version of the theory of
Baire sets i.e., of sets the characteristic function of which is in some Baire class1.
1 For that see the Lebesgue-Hausdorff theorem in [15], p. 393, and Lorch’s comment

in [16], p. 751, on the “coextension” of the two theories.
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Generalisations of Baire class functions between metrizable spaces are central
objects of study in descriptive set theory (see e.g., [13,14]), with Baire class
one-functions having applications to the theory of Banach spaces (see e.g., [9]).

The theory of Bishop spaces (TBS) is a function-theoretic approach to con-
structive topology within Bishop’s informal system of constructive mathematics
BISH. The fundamental notion of a function space, here called a Bishop space,
was only introduced by Bishop in [3], p. 71. The subject was revived much later
by Bridges in [5], where the notion of a Bishop morphism was also defined, and
by Ishihara in [11]. In [18–27] we try to develop TBS.

A Bishop topology of functions F on a set X is a set of real-valued functions
defined on X that satisfies the main properties of the set of all Bishop continuous
functions from R to R. A function φ : R → R is called (Bishop) continuous, if it
is uniformly continuous on every bounded subset B of R i.e., if for every bounded
subset2 B of R and for every ε > 0 there exists ωφ,B(ε) > 0 such that

∀a,b∈B

(
|a − b| ≤ ωφ,B(ε) ⇒ |φ(a) − φ(b)| ≤ ε

)
,

where the function ωφ,B : R+ → R
+, ε 	→ ωφ,B(ε), is called a modulus of continu-

ity for φ on B. Their set is denoted by Bic(R), and two functions φ1, φ2 ∈ Bic(R)
are equal, if φ1(a) = φ2(a), for every a ∈ R. The restriction of this notion of
continuity to a compact interval [a, b] of R is equivalent to uniform continuity.
By using this stronger notion of continuity, rather than the standard pointwise
continuity, Bishop managed to avoid the use of fan theorem in the proof of
the uniform continuity theorem and to remain “neutral” with respect to classi-
cal mathematics (CLASS), intuitionistic mathematics (INT), and intuitionistic
computable mathematics (RUSS).

Extending our work [22], where the Baire sets over a Bishop topology F are
studied, here we give an introduction to the constructive theory of Baire class
one-functions over a Bishop topology. In analogy to the classical concept, if F
is a Bishop topology on a set X, we define a function f : X → R to be of Baire
class one over F , if it is the pointwise limit of a sequence of functions in F . Our
constructive translation of the fundamentals of the classical theory of Baire class
one-functions (see e.g., [10]) within TBS is summarized by Theorem 1, according
to which the set B1(F ) of Baire class one-functions over F is a Bishop topology
on X that includes F . As we explain in Sect. 5, and based on the examples of
Baire class one-functions included in Sect. 4, this result offers a way to study
constructively classically discontinuous functions.

We work within BISH∗, that is BISH extended with inductive definitions
with rules of countably many premises. A formal system for BISH∗ is Myhill’s
system CST∗, developed in [17], or CZF with dependence choice3 (see [6], p. 12),
and some very weak form of Aczel’s regular extension axiom (see [1]).

2 It suffices to say that φ is uniformly continuous on every interval [−n, n], and the
quantification over the powerset of R is replaced by quantification over N.

3 Here we use the principle of dependent choice in the proof of Lemma 6.
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2 Fundamentals of Bishop Spaces

In this section we include all definitions and facts necessary to the rest of the
paper. All proofs not given given here are found in [18].

If a, b ∈ R, let a∨b := max{a, b} and a∧b := min{a, b}. Hence, |a| = a∨(−a).
If f, g ∈ F(X), let f =F(X) g :⇔ ∀x∈X

(
f(x) =R f(y)

)
, where for all definitions

related to R see [4], chapter 2. If f ∈ F(X) and (fn)∞
n=1 ⊆ F(X), the pointwise

convergence (fn)
p−→ f and the uniform convergence (fn) u−→ f on A ⊆ X are

defined, respectively, by

(fn)
p−→ f :⇔ ∀x∈A∀ε>0∃n0∈N∀n≥n0

(
|fn(x) − f(x)| < ε

)
,

(fn) u−→ f :⇔ ∀ε>0∃n0∈N∀n≥n0

(
U(A; f, fn, ε)

)
,

U(A; f, fn, ε) :⇔ ∀x∈A

(
|fn(x) − f(x)| < ε

)
.

A set X is inhabited, if it has an element. We denote by a, or simply by a, the
constant function on X with value a ∈ R, and by Const(X) their set.

Definition 1. A Bishop space is a pair F := (X,F ), where X is an inhabited
set and F is an extensional subset of F(X) i.e., [f ∈ F & g =F(X) f ] ⇒ g ∈ F ,
such that the following conditions hold:
(BS1) Const(X) ⊆ F .
(BS2) If f, g ∈ F , then f + g ∈ F .
(BS3) If f ∈ F and φ ∈ Bic(R), then φ ◦ f ∈ F .

(BS4) If f ∈ F(X) and (fn)∞
n=1 ⊆ F such that (fn) u−→ f on X, then f ∈ F .

We call F a Bishop topology on X. If G := (Y,G) is a Bishop space, a Bishop
morphism from F to G is a function h : X → Y such that ∀g∈G

(
g ◦ h ∈ F

)
. We

denote by Mor(F ,G) the set of Bishop morphisms from F to G. If h ∈ Mor(F ,G),
we say that h is open, if ∀f∈F ∃g∈G

(
f = g ◦ h

)
.

A Bishop morphism h ∈ Mor(F ,G) is a “continuous” function from F to G.
If h ∈ Mor(F ,G) is a bijection, then h−1 ∈ Mor(G,F) i.e., h is a Bishop isomor-
phism, if and only if h is open. Let R be the Bishop space of reals (R,Bic(R)).
It is easy to show that if F is a topology on X, then F = Mor(F ,R) i.e., an
element of F is a real-valued “continuous” function on X. A Bishop topology F
on X is an algebra and a lattice, where f ∨ g and f ∧ g are defined pointwise,
and Const(X) ⊆ F ⊆ F(X). If F∗(X) denotes the bounded elements of F(X),
then F ∗ := F ∩F

∗(X) is a Bishop topology on X. If x =X y is the given equality
on X, a Bishop topology F on X separates the points of X, or F is completely
regular (see [19] for their importance in the theory of Bishop spaces), if

∀x,y∈X

[
∀f∈F

(
f(x) =R f(y)

)
⇒ x =X y

]
.

In Proposition 5.1.3. of [18] it is shown that F separates the points of X if and
only if the induced by F apartness relation on X

x �=F y :⇔ ∃f∈F

(
f(x) �=R f(y)

)
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is tight i.e., ¬(x �=F y) ⇒ x =X y. We use the last result in the proof of
Proposition 1(iv). An apartness relation on X is a positively defined inequality
on X. E.g., if a, b ∈ R, then a �=R b :⇔ |a − b| > 0. In Proposition 5.1.2. of [18]
we show that a �=R b ⇔ a �=Bic(R) b.

Definition 2. Turning the definitional clauses (BS1) − (BS4) into inductive
rules, the least topology

∨
F0 generated by a set F0 ⊆ F(X), called a subbase

of
∨

F0, is defined by the following inductive rules:

f0 ∈ F0

f0 ∈
∨

F0
,

f ∈
∨

F0, g ∈ F(X), g =F(X) f

g ∈
∨

F0
,

a ∈ R

a ∈
∨

F0
,

f, g ∈
∨

F0

f + g ∈
∨

F0
,

f ∈
∨

F0, φ ∈ Bic(R)
φ ◦ f ∈

∨
F0

,
f ∈ F(X),

(
g ∈

∨
F0, U(X; f, g, ε)

)
ε>0

f ∈
∨

F0
,

where the last rule is reduced to the following rule with countably many premisses

f ∈ F(X), g1 ∈
∨

F0, U(X; f, g1,
1
2 ), g2 ∈

∨
F0, U(X; f, g2,

1
4 ), . . .

f ∈
∨

F0
.

The above rules induce the corresponding induction principle Ind∨
F0 on

∨
F0.

If A ⊆ X, the relative topology F|A on A has the set {f|A | f ∈ F} as a subbase.
Unless otherwise stated, from now on, X,Y are inhabited sets, and F,G are
Bishop topologies on X and Y , respectively.

3 The Bishop Topology of Baire Class One-Functions

Definition 3. A function g ∈ F(X) is called of Baire class one over F , or
simply of Baire class one when F is clear from the context, if there is a sequence
(fn)∞

n=1 ⊆ F such that (fn)
p−→ g on X. We denote their set by B1(F ).

Lemma 1. Let (fn)∞
n=1 ⊆ F(X) and g ∈ F(X) with (fn)

p−→ g. If x ∈ X, there
is Mx > 0, such that {fn(x) | n ≥ 1} ∪ {g(x)} ⊆ [−Mx,Mx].

Proof. Let n0 ≥ 1 such that if n ≥ n0, then |fn(x) − g(x)| ≤ 1, hence
|fn(x)| ≤ |fn(x) − g(x)| + |g(x)| ≤ 1 + |g(x)|. If Mx := max

{
1 +

|g(x)|, |f1(x)|, . . . , |fn0−1(x)|
}
, then |fn(x)| ≤ Mx, for every n ≥ 1, and |g(x)| ≤

Mx.

Lemma 2. If g ∈ B1(F ) and φ ∈ Bic(R), then φ ◦ g ∈ B1(F ).

Proof. Let (fn)∞
n=1 ⊆ F such that (fn)

p−→ g. If x ∈ X and ε > 0 are fixed,
there is n0

(
ωφ,[−Mx,Mx](ε)

)
such that for every n ≥ n0

(
ωφ,[−Mx,Mx](ε)

)
we have

that |fn(x) − g(x)| ≤ ωφ,[−Mx,Mx](ε). Since fn(x) ∈ [−Mx,Mx], for every n ≥ 1,
and g(x) ∈ [−Mx,Mx], by the uniform continuity of φ we have that

|fn(x) − g(x)| ≤ ωφ,[−Mx,Mx](ε) ⇒ |φ(fn(x)) − φ(g(x)| ≤ ε.

Hence, for every n ≥ m0(ε) := n0

(
ωφ,[−Mx,Mx](ε)

)
we have that |(φ ◦ fn)(x) −

(φ ◦ g)(x)| ≤ ε. Since ε > 0 is arbitrary, we get (φ ◦ fn)(x) n−→ (φ ◦ g)(x). Since
x ∈ X is arbitrary, we get φ ◦ fn

p−→ φ ◦ g.
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Note that (R,∨,∧) is not a distributive lattice, since not even (Q,∨,∧) is
one. For the properties of a ∧ b and a ∨ c used in the next proof see [7], p. 52.

Lemma 3. If a, b, c,M ∈ R and M > 0, the following hold.
(i) If a ≤ b, then a ∨ c ≤ b ∨ c and a ∧ c ≤ b ∧ c.
(ii) [a ∨ (−M)] ∧ M = [a ∧ M ] ∨ (−M).

Proof. (i) Since b ≤ b∨c, we get a ≤ b∨c. Since also c ≤ b∨c, we get a∨c ≤ b∨c.
Since a ∧ c ≤ a ≤ b, and since also a ∧ c ≤ c, we get a ∧ c ≤ b ∧ c.
(ii) By Corollary 2.17 in [4], p. 26, a > −M or a < M . If a > −M , then
[a∨ (−M)]∧M = a∧M and, since a,M > −M we also get a∧M > −M , hence
[a∧M ]∨(−M) = a∧M . If a < M , and since also −M < M , we get a∨(−M)∨M ,
hence [a ∨ (−M)] ∧ M = a ∨ (−M). Moreover, [a ∧ M ] ∨ (−M) = a ∨ (−M) and
the required equality holds.

Lemma 4. If g ∈ B1(F ) is bounded by some M > 0, there is a sequence
(hn)∞

n=1 ⊆ F such that (hn)
p−→ g and hn is bounded by M , for every n ≥ 1.

Proof. If (fn)∞
n=1 ⊆ F such that (fn)

p−→ g, let hn := [fn ∨ (−M)] ∧ M ∈ F ,
for every n ≥ 1. We show that (hn)

p−→ g. Let x ∈ X, ε > 0 and n0(ε) ≥ 1,
such that for every n ≥ n0(ε) we have that |fn(x) − g(x)| ≤ ε, or equivalently
g(x)− ε ≤ fn(x) ≤ g(x)+ ε. By Lemma 3(i), and since −M ≤ g(x) ≤ M , we get

fn(x) ∨ (−M) ≤ [g(x) + ε] ∨ (−M) = g(x) + ε.

Hence

[fn(x) ∨ (−M)] ∧ M ≤ fn(x) ∨ (−M) ≤ [g(x) + ε] ∨ (−M) = g(x) + ε

i.e., hn(x) − g(x) ≤ ε. Since g(x) − ε ≤ fn(x), by Lemma 3(i) we get [g(x) − ε] ∧
M ≤ fn(x) ∧ M . Since g(x) − ε ≤ g(x) ≤ M , we get g(x) − ε = [g(x) − ε] ∧ M ≤
fn(x) ∧ M, hence by Lemma 3(ii) we get

g(x) − ε ≤ fn(x) ∧ M ≤ [fn(x) ∧ M ] ∨ (−M) = [fn(x) ∨ (−M)] ∧ M

i.e., g(x) − ε ≤ hn(x), which implies g(x) − hn(x) ≤ ε. Since we have already
shown that hn(x)−g(x) ≤ ε, by the definition of |hn(x)−g(x)| we conclude that
|hn(x) − g(x)| ≤ ε, for every n ≥ n0(ε). Of course, |hn| ≤ M , for every n ≥ 1.

The proofs of the following two lemmas for B1(X) (see [8]) are constructive.

Lemma 5. Let (gk)∞
k=1 ⊆ B1(F ) and (Mk)∞

k=1 ⊆ R with Mk > 0, for every k ≥
1, and

∑∞
k=1 Mk ∈ R. If |gk| ≤ Mk, for every k ≥ 1, then g =

∑∞
k=1 gk ∈ B1(F ).

Proof. Since gk is bounded by Mk, for every k ≥ 1, by Lemma 4 there is
(fk

m)∞
m=1 ⊆ F with fk

m
p−→ gk and |fk

m| ≤ Mk. If n ≥ 1, let hn :=
∑n

k=1 fk
n =

f1
n + f2

n + . . . + fn
n ∈ F. Let ε > 0. Since

∑∞
k=1 Mk ∈ R, there is N ≥ 1 with
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∑∞
k=N+1 Mk ≤ ε

3 . If x ∈ X, there is n0 ≥ N , such that for every n ≥ n0 we have
that |gk(x) − fk

n(x)| ≤ ε
3N , for every k ∈ {1, . . . , N}. If n ≥ n0, then

|g(x) − hn(x)| :=
∣∣∣∣

∞∑
k=1

gk(x) −
n∑

k=1

fk
n

∣∣∣∣

≤
∣∣∣∣

n∑
k=1

gk(x) − fk
n

∣∣∣∣ +
∣∣∣∣

∞∑
k=n+1

gk

∣∣∣∣

≤
n∑

k=1

∣∣gk(x) − fk
n

∣∣ +
∞∑

k=n+1

|gk|

=
N∑

k=1

∣∣gk(x) − fk
n

∣∣ +
n∑

k=N+1

∣∣gk(x) − fk
n

∣∣ +
∞∑

k=n+1

|gk|

≤
N∑

k=1

∣∣gk(x) − fk
n

∣∣ +
n∑

k=N+1

∣∣fk
n

∣∣ +
n∑

k=N+1

|gk(x)| +
∞∑

k=n+1

|gk|

=
N∑

k=1

∣∣gk(x) − fk
n

∣∣ +
n∑

k=N+1

∣∣fk
n

∣∣ +
∞∑

k=N+1

|gk|

≤
N∑

k=1

ε

3N
+

n∑
k=N+1

Mk +
∞∑

k=N+1

Mk

≤ N

(
ε

3N

)
+

ε

3
+

ε

3
= ε.

Lemma 6. If (gn)∞
n=1 ⊆ B1(F ) and g ∈ F(X) with (gn) u−→ g, then g ∈ B1(F ).

Proof. Using dependent choice there is a subsequence (gnk
)∞
k=1 of (gn)∞

n=1 with
U

(
X; g, gnk

, 1
2k

)
, for every k ≥ 1. Let hk := gnk+1 − gnk

∈ B1(F ). If x ∈ X, then

|hk(x)| ≤ |gnk+1 − g(x)| + |g(x) − gnk
(x)| ≤ 1

2k+1
+

1
2k

=
3
2

1
2k

=: Mk.

By Lemma 5 we have that h :=
∑∞

k=1 hk ∈ B1(F ). Since

h(x) = lim
N→∞

N∑
k=1

(
gnk+1(x) − gnk

(x)
)

= lim
N→∞

[(
gn2(x) − gn1(x)

)
+ . . . +

(
gnN+1(x) − gnN

(x)
)]

= lim
N→∞

(
gnN+1(x) − gn1(x)

)
= lim

N→∞
(
gnN+1(x)

)
− gn1(x)

= g(x) − gn1(x),

we get g = h + gn1 ∈ B1(F ), as B1(F ) is trivially closed under addition.
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Theorem 1. B1(F ) is a Bishop topology on X that includes F .

Proof. B1(F ) is an extensional subset of F(X), since if g ∈ F(X) and (fn)∞
n=1 ⊆

F such that (fn)
p−→ g on X, then if g∗ =F(X) g, we also get (fn)

p−→ g∗ on X.
Clearly, F ⊆ B1(F ), and hence Const(X) ⊆ B1(F ). Moreover, B1(F ) is closed
under addition. By Lemma 2 B1(F ) is closed under composition with elements
of Bic(R), and by Lemma 6 B1(F ) is closed under uniform limits.

By Theorem 1, if g1, g2 ∈ B1(F ), then g1 ∨ g2, g1 ∧ g2, g1 · g2, and |g1| are in
B1(F ). These facts also follow trivially by the definition of B1(F ). The impor-
tance of Theorem 1 though, is revealed by the use of the general theory of Bishop
spaces in the proof of non-trivial properties of B1(F ) that, consequently, depend
only on the Bishop space-structure of B1(F ).

Corollary 1. (i) B1(F )∗ := B1(F ) ∩ F
∗(X) is a Bishop topology on X.

(ii) If g ∈ B1(F ) such that g ≥ c, for some c ∈ R with c > 0, then 1
g ∈ B1(F ).

(iii) If g ∈ B1(F ) such that g ≥ 0, then
√

g ∈ B1(F ).
(iv) The collection Z(B1(F )) = {ζ(g) | g ∈ B1(F )} of zero sets of B1(F ), where
ζ(g) := {x ∈ X | g(x) = 0}, is closed under countable intersections.
(v) [Urysohn lemma for B1(F )-zero sets] If A,B ⊆ X, then there is h ∈ B1(F )
with h(A) = 0 and h(B) = 1 if and only if there are g1, g2 ∈ B1(F ), and c > 0.
such that A ⊆ ζ(g1), B ⊆ ζ(g2), and |g1| + |g2| ≥ c.
(vi) [Urysohn extension theorem for B1(F )] Let Y ⊆ X such that f|Y ∈ G,
for every f ∈ F . If for every A,B ⊆ Y , whenever A,B are separated by some
function in B1(G)∗, then A,B are separated by some function in B1(F )∗, then
every g∗ ∈ B1(G)∗ is the restriction of some f∗ ∈ B1(F )∗.

Proof. These facts follow from the corresponding facts on general Bishop spaces.
See [18], p. 41, for (i), Theorem 5.4.8. in [18] for (ii), [26] for a proof of (iii),
Proposition 5.3.3.(ii) in [18] for (iv), Theorem 5.4.9. in [18] for (v), and the
Urysohn extension theorem for general Bishop spaces in [20] for (vi).

Corollary 1, except from case (iii), are classically shown in [8] specifically for
B1(X). Notice that in [20] we avoid quantification over the powerset of Y in the
formulation of the Urysohn extension theorem, formulating it predicatively.

Proposition 1. Let x, y ∈ X.
(i) If g ∈ B1(F ) with g(x) �=R g(y), there is f ∈ F such that f(x) �=R f(y).
(ii) x �=B1(F ) y ⇔ x �=F y.
(iii) The apartness �=B1(F ) is tight if and only if the apartness �=F is tight.
(iv) B1(F ) separates the points of X if and only if F separates them.
(v) B1(F ) separates the points of X if and only if B1(F )∗ separates them.

Proof. (i) Since |g(x) − g(y)| > 0, let the well-defined function

g∗(z) :=
1

g(x) − g(y)
g(z) − g(y), z ∈ X.
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g∗ is in B1(F ), g∗(x) = 1 and g∗(y) = 0. If (fn)∞
n=1 ⊆ F with (fn)

p−→ g∗, then

∃nx
0 (

1
2 )∈N

∀n≥nx
0 (

1
2 )

(
|fn(x) − 1| <

1
2
)

& ∃ny
0(

1
2 )∈N

∀n≥ny
0(

1
2 )

(
|fn(y)| <

1
2
)
.

If m := max
{
nx
0( 12 ), ny

0(
1
2 )

}
, then fm ∈ F with fm(x) ∈

(
1
2 , 3

2

)
and fm(y) ∈(

− 1
2 , 1

2

)
, hence fm(x) �=R fm(y).

(ii) If x �=B1(F ) y, there is g ∈ B1(F ) such that g(x) �=R g(y). By (i) we get
x �=F y. Conversely, if x �=F y, there is f ∈ F with f(x) �=R f(y). Since f is also
in B1(F ), we get x �=B1(F ) y.
(iii) Let �=B1(F ) be tight. If ¬(x �=F y), then by (ii) we get ¬(x �=B1(F ) y), hence
x =X y. The converse implication is shown similarly.
(iv) It follows from (iii) and the result mentioned in Sect. 2 that a Bishop topol-
ogy separates the points if and only if its induced apartness is tight.
(v) It follows from the general fact that F separates the points if and only if F ∗

separates them (see Proposition 5.7.2. in [18]).

Proposition 2. Let F1 :=
(
X,B1(F )

)
and G1 :=

(
Y,B1(G)

)
.

(i) If h ∈ Mor(F ,G), then h ∈ Mor(F1,G1).
(ii) Let h : X → Y be a surjection with σ : Y → X a modulus of surjectivity4

for h i.e., h ◦ σ = idY . If h ∈ Mor(F ,G) is open, then h ∈ Mor(F1,G1) is open.

Proof. (i) We need to show that ∀g∈B1(G)

(
g ◦ h ∈ B1(F )

)
. If we fix g ∈ B1(G),

let (gn)∞
n=1 ⊆ G such that (gn)

p−→ g. Then, we get (gn ◦ h)
p−→ g ◦ h. Since

h ∈ Mor(F ,G), we have that gn◦h ∈ F , for every n ≥ 1, and hence g◦h ∈ B1(F ).
(ii) By case (i) h ∈ Mor(F1,G1). By Definition 1, if ∀f∈F ∃g∈G

(
f = g ◦ h

)
, we

prove ∀f∗∈B1(F )∃g∗∈B1(G)

(
f∗ = g∗ ◦ h

)
. Let f∗ ∈ B1(F ) and (fn)∞

n=1 ⊆ F with
(fn)

p−→ f∗ on X. By the principle of countable choice (see [6], p. 12) there is
(gn)∞

n=1 ⊆ G such that fn = gn ◦ h, for every n ≥ 1. Let g∗ : Y → R, defined by
g∗ := f∗ ◦ σ. First we show that g∗ ◦ h =F(X) f∗. If x ∈ X, we show that

(g∗ ◦ h)(x) := g∗(h(x)) := f∗(σ(h(x))) = f∗(x).

Since h(σ(h(x))) := (h ◦ σ)(h(x)) =Y idY (h(x)) = h(x), we get

(gn ◦ h)(σ(h(x))) := gn

(
h(σ(h(x)))

)
= gn

(
h(x)

)
:= (gn ◦ h)(x)

i.e., fn(σ(h(x))) = fn(x), for every n ≥ 1. Since fn(σ(h(x))) n−→ f∗(σ(h(x)))
and fn(x) n−→ f∗(x), we get f∗(σ(h(x))) = f∗(x). Since B1(F ) is an extensional
subset of F(X) and g∗ ◦ h =F(X) f∗ ∈ B1(F ), we conclude that g∗ ◦ h ∈ B1(F )
too. To prove g∗ ∈ B1(G), we show that (gn)

p−→ g∗. If y ∈ Y , then

gn(y) = gn

(
h(σ(y))

)
:= (gn ◦ h)(σ(y)) = fn(σ(y)).

Since fn(σ(y)) n−→ f∗(σ(y)) := g∗(y), we conclude that gn(y) n−→ g∗(y).

4 We use σ in order to avoid the general axiom of choice in the proof.
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4 Examples of Functions of Baire Class One over F

First we find an unbounded Baire class one-function over some Bishop topology.
If n ≥ 1, let fn : {0} ∪ (0, 1] → R defined by

fn(x) :=
{

0 , x = 0
(n2x ∧ n) ∧ 1

x , x ∈ (0, 1].

Clearly, fn ≤ n, for every n ≥ 1. If 0 < x < 1
n , then 0 < n2x < n and n < 1

x ,
hence (n2x ∧ n) ∧ 1

x = (n2x) ∧ 1
x = n2x. If 1

n ≤ x ≤ 1, then n ≤ n2x ≤ n2 and
1
x ≤ n, hence (n2x ∧ n) ∧ 1

x = n ∧ 1
x = 1

x . Hence,

fn(x) =
{

n2x , x ∈ {0} ∪ (0, 1
n )

1
x , x ∈ [ 1n , 1].

If F0 := {fn | n ≥ 1}, we consider the Bishop topology
∨

F0 on X := {0}∪(0, 1].
Let the function g : {0} ∪ (0, 1] → R, defined by

g(x) :=
{

0 , x = 0
1
x , x ∈ (0, 1].

Clearly, g is unbounded on its domain. We show that fn
p−→ g, hence g ∈

B1(
∨

F0). If x = 0, then 0 = fn(0) n−→ g(0) = 0. Let x ∈ (0, 1]. We fix some
ε > 0, and we find n0 ≥ 1 such that 1

n0
< x. Hence, if n ≥ n0, then 1

n < x too.
Since then n < n2x and 1

x < n, we have that

|fn(x) − g(x)| =
∣∣∣∣
[
(n2x ∧ n) ∧ 1

x

]
− 1

x

∣∣∣∣ =
∣∣∣∣
[
(n ∧ 1

x

]
− 1

x

∣∣∣∣ =
∣∣∣∣ 1x − 1

x

∣∣∣∣ = 0 ≤ ε.

A pseudo-compact Bishop topology is a topology all the elements of which are
bounded functions. Since boundedness is a “liftable” property from F0 to F i.e., if
every f0 ∈ F0 is bounded, then every f ∈

∨
F0 is bounded (see Proposition 3.4.4

in [18], p. 46), the topology
∨

F0 of the previous example is pseudo-compact,
and hence the above construction is also an example of an unbounded Baire-class
one function over a pseudo-compact Bishop topology!

It is immediate to show that B1(F(X)) = F(X) and B1(Const(X)) =
Const(X). Next we find a Baire class one-function over some F that is not
in F . Let Y := [0, 1) ∪ {1} be equipped with the relative Bishop topology
Cu([0, 1])|Y = Bic([0, 1])|Y , where Cu([0, 1]) is the Bishop topology of uniformly
continuous functions on [0, 1], and Cu([0, 1]) = Bic([0, 1]), with Bic([0, 1]) being
defined similarly to Bic(R). Let fn : Y → R, where fn := idn

|Y , for every n ≥ 1.
By the definition of relative Bishop topology (see Definition 2) we have that
fn ∈ Bic([0, 1])|Y , for every n ≥ 1, and (fn)

p−→ g, where g : Y → R is given by

g(x) :=
{

0 , x ∈ [0, 1)
1 , x ∈ {1}.
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Since Y is dense in [0, 1], g is not in Bic([0, 1])|Y ; if it was, by Proposition 4.7.15.
in [18] we get g = h|Y with h ∈ Cu([0, 1]), which is impossible.

A similar example is the following. Let Z := (−∞, 1) ∪ {1} ∪ (1,+∞) be
equipped with the relative topology Bic(R)|Z . If n ≥ 1, let φn = nidR+(1−n) ∈
Bic(R) and θn := −nidR+(1+n) ∈ Bic(R). If ψn := (φn ∨0)∧ (θn ∨0) ∈ Bic(R),

ψn(x) :=

⎧⎪⎪⎨
⎪⎪⎩

0 , x < n−1
n

nx + 1 − n , x ∈ [n−1
n , 1]

−nx + 1 + n , x ∈ (1, n+1
n ]

0 , x > n+1
n .

Let ψ∗
n be the restriction of ψn to Z, for every n ≥ 1. Clearly, ψ∗

n
p−→ h, where

h(x) :=

⎧⎨
⎩

0 , x ∈ (−∞, 1)
1 , x ∈ {1}
0 , x ∈ (1 + ∞).

Since Z is dense in R (see Lemma 2.2.8. of [18]), and arguing as in the previous
example, h cannot be in the specified Bishop topology on Z.

As in the classical case, all derivatives of differentiable functions in F(R) are
Baire class one-functions over Bic(R). We reformulate the definition in [4], p. 44,
as follows.

Definition 4. Let a < b, f, f ′ : [a, b] → R (uniformly) continuous on [a, b], and
δf,[a,b] : R+ → R

+. We say that f is differentiable on [a, b] with derivative f ′

and modulus of differentiability δf,[a,b], in symbols Dif(f, f ′, δf,[a,b]), if

∀ε>0∀x,y∈[a,b]

(
|y − x| ≤ δf,[a,b](ε) ⇒ |f(y) − f(x) − f ′(x)(y − x)| ≤ ε|y − x|

)
.

If φ, φ′ ∈ Bic(R), we say that φ is differentiable with derivative φ′, in symbols
Dif(φ, φ′), if for every n ≥ 1 we have that Dif(φ|[−n,n], φ

′|[−n,n], δφ|[−n,n],[−n,n]).

Proposition 3. If φ, φ′ ∈ Bic(R) such that Dif(φ, φ′), then φ′ ∈ B1(Bic(R)).

Proof. If n ≥ 1, let φn := n[φ◦(idR+ 1
n )−φ] ∈ Bic(R). We show that (φn)

p−→ φ′.
Let x ∈ R and ε > 0. Let N ≥ 1 with x ∈ [−N,N ]. Since (x + 1

n ) n−→ x and
δφ,[−N,N ](ε) > 0, there is n0 ≥ 1 such that for every n ≥ n0 we have that
x + 1

n ∈ [−N,N ] and 1
n ≤ δφ,[−N,N ](ε), hence 1

n = |(x + 1
n − x| ≤ δφ,[−N,N ](ε),

and by Definition 4 we have that∣∣∣∣φ
(

x +
1
n

)
− φ(x) − φ′(x)

(
x +

1
n

− x

)∣∣∣∣ ≤ ε

∣∣∣∣x +
1
n

− x

∣∣∣∣ ⇔
∣∣∣∣φ

(
x +

1
n

)
− φ(x) − φ′(x)

1
n

∣∣∣∣ ≤ ε
1
n

⇒
∣∣∣∣nφ

(
x +

1
n

)
− nφ(x) − φ′(x)

∣∣∣∣ ≤ ε ⇔

|φn(x) − φ′(x)| ≤ ε.
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5 Concluding Comments

In this paper we introduced the notion of a function of Baire class one over a
Bishop topology F , translating a fundamental notion of classical real analysis
and topology into the constructive topology of Bishop spaces. Our central result,
that the set B1(F ) of Baire class one-functions over F is a Bishop topology
that includes F , is used to apply concepts and results from the general theory
of Bishop spaces to the theory of functions of Baire class one over a Bishop
topology. These first applications suggest that the structure of Bishop space,
treated classically, would also be useful to the classical study of function spaces
like B1(X).

For constructive topology, the fact that B1(F ) is a Bishop topology provides a
second way, within the theory of Bishop spaces, to treat classically discontinuous,
real-valued functions as “continuous” i.e., as Bishop morphisms. The first way
is to consider such discontinuous functions as elements of a subbase F0. Since
by definition F0 ⊆

∨
F0, the elements of F0 are Bishop morphisms from the

resulting least Bishop space F to the Bishop space R of reals. In [27], and based
on a notion of convergence of test functions introduced by Ishihara, we follow
this way to make the Dirac delta function δ and the Heaviside step function
H “continuous”. We consider a certain set D0(R) of linear maps on the test
functions on R, where δ,H ∈ D0(R), and the Bishop topology

∨
D0(R) is used

to define the set of distributions on R. The second way, is to start from a Bishop
topology F and find elements of B1(F ) i.e., Bishop morphisms from F1 to R,
that are pointwise discontinuous, as the functions g and h in the last two example
before Definition 4. This second way is sort of a constructive analogue to the
classical result that the points of pointwise continuity of some f ∈ B1(R) is
dense in R, hence f is almost everywhere continuous.

There are numerous interesting questions stemming from this introductory
work. Can we prove constructively that the characteristic function of a (com-
plemented) Baire set B =

(
B1, B0

)
over a Bishop topology F (see [22]) is a

Baire class-one function over the relative topology F|B1∪B0? Can we show con-
structively other classical characterisations of B1(X), like for example through
Fσ-sets? What is the exact relation between B1(F )|A and B1(F|A), or between
B1(F ×G) and the product Bishop topology (see [18], Sect. 4.1 for its definition)
B1(F ) × B1(G)? How far can we go constructively with the study of Baire class
two-functions?

A base of a Bishop topology F is a subset B of F such that every f ∈ F is
the uniform limit of a sequence in B. If B is a base of F , it follows easily that

Limp(B) = B1(F ),

hence for the uniform closure Limp(B) of B in F(X) we get

Limp(B) = B1(F ) = B1(F )

i.e., Limp(B) is a base of B1(F ). If F0 ⊆ F is a subbase of F i.e., F =
∨

F0, we
have that Limp(F0) ⊆ Limp(

∨
F0) = B1(F ), hence

∨
Limp(F0) ⊆ B1(F ). When

does the inverse inclusion also hold?
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We hope to address some of these questions in a future work.
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