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BCIP: a gene-centered platform for 
identifying potential regulatory 
genes in breast cancer
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Breast cancer is a disease with high heterogeneity. Many issues on tumorigenesis and progression 
are still elusive. It is critical to identify genes that play important roles in the progression of tumors, 
especially for tumors with poor prognosis such as basal-like breast cancer and tumors in very young 
women. To facilitate the identification of potential regulatory or driver genes, we present the Breast 
Cancer Integrative Platform (BCIP, http://omics.bmi.ac.cn/bcancer/). BCIP maintains multi-omics data 
selected with strict quality control and processed with uniform normalization methods, including 
gene expression profiles from 9,005 tumor and 376 normal tissue samples, copy number variation 
information from 3,035 tumor samples, microRNA-target interactions, co-expressed genes, KEGG 
pathways, and mammary tissue-specific gene functional networks. This platform provides a user-
friendly interface integrating comprehensive and flexible analysis tools on differential gene expression, 
copy number variation, and survival analysis. The prominent characteristic of BCIP is that users 
can perform analysis by customizing subgroups with single or combined clinical features, including 
subtypes, histological grades, pathologic stages, metastasis status, lymph node status, ER/PR/HER2 
status, TP53 mutation status, menopause status, age, tumor size, therapy responses, and prognosis. 
BCIP will help to identify regulatory or driver genes and candidate biomarkers for further research in 
breast cancer.

Breast cancer is a frequently diagnosed carcinoma and is the leading cause of cancer death among females world-
wide. An estimated 1,676,600 cases were diagnosed and 521,900 deaths occurred in 2012, accounting for 25% 
of the total cancer cases and 15% of all the cancer deaths among females1. Breast cancer is a heterogeneous 
disease with a high degree of diversity in morphology, histology, pathological features, and molecular altera-
tions, such as gene mutations and abnormal expression2. Researches based on gene expression (GE) patterns have 
classified breast cancer into distinct subgroups corresponding to different prognostic outcomes and therapeutic 
responses3–6. A number of studies have focused on the recognition of biomarkers and characterization of gene 
function in particular breast cancer subgroups7–10.

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer and the vast majority is 
basal-like phenotype11. Due to its high genetic heterogeneity, TNBC does not possess a common genetic mutation 
and thus lacks effective targeted therapies12. However, several studies based on GE have identified several criti-
cal genes that may be potential druggable targets for the treatment of TNBC13–15. For example, MELK has been 
characterized as an oncogenic kinase essential for basal-like breast cancer (BBC) via a kinome-wide screening, 
integrative analysis with multiple GE datasets, and further in vitro and in vivo experiments14. BCL11A has also 
been reported to be a novel TNBC oncogene by in silico analysis of several microarray datasets and subsequent 
experimental validations15. These studies suggest that GE profiles are important resources for regulatory gene and 
biomarker identification in breast cancer. Differential expression analysis, copy number variation (CNV) analysis, 
survival analysis, and co-expression analysis on multiple credible and qualified datasets are effective approaches 
for recognizing novel regulatory genes and biomarkers.
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In order to help researchers use gene expression profiles, some databases and tools have been developed16–19. 
However, integrative platforms combined with multi-omics data and customized analysis tools for breast cancer 
are still lacking. In this study, we developed BCIP, which provides differential expression analysis, copy number 
variation analysis, survival analysis, co-expression analysis, microRNA (miRNA) regulation analysis, and pathway 
analysis for query genes. To ensure the reliability of the analysis, we collected and obtained GE profile data on 9,381 
samples from 29 datasets with strict quality control and uniform processing. We also incorporated CNV informa-
tion on 3,035 samples, 324,219 miRNA-target interactions, 286 KEGG pathways, and data from tissue-specific gene 
functional networks of mammary gland and mammary epithelium. In order to facilitate researchers’ analysis of the 
specific subgroups they focused on, we developed a comprehensive and flexible interface that permits users to cus-
tomize subgroups with single or combined clinical features of interest, including subtypes, grades, stages, metastasis 
status, lymph node status, prognosis, age, tumor size, ER/PR/HER2 status, TP53 mutation status, menopause status, 
and therapy response. BCIP will be a valuable tool for the identification of regulatory or driver genes in breast cancer.

Methods
Data collection and processing. We initially retrieved and collected data from NCBI Gene Expression 
Omnibus20 (GEO), European Genome-phenome Archive of EMBL European Bioinformatics Institute21 (EMBL-
EBI), and The Cancer Genome Atlas22 (TCGA) with the following criteria: (1) gene microarray or high-throughput 
sequencing data of RNAs extracted from primary breast tumor or adjacent normal tissues; (2) the sample size of 
each dataset is no less than 50; (3) clinical information were provided together with the dataset, mainly including 
subtypes, histological grades, pathologic stages, ER/PR/HER2 status, and prognosis; (4) the dataset was available 
for download before Jan 1, 2016, which was the latest date we collected the datasets. Finally, we obtained a prelim-
inary collection of 86 independent datasets. To assure adequate specimens in subgrouping, we assessed the sample 
number demand and removed the datasets with less than 100 samples. The rest 30 datasets include 27 datasets from 
GEO (measured by Affymetrix microarray), 2 datasets from TCGA (measured by Agilent microarray and Illumina 
HiSeq), and 1 dataset of the METABRIC from EBI (measured by Illumina HT-12 v3 microarray).

Then we performed quality control, normalization and duplicate removing on all the 30 datasets. Quality 
control was carried out by simpleaffy and affyPLM R packages on each of the 27 GEO datasets independently. 
The raw data of each dataset were then normalized, summarized, and log-transformed using robust multi-array 
average (RMA) function of affy R package. The probe-based expression was converted into GE profiles, and the 
gene containing multiple probes was represented by the probe with the largest interquartile range across the 
samples. For the METABRIC dataset, we deleted 12 samples since 8 samples were duplicated in the discovery and 
validation sets and 4 were represented twice in the validation set. We used the processed expression matrix data 
of METABRIC directly23. For the TCGA Agilent and RNA-Seq data, we removed 22 samples without matched 
clinical information and used level_3 log2 normalized data from TCGA directly.

Furthermore, the tumor purity of the samples profiled on Affymetrix platforms was detected through a 
robust method, ESTIMATE, which uses the ESTIMATE-based tumor purity score developed by Affymetrix data 
to evaluate tumor purity24. This method was not applied to predict the tumor purity of the samples profiled 
on Affymetrix Human Genome U133B Array because of the insufficiency of the gene signatures intersection. 
Depending on the results of tumor purity estimation (Supplementary Figure S1), we eliminated one dataset with 
the lowest mean tumor purity, in order to reduce noises caused by diverse tumor purity. Finally, GE profiles of a 
total of 26,339 genes from 9,381 samples of 29 datasets were available for transcriptome analysis.

Sample subgrouping features. We compiled a series of clinical features along with each sample for sam-
ple subgrouping. For samples with some clinical features that were not initially provided (mainly ER−/+/PR−/+/
HER2−/+, TNBC, and PAM50 subtypes) in certain collected datasets, we defined these features using a compu-
tational method based on GE profiles. Expressions of ER, PR, and HER2 were respectively fitted by a Gaussian 
bimodal distribution model and the parameters were estimated via EM algorithm using Mclust function in mclust 
R package. The expression status for ER, PR, and HER2 were discriminated as positive (ER+, PR+, and HER2+) 
or negative (ER−, PR−, and HER2−). On the basis of the identification of ER, PR, and HER2 positive or negative 
expression status, we classified samples into TNBC or non-TNBC subtype6. Samples defined as ER−, PR− and 
HER2− status were identified as TNBC and otherwise non-TNBC. Molecular classification for PAM50 subtypes 
was provided in some datasets, and if not, we classified the patients into the five intrinsic breast cancer subtypes 
using the 50-gene subtype classifier, PAM504. The feature of the prognosis status was classified into good/poor 
prognosis using the median survival time as the delimitation.

Copy number variation. We obtained CNV data for 28,678 genes of 3,035 samples from METABRIC and 
TCGA. Both the DNA microarray platforms of the 2 datasets are Affymetrix Genome-Wide Human SNP Array 
6.0. The numerical values of CNV were processed, summarized, and normalized relying on the relative intensity 
of probe hybridization on the arrays. Segmented data were converted to the gene level matrix using GISTIC 2.025, 
which were annotated for gene content based on hg19/GRCh37 for the TCGA data. For the METABRIC data, 
we generated a patient-by-gene CNV matrix through the processed segment data by matching the overlap of the 
segments with the gene regions whose annotations and coordinates were given by hg18/Ensembl 54. For more 
accurate and reliable analysis, we set the gain/loss threshold to 0.1 and − 0.1, respectively. When the CNV value 
of a gene is greater than 0.1, the gene is defined as copy number gain. When the CNV value of a gene is smaller 
than − 0.1, the gene is defined as copy number loss.

Statistical analysis. All the statistical analysis were performed using R programming platform. An unpaired 
t test was used for differential GE analysis in Transcriptome Analysis for 2 subgroups. One-way analysis of 
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variance (ANOVA) was used for more than 2 subgroups if GE satisfied the assumption of a normal distribution, 
and if not, the non-parametric test (Kruskal–Wallis test) was used to assess statistical differences among these 
subgroups. The survfit function of survival R package was used for survival analysis. Kaplan-Meier curves and 
log-rank test were used to assess survival differences. In Transcriptome Survival Analysis, we classified patients 
into 2 groups according to an optimal GE cutoff value based on the Cutoff Finder application26. This program 
will traverse the GE values of all patients and the optimal cutoff value can minimizes the p value of survival dif-
ferences. In CNV Survival Analysis, patients are separated into 2 groups according to their CNV status (gain/
loss) of the query gene. Hazard ratio (HR) was calculated using Cox proportional hazards regression model. 
Co-expression analysis was performed using cox function of WGCNA R package. The correlation of GE was eval-
uated by Pearson correlation coefficient (PCC) as well as false discovery rate (FDR) adjusted p-value. The genes 
with absolute PCC ≥  0.3 and adjusted p-value ≤  0.05 were considered co-expressed in Co-expression Analysis.

Database schema and implementation. BCIP was implemented based on the Apache HTTP server 2.2 
with MySQL 5.1.73 at the back end and the PHP 5.5.31, HTML, and JavaScript at the front end. All the computing 
programs were completed with R 3.2.3 and dependent packages.

Results
Overview of BCIP. BCIP is a gene-centered platform that provides (1) differential expression analysis, sur-
vival analysis, and co-expression analysis based on transcriptome data; (2) differential analysis and survival anal-
ysis based on CNVs; (3) miRNA regulation analysis on miRNA-target interactions; (4) KEGG pathway analysis; 
and (5) network analysis on mammary tissue-specific gene function networks (Fig. 1a). BCIP provides a user-
friendly interface consisting of four panels: Analysis Type, Sample Subgrouping, Dataset, and Result (Fig. 1b). A 
gene symbol can be input in the text field where we provide a fuzzy matching function. Users can then select any 
of 5 analytical categories in the Analysis Type panel, including Transcriptome Analysis, Copy Number Variation 
Analysis, MicroRNA-target Interaction Analysis, Pathway Analysis, and Gene Functional Network Analysis. 
After selecting analytical category, users can customize subgroups with single or combined clinical features of 
interest in the Sample Subgrouping panel. BCIP provides a total of 15 clinical features, including TNBC and non-
TNBC subtypes, PAM50 subtypes, histological grades, pathologic stages, metastasis status, lymph node status, 
ER/PR/HER2 status, TP53 mutation status, menopause status, age, tumor size, therapy responses, and prognosis. 
The Dataset panel provides all of the available datasets for the selected options in the Analysis Type and Sample 
Subgrouping. Finally, the Result panel returns corresponding graphical and tabular presentation and analysis 
results after choosing from the above options.

Transcriptome Analysis. We collected GE data of breast cancer tissue samples from publicly available data-
bases of GEO, EMBL-EBI and TCGA and obtained 86 datasets. After excluding the datasets with insufficient 
samples (less than 100) or low tumor purity, we finally retained 29 datasets with the GE profiles of 9,381 samples 
(Fig. 2a and Supplementary Table S1). The GE profiles are used for differential expression analysis, survival anal-
ysis, and co-expression analysis.

•	 Differential expression analysis. There are 2 options for differential expression analysis in Analysis Type: 
cancer vs normal, cancer vs cancer. The cancer vs normal option is designed to show the expression difference 
between the tumor and normal tissues. The cancer vs cancer option supports differential analysis in tumor 
samples among user-defined subgroups. Users are allowed to customize specific subgroups with single or 
combined clinical features of interest. Differential expression analysis results will be illustrated with a box plot 
in the Result panel. Dataset and chart information are also presented below the graph. For example, MELK, 
a recently reported oncogenic kinase in BBC14, has the highest expression level in basal-like subtype in the 
METABRIC dataset (Fig. 2b, left panel). When both TNBC and non-TNBC in the Triple-negative breast can-
cer group and pre-menopause/post-menopause in the Menopause status group are selected, BCIP will divide 
samples into 4 subgroups according to the combination of 2 groups (Fig. 2b, right panel).

•	 Survival analysis. Survival analysis is provided to investigate the association of gene with clinical prognosis. 
BCIP offers 5 survival types, including overall survival (OS), disease-specific survival (DS), disease-free sur-
vival (DFS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS). Users can perform 
survival analysis in the specific subgroup customized with single or combined clinical features of interest. 
Patients in the specific subgroup are divided into 2 groups according to an optimal cutoff of the GE levels. The 
optimal cutoff is determined by the Cutoff Finder that maximizes the survival differences between 2 groups26. 
Notably, the cutoff value can be flexibly moved through a slider bar. Kaplan-Meier survival curves will be 
redrawn dynamically with the change of the cutoff value, together with the p-value and HR. Figure 2c and d 
show the overall survival analysis results of MELK in all patients of the GSE7390 dataset and in the samples 
younger than 50 years old of the METABRIC dataset, respectively.

•	 Co-expression analysis. Co-expression analysis is widely used to provide clues for potential associations 
among genes, proteins, and other biomolecules in various carcinomas27–29. Given a gene, BCIP displays the 
top 20 co-expression genes in the form of a circle dot where positive and negative correlations are represented 
by red and green, respectively (Fig. 2e). All of the co-expression genes with absolute PCC ≥  0.3 and adjusted 
p-value ≤  0.05 are presented in descending order of PCCs in the table below the graph. Scatter plots of GE 
levels of the co-expressed genes and the query gene are provided when clicking on the dots or the last column 
of the table. Notably, BCIP permits users to investigate co-expression relationship in any specified subgroup 
that users customized with the clinical features of interest.
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Copy Number Variation Analysis. CNVs exist pervasively in human genomes and contribute to the diver-
sity and susceptibility of numerous diseases30. It may be an important factor in cancer occurrence and develop-
ment. A series of studies and attempts have been carried out to explore the impact of CNV on breast cancer31–33.  
We collected and incorporated CNVs information of 3,035 tumor samples from METABRIC and TCGA. BCIP 
provides differential analysis and survival analyses for CNV data.

Figure 1. Schematic diagram showing the architecture of BCIP. (a) Data sources and applications of BCIP. 
The same color system was used to characterize the correspondence, while the inner light-colored donut chart 
represents the data sources and the outer deep-colored donut chart indicates the corresponding applications 
(analysis types). (b) Overview of the data portal of BCIP. The panel of 4 modules includes: Analysis Type, Sample 
Subgrouping, Dataset, and Result.
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Figure 2. Visualization of transcriptome data information and analytic results. (a) Flow chart of the 
transcriptome data processing procedures. (b) Box plots showing differential gene expression of MELK in 
breast cancer PAM50 subtypes (left) and other subgroups (right): TNBC AND premenopause, TNBC AND 
postmenopause, non-TNBC AND premenopause, and non-TNBC AND postmenopause. The tables display 
detailed information of the dataset and each subgroup of the chart. (c,d) The low (blue curve) and high (red 
curve) levels of MELK expression groups are correlated with the overall survival times in all patients of the 
GSE7390 dataset (p-value =  0.00047, HR =  3.067622) or in the patients younger than 50 years old of the 
METABRIC dataset (p-value =  8.524475e-08, HR =  2.350915). (e) The circle dots show the top 20 genes co-
expressed with MELK in basal-like subtype patients of the METABRIC dataset. Positive and negative correlation 
is respectively distinguished by red and green circles. The table lists co-expressed genes with PCC ≥  0.3 and 
adjusted p-value ≤  0.05. Scatter plot showing the expression status of MELK and CEP55.
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•	 Differential analysis between copy number gain/loss. The proportions of samples with CNV (copy number 
gain and loss) of the query gene in any user-defined subgroups are respectively displayed in a histogram. A 
table matching the histogram provides details of the sample numbers and the proportions of copy number 
gain/loss in the corresponding subgroups. For example, MELK has a much higher (more than 2 times) pro-
portion of samples with copy number gain in basal-like subtype than other PAM50 subtypes (Fig. 3a), which 
provides a clue to explain its high expression in BBC.

•	 Survival analysis with CNV data. Survival analysis based on gene CNVs will shed light on the correla-
tion between prognostic outcomes and CNV status. BCIP provides 5 survival types (OS, DS, DFS, RFS, and 
DMFS), permitting users to perform analysis in specific subgroups customized with single or combined clin-
ical features of interest. Samples are separated into 2 groups according to their CNV status (gain/loss) of the 
query gene. The Kaplan-Meier plot shows that the samples with MELK copy number gain have shorter dis-
ease-specific survival times than those with copy number loss in the METABRIC dataset (Fig. 3b).

MicroRNA-target Interaction Analysis. miRNAs are small non-coding RNAs that can regulate 
protein-coding messenger RNAs (mRNAs) at the post-transcriptional level34. The pivotal role of miRNAs is 
known as a modulator participating in various biological processes. Numerous studies suggest that dysregula-
tion of miRNAs may contribute to the initiation and progression of cancers35, and miRNAs can be regarded as 
diagnostic signatures or therapeutic biomarkers in breast cancer36,37. To facilitate researchers’ investigations into 
potential regulation mechanisms of query genes, BCIP provides MicroRNA-target Interaction Analysis, which 
illustrates miRNAs targeting the query gene. There is a total of 324,219 miRNA-target interactions between 2,619 
miRNAs and 14,884 target genes from miRTarBase38 that are maintained in BCIP. All of these interactions are 
experimentally validated.

•	 miRNA-target interactions. The results for miRNA-target interactions analysis are presented as a table and 
list the mature miRNAs that target the input gene and the corresponding experiment types (Fig. 4). Exper-
iment types of reporter assay, Western blot, real-time quantitative PCR (qPCR) are regarded as strong evi-
dence, while microarray, next-generation sequencing (NGS), and pulsed stable isotope labeling by amino 
acids in cell culture (pSILAC) are regarded as less strong evidence for the interactions between miRNAs and 
genes38. In addition, external links to the miRBase database and PubMed have been embedded in the table for 
the added convenience in retrieving corresponding information.

Pathway Analysis. It is known that some biological pathways involved in metabolism, apoptosis, and signal 
transduction play critical roles in cell proliferation and differentiation during tumorigenesis and cancer develop-
ment. Understanding which pathways a gene participates in will be of great help for researchers in characterizing 
its functions in breast cancer. We have collected 22,455 linked entries between 6,755 genes and 286 human path-
ways from the KEGG database39.
•	 KEGG pathways. A table consisting of pathway classes, pathway IDs, and pathway names are presented in the 

KEGG pathways analysis results to depict pathway information (Fig. 5). The thumbnail images in the last col-
umn can pop-up pathway maps when clicked. The pathway maps contain molecular interaction and reaction 
networks in which the query gene was involved. The query gene is highlighted in red.

Figure 3. Visualization of copy number variations (CNVs) based analyses reveals CNV status and survival 
correlation. (a) Histogram depicting the percentage of samples with MELK copy number losses/gains in each 
PAM50 subtype of the METABRIC dataset. (b) Kaplan-Meier plot showing the disease-specific survival rate 
comparison between patients with MELK copy number losses (blue curve) and copy number gains (red curve), 
and the tables showing the sample numbers and median survival times of the 2 groups.
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Gene Functional Network Analyses. Each biomolecule is located in complex biological networks and 
exerts its functions together with other related molecules. Notably, gene expression as well as gene-gene func-
tional relationships in the complex biological regulation network may be tissue-specific18,40. Identifying a gene’s 
functional partner in specified tissue can facilitate researchers to infer gene functions and molecular mechanisms. 
Here we provide mammary tissue-specific gene functional networks analysis. Data on both mammary epithelium 
and mammary gland gene functional networks were collected and processed from the GIANT webserver40.

•	 Mammary epithelium and gland networks. Users are allowed to search gene functional relationships in 
mammary epithelium and gland gene functional networks. The dynamic network shows a subset of the entire 
network, and the nodes and edges are controlled by the slider bars of the maximum number of genes and the 
minimum relationship confidence (Fig. 6). A table below the network lists the details of the top 50 functional 
related genes in descending order of the average edge score, which reflects the relationship strength between 
the 2 genes. Clicking on any gene leads to a new table showing the corresponding detail about that gene.

Case Study and Discussion
For a query gene, BCIP helps to demonstrate its potential as a biomarker or regulatory gene in breast cancer. 
Take MELK, a promising therapeutic target of BBC reported recently, as an example to demonstrate the util-
ity and advantage of BCIP14. Differential expression analysis shows that MELK has a much higher expression 
level in tumors than adjacent normal tissues across all of the available datasets (Supplementary Figure S2) 
and has the highest expression level in basal-like subtype among PAM50 subtypes across all of the data-
sets (Supplementary Figure S3). When subgroups are customized with tumor grades, we found that higher 
MELK expression level was significantly associated with higher histological grades among all of the datasets 
(Supplementary Figure S4). Survival analysis shows that overexpression of MELK is strongly correlated with 
poor prognosis (Supplementary Figure S5–9). These in silico results indicate that MELK might play roles in BBC.

To provide clues of the possible molecular mechanism of MELK in BBC, we further analyzed the co-expression 
genes and regulatory miRNAs of MELK. In basal-like subtype of the METABRIC dataset, MELK was significantly 
co-expressed with 78 genes with PCC >  0.6, including CDCA5, TPX2, and CEP55 (Fig. 2e). Several studies have 
demonstrated that TPX2 and CEP55 are critical molecules for breast cancer migration, invasion, cell proliferation, 
and metastasis41–43. CDCA5 has been reported to play a crucial role in human lung carcinogenesis and has the 
potential of being a therapeutic target for oral squamous cell carcinoma44,45. These results may be valuable clues 
for the investigation of potential function and molecular mechanism of MELK in breast cancer. Additionally, we 
found miRNAs targeting MELK, including hsa-miR-193b-3p and hsa-miR-372-5p (Fig. 4). Previous studies have 
shown that miR-193b represses cell proliferation and regulates cyclin D1 in melanoma46, and miR-372 suppresses 
tumor proliferation, invasion, and migration in various tumor types47,48. This result indicates that MELK might 
be regulated by miR-193b-3p and miR-372-5p in breast cancer.

We have developed BCIP, a user-friendly, open-access, integrative analysis platform that integrates almost 
10,000 tumor and normal tissue samples of breast cancer. It will facilitate the identification of potential bio-
markers and regulatory genes in breast cancer. Compared with other bioinformatics resources and analysis tools, 
BCIP has 3 unique characteristics: (i) BCIP incorporates multiple analysis types, including differential expression 

Figure 4. The miRNA-target interactions table lists the experimentally validated mature miRNAs that 
target MELK. The red box and green box respectively represent the strong experiment evidence (reporter assay, 
Western blot, and qPCR) and less strong evidences (microarray and next-generation sequencing experiments).
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analysis, copy number variation and survival analysis, gene co-expression analysis, miRNA regulation analysis, 
KEGG pathways presentation, and mammary tissue-specific gene functional network analysis. All of these analy-
sis tools help to sketch an overview of a gene in breast cancer. (ii) It provides dozens of datasets that are screened 
from publicly available databases, selected with strict quality control and processed with uniform normalization 
methods. Users can observe the consistency of the analysis results across multiple datasets, which will be helpful 
to evaluate the robustness of analysis results. (iii) BCIP permits users to perform analysis in specific breast cancer 
subgroups that are customized with single or combined clinical features of interest, including molecular subtypes, 
therapy response, and various clinical features.

Figure 5. KEGG pathway analysis results and pathway map visualization of BRCA1. The table lists all of the 
pathways involving gene BRCA1, which consists of the KEGG tree, pathway class, pathway ID, and pathway 
name. The schematic representation showing the PI3K-Akt signaling pathway map39, which depicts the 
molecular interaction and reaction network. Gene BRCA1 is highlighted in red.
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Lots of studies have been done to identify biomarkers and to uncover molecular mechanisms of tumorigene-
sis, cell invasion, and metastasis in breast cancer. However, many tumors with high invasion and poor outcomes, 
such as TNBC or basal-like tumors, still lack well-defined molecular biomarkers and therapy targets due to the 
high heterogeneity. BCIP serves as a convenient and efficient platform to identify biomarkers, characterize poten-
tial functions and mechanisms of genes in breast cancer. Researchers can find clues for subsequent experiments 
and clinical analysis. In our future work, we will continue incorporating newly available, credible data into BCIP 
and provide reliable supports for researchers of breast cancer.
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