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ABSTRACT
Birds active in apple orchards in south–eastern Australia can contribute positively (e.g.,
control crop pests) or negatively (e.g., crop damage) to crop yields. Our study is the
first to identify net outcomes of these activities, using six apple orchards, varying in
management intensity, in south–eastern Australia as a study system.We also conducted
a predation experiment using real and artificial codling moth (Cydia pomonella) larvae
(a major pest in apple crops). We found that: (1) excluding birds from branches of
apple trees resulted in an average of 12.8% more apples damaged by insects; (2) bird
damage to apples was low (1.9% of apples); and (3) when trading off the potential
benefits (biological control) with costs (bird damage to apples), birds provided an
overall net benefit to orchard growers. We found that predation of real codling moth
larvae was higher than for plasticine larvae, suggesting that plasticine prey models are
not useful for inferring actual predation levels. Our study shows how complex ecological
interactions between birds and invertebrates affect crop yield in apples, and provides
practical strategies for improving the sustainability of orchard systems.

Subjects Agricultural Science, Conservation Biology, Ecology, Ecosystem Science, Environmental
Sciences
Keywords Agroecology, Trade-offs, Birds, Apples, Ecosystem services, Biological control,
Invertebrates, Fruit damage

INTRODUCTION
Wild animals in agroecosystems interact with crops in complex ways (e.g., direct
consumption, pollination, biological control of crop pests, and nutrient cycling) that may
reduce, increase or have a benign effect on crop yield (Borkhataria et al., 2012; Klosterman
et al., 2013; Klatt et al., 2014). These effects can have a substantial impact on annual
production, resulting in significant increases or declines in yield quantities and market
values (Losey & Vaughan, 2006;Murray, Clarke & Ronning, 2013). When considering these
benefits and costs together, it is clear that trade-offs exist. For example, the beneficial
activity of insectivorous birds preying on pest insects in an orchard and reducing insect
damage to fruit is traded off against the detrimental activity of the same birds preying on
beneficial pollinators resulting in reduced fruit set. Examining the complexities of animal
activity within agroecosystems can highlight these trade-offs and allow for calculation of
the net outcome (benefits minus costs) of animal activities on production. This has been
considerably overlooked in the literature, with very few studies looking at both costs and
benefits of animal activity in the same context (Luck, 2013; Peisley, Saunders & Luck, 2015;
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Saunders et al., 2016). Birds are commonly found in almost all agroecosystems and their
foraging activity often results in significant beneficial or detrimental effects on crop yields,
making them an excellent case study of cost-benefit trade-offs of animal activity in crops.

Birds may significantly increase crop yields by predating on pest invertebrates (Mols &
Visser, 2002; Johnson, Kellermann & Stercho, 2010; Karp et al., 2013; Maas, Clough &
Tscharntke, 2013; Ndang’ang’a, Njoroge & Vickery, 2013). For example, a study in the
Blue Mountains of Jamaica by Kellermann et al. (2008) found that birds reduced coffee
berry borer (Hypothenemus hampei) damage by up to 14%, by consuming this major insect
pest, which increased the coffee (Coffea spp.) crop market value by as much as US$105/ha.
Similarly, Mols & Visser (2007) found that great tits (Parus major) reduced caterpillar
damage to Dutch apple (Malus domestica) orchards by up to 50% compared to orchards
without the bird species.

However,many bird species, including parrots (Bomford & Sinclair, 2002) and passerines
(Kross, Tylianakis & Nelson, 2012), can inflict costs to growers by consuming crops. For
example, European blackbirds (Turdus merula) and common starlings (Sturnus vulgaris)
can cause severe damage to grape (Vitis spp.) and blueberry (Vaccinium spp.) crops (Avery et
al., 1996; Somers & Morris, 2002;Kross, Tylianakis & Nelson, 2012). Birds can also indirectly
impact on crop yields by consuming beneficial insects such as pollinators or natural enemies
(e.g., Galeotti & Inglisa, 2001).

Previous research found that apple orchards in south–eastern Australia contain a suite
of different bird species with the potential to inflict costs and/or provide benefits to fruit
production (Luck, Hunt & Carter, 2015). Birds can benefit crop yields by consuming apple
pests (e.g., codling moth (Cydia pomonella)) and removing unwanted fruit after harvest,
thereby reducing disease risk; however, they can also consume and damage fruit before
harvest or prey on insects beneficial to apple production (e.g., pollinators). The net outcome
of these activities has not yet been considered.

Therefore, the aims of our study were as follows: (1) to determine if excluding birds
from branches of apple trees (via netting) in south–eastern Australia resulted in greater
insect damage to fruit (indicating that birds may contribute to controlling insect pests)
and reduced crop yields; (2) to determine if bird damage to apples on open branches was
higher than on netted branches, reducing crop yields; and (3) calculate a net outcome of
bird activity, trading off the potential benefits of birds controlling insect pests vs. birds
directly consuming fruit. We also conducted an experiment using real and artificial codling
moth larvae to gain further insight into what bird species (or insect predators) might be
preying on pest invertebrates in the orchards.

MATERIALS AND METHODS
Animal ethics
This research was conducted with approval from the Charles Sturt University Animal Care
and Ethics Committee (approval number 14/040).
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Table 1 Orchards were classified along a gradient of intensity based on factors that are known to influence bird communities.Distance of the
study area to unmanaged vegetation was considered the most important intensity factor, followed by distance of the study area to farm buildings,
and whether pesticide sprays were used.

Intensity ranking
(lowest to highest)

Orchard Minimum distance
to unmanaged
vegetation (m)

Amount of closest
continuous unmanaged
vegetation (ha)

Minimum distance
to farm
buildings (m)

Pesticide
spray used

1 Orchard 1 0 >40 ∼100 No
2 Orchard 2 <10 <1 ∼550 No
3 Orchard 3 0 >6 ∼100 Yes
4 Orchard 4 ∼5 <2 ∼200 Yes
5 Orchard 5 ∼50 >15 ∼10 Yes
6 Orchard 6 >280 <0.5 ∼250 Yes

Study sites
Our study was conducted across six apple orchards in three major apple growing regions in
Australia: Batlow, southern NSW (average annual rainfall 1283.0 mm, average annual
temperature 6.0 ◦C–16.9 ◦C (Australian Bureau of Meteorology, 2015)), Shepparton,
central Victoria (average annual rainfall 506.4 mm, average annual temperature 8.4 ◦C–
22.6 ◦C degrees (Australian Bureau of Meteorology, 2015)) and Harcourt, central Victoria
(average annual rainfall 696.9mm, average annual temperature 7.7 ◦C–19.8 ◦C (Australian
Bureau of Meteorology, 2015)). All orchards differed in their management practices and
landscape composition. Therefore, rather than focusing on categorical comparisons that
can overlook ecological complexity (e.g., organic vs. conventional; Winqvist, Ahnström &
Bengtsson, 2012), we ranked orchards along a gradient of intensity based on factors that
are known to influence bird communities in agricultural landscapes (Bennett & Ford, 1997;
Benton et al., 2002; Tscharntke et al., 2008; Luck, Triplett & Spooner, 2013). These included
(listed in order of importance) proximity of the orchard to unmanaged natural or semi-
natural vegetation, the amount of closest continuous unmanaged vegetation, proximity
to large farm buildings, and if the orchard used pesticide sprays (Table 1). For example,
native vegetation is known to be important for the presence of birds in agroecosystems
(Bennett & Ford, 1997; Tscharntke et al., 2008); Luck, Triplett & Spooner (2013) found that
farm buildings were negatively associated with bird abundance in almond orchards (likely
owing to the frequency of human activity around buildings); and farms that use pesticides
can have lower invertebrate numbers which could in turn reduce the food source available
to birds (Benton et al., 2002).

Apple varieties differed across the orchards. These included Pink Lady (Orchard 1,
Orchard 4, Orchard 5, Orchard 6), Royal Gala (Orchard 1, Orchard 3), Granny Smith
(Orchard 1, Orchard 2, Orchard 4), Golden Delicious (Orchard 1, Orchard 2), Cox
(Orchard 1,Orchard 4),Gravenstein (Orchard 1) and Sundowner (Orchard 4). Tree age also
varied across orchards (2–20 years), however all trees were established and producing fruit.

Focal study trees
Within these orchards, sixty apple trees (ten trees per orchard) were systematically selected
to bemonitored across the entire season for bird and insect damage. Each tree was spaced at
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least 15 m apart; this distance was determined by the size of the smallest orchard (Orchard
1, which was approximately 1 ha). Half of the trees were located near orchard edges adjacent
to unmanaged vegetation (established woodland at all orchards except Orchard 6, where an
unmanaged grassy meadow was the most proximate area of non-crop vegetation), as this
was expected to be a potential source of birds (Tscharntke et al., 2008). The other five trees
were located in the centre of the orchard to facilitate a comparison of bird activity (and
subsequent costs and benefits) adjacent to and more distant from unmanaged vegetation.

Before flowering (August 2014), two branches of similar height on each tree were selected
andmarked with flagging tape. One branch was left ‘open’ under natural conditions and the
other was enclosed with white diamond mesh bird netting (15 mm mesh). These ‘netted’
branches allowed insects to access flowers and fruit while excluding birds. Treatments were
paired on each tree to control for differences between trees. The height of the lowest point
of the branch, and the distance of each tree to the orchard edge and the nearest patch of
unmanaged vegetation was recorded.

Bird surveys
RKP conducted bird surveys between sunrise and 11.00 am at four key times of the growing
season: full bloom (September 2014), early fruit set (October 2014), pre-harvest (December
2014) and post-harvest (May 2015). At each of these times, the species, abundance and
behaviour of birds within the apple orchards and adjacent areas of unmanaged vegetation
(except at Orchard 6 where there was no adjacent unmanaged vegetation) were identified.
This was to determine what bird species occurred in the vicinity of each orchard.

Timed searches with a pre-determined stopping rule were conducted to identify species
richness in orchards and unmanaged vegetation (Miller & Cale, 2000; Watson, 2003). An
active search method was used whereby the observer searched each orchard or unmanaged
vegetation patch for 15 min and recorded every new bird species observed. If a new species
was observed within 5 min after the initial 15 min had elapsed, an extra 5 min was added
to the search time. This was repeated until no new species were observed in an additional
5 min period. Birds that were flying greater than 5 m above the canopy were excluded,
unless they were foraging (e.g., welcome swallows (Hirundo neoxena) hawking insects).

To gain a measure of bird abundance, five ‘points’ were chosen within the orchard
(Corner 1, Corner 2, Corner 3, Corner 4 and Centre). Observations were started 1 min
after arrival at each point, to allow birds to settle. The identity and abundance of each
bird was then recorded for 5 min. A short survey period was employed to reduce the
risk of double-counting the same individuals (Gregory, Gibbons & Donald, 2004). The
distance to every bird observed was measured to facilitate the calculation of detectability
corrected density measures for each species. However, bird abundance (i.e., sample size per
species) was not sufficient to allow this calculation, so only general abundance measures
are provided in the results.

The 10 focal trees per orchard were also observed for a maximum of 30 min and the
identity and activity (particularly foraging behaviour) of every bird that visitedwas recorded
(Supplemental Information 1 and Fig. S1). Birds were classified into the following feeding
groups using the published literature to identify the main component of each species’ diet:
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omnivore, herbivore, insectivore, granivore and carnivore. If a species had two or more
main components in its diet (e.g., fruit and insects), then it was classified as an omnivore
(Del Hoyo et al., 1992–2013).

Apple damage assessments
Immediately before harvest, all apples on both open and netted branches were counted,
and the number of any insect or bird damaged apples were recorded. Published damage
guides (e.g., Victorian Department of Natural Resources and Environment, 2002; Victorian
Department of Environment and Primary Industries, 2014) and personal observations were
used to identify damage type. For example, bird damage is often categorised by triangular
beakmarks or deep gouges (Figs. S2A and S2B) and insect damage usually occurs as circular
tunnels or characteristic scar marks (Figs. S2C and S2D). Aborted fruit inside nets were not
counted, as we could not ascertain how many fruit had been dropped from comparable
open branches. The difference in yield between branches was classified as the percentage
of fruit on each branch that had damage.

Larvae predation
An additional 72 apple trees (12 trees per orchard) were systematically selected to conduct
experiments with the primary aims of identifying bird and/or insect predators of pest
insects in the orchards, and assessing the validity of using artificial prey analogues to
measure predator activity. To our knowledge, no other study has compared predation
events on real and artificial prey in the same context at the same time in any crop system
(but see Sam, Remmel & Molleman, 2015 for an example in tropical forests). Each tree was
spaced 15 m apart and was located at orchard edges adjacent to unmanaged vegetation.

Codling moth larvae are a serious insect pest of apples and other pome fruit, with the
potential to ruin almost entire fruit crops (Williams, 2002). Their natural occurrence in
orchards means that they should be an easily recognizable food source for insectivorous
birds which prey on invertebrates on the surface of the fruit, foliage or branches of apple
trees. This made them an ideal ‘model pest’ to use to assess which bird species may poten-
tially be providing biological control in apple orchards. Codling moths emerge from over-
wintering under the bark of trees in early spring and lay eggs which hatch and infect young
fruit. There can be up to three life-cycles in one apple growing season (Williams, 2002).

We assessed predation on codling moth larvae using artificial and real moth larvae.
Artificial larvae were constructed using plasticine. White and pink plasticine was mixed
together and rolled into 1.7 mm × 15 mm cylinders to create the creamy pink colour and
shape of mature coding moth larvae. A 2 mm diameter ball of black plasticine was also
attached to one end as the head (Fig. 1). In total, 360 artificial larvae were constructed
for this experiment. Studies have shown that using artificial, plasticine larvae can be an
effective alternative to real larvae when conducting predation experiments (Koh & Menge,
2006; Howe, Lövei & Nachman, 2009; Tvardikova & Novotny, 2012). They are easier to
source and store, and animal damage can often be identified (e.g., insect, bird or mammal).
However, few studies have compared predation rates on real vs. artificial prey in the same
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Figure 1 (A) plasticine larvae, (B) real codling moth larvae.

context to ascertain the usefulness of artificial prey models as analogues of predation rates
on real prey (Sam, Remmel & Molleman, 2015).

For real larvae, Agriculture Victoria supplied 360 dormant codling moth larvae (Fig. 1).
These were killed in the freezer before use to prevent any live larvae from escaping into
orchards.

Half of the artificial and real larvaewere stuck individually onto separate 10mm× 20mm
pieces of cardboard using double sided tape (Fig. 1), and the other half grouped into 36
groups of 10 (five real and five artificial) and stuck together onto 36, 100 mm × 200 mm
pieces of cardboard (Fig. S3). Our codling moth larvae likely experienced higher rates
of predation than would occur naturally as they were exposed openly on branches and
pieces of cardboard; however, our aim here was to determine differences in predation rates
between real vs. plasticine baits, rather than infer actual predation rates in orchards.

After fruit set (October 2014, coinciding with the fruit set bird surveys), the larvae were
set out in the orchard. The growing season was several weeks earlier than usual due to
warm weather and codling moth were active throughout the orchards. We also observed
codling moth larvae on apple fruit at this time. Ten individual (five real and five plasticine)
codling moth larvae were stuck onto branches of six trees in each orchard. Larvae were
stuck on branches of similar height, close to apple clusters and easily visible for potential
bird predators to find (Fig. S3). On the remaining six trees, a piece of cardboard containing
five real and five artificial larvae was tied to the trunk of the tree or on an adjoining lateral
branch (Fig. S3). These cards were monitored by Reconyx HC500 remote motion sensor
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cameras to determine which bird species were preying on the larvae. Cameras were set to
take a burst of three photos each time they were triggered to enable easy identification of
species. Birds most actively forage in the morning so all larvae were set out in the evening
to allow for the first morning of bird activity to occur uninterrupted.

Predation surveys
Twenty-four hours after the larvae were exposed every piece of cardboard was checked
and larval status was recorded (i.e., present, removed or damaged). Damaged plasticine
larvae were inspected further and damage type was identified as either insect or bird
(‘other’, e.g., mammal damage, was also a category based on guides in the literature (Howe,
Lövei & Nachman, 2009); however, only bird and insect damage was encountered). Insect
damage was identified with a magnifying glass and occurred as pinpricks and/or pincer
marks (Figs. S4A and S4B). Bird damage was identified by straight beak marks (Fig. S4C).
Damage assessments were repeated at the same time every day until larvae had been exposed
for 5 days. Other studies using artificial caterpillars had exposure times ranging from 24 h
to 6 days (Loiselie & Farji-Brener, 2002; Posa, Sodhi & Koh, 2007; Howe, Lövei & Nachman,
2009; Tvardikova & Novotny, 2012).

STATISTICAL ANALYSIS
Apple damage
The response variables for the first experiment were the percentage of apples damaged
by birds and the percentage of apples damaged by insects on open and netted branches.
However, bird damage was very low (average of 1.9%± 4.8 (95% confidence interval (CI)),
and only detected at two sites (Orchard 1 and Orchard 2), so was not included for analysis.

Spearman correlation analysis was used to identify correlated explanatory variables, with
only one variable of each correlated pair (correlation defined as r > 0.3) being included in
models (see ‘Results’). A generalized linear model using a Poisson distribution was fitted
using the GENMOD procedure in SAS/STAT (SAS Institute, Cary, NC, USA) to determine
differences in insect damage to apples between open and netted branches, and whether this
difference was influenced by growing Region (Batlow, Shepparton or Harcourt), Orchard
(Orchard 1, Orchard 2, Orchard 3, Orchard 4, Orchard 5, or Orchard 6), or Location of
the tree in the orchard (edge or interior) (McCullagh & Nelder, 1989). Since every tree
was surveyed twice (one open and one netted branch), a block design using generalized
estimating equations was used to account for lack of independence in the data resulting
from repeat measures (Liang & Zeger, 1986).

Larvae predation
The response variables for the second experiment were the percentage of plasticine larvae
attacked or removed from branches after 5 days, and the percentage of real larvae attacked
or removed from branches after 5 days. The explanatory variables were Larvae type (real
or plasticine), growing Region (Batlow, Shepparton or Harcourt) and Orchard (Orchard
1, Orchard 2, Orchard 3, Orchard 4, Orchard 5, or Orchard 6). Region was the fixed factor
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Figure 2 Average difference in % of insect damaged apples between open and netted branches, com-
pared with insectivorous bird species richness (n = 120 branches). All orchards except Orchard 6 re-
ceived more insect damage on netted (bird excluded) branches (Error bars show 95% CI). Orchards are
listed 1–6 from lowest intensity management to highest intensity.

of interest, Orchards were nested within Region, and Larvae type was a repeated measure
factor.

A linear mixed model analysis was performed in SAS/STAT (SAS Institute, Cary, NC,
USA) fitting the repeated measure, (Larvae type) using an unstructured correlation matrix
to determine if: (1) the rate of removal differed between real and artificial larvae; and
(2) if there was a relationship between the amount of larvae taken and growing region or
orchard.

RESULTS
Apple damage
At all sites except Orchard 6 there was more insect damage on netted branches than open
branches, with an average of 18.6% (95% CI [13.5–25.5]) of fruit damaged on netted
branches and an average of 5.8% (95% CI [3.9–8.7]) of fruit damaged on open branches
(least squares mean; p< 0.005) (Fig. 2). Therefore, the difference in damage between netted
and open branches was positive (12.8%, 95% CI [10.8–17.9]). This suggests that birds were
contributing to the biological control of insect pests in most orchards. Orchard 2 had the
highest insectivorous bird species richness across the whole season and the greatest average
difference in damage between open and netted branches (21.1%± 11.9 (95% CI)) (Fig. 2).
The highest amount of insect damage was also recorded at Orchard 2 with an average of
39.2% (±9.2% (95% CI)) of apples on netted branches damaged (Fig. S5).
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The distance of an apple tree to unmanaged vegetation was correlated with Orchard
(r = 0.452, p=<0.01), and did not greatly improve the QIC value for the model. Orchard
was considered a more important variable for capturing other aspects of variation across
sites so Distance was excluded. The final explanatory variables selected were as follows: the
fixed variables Region (Batlow, Shepparton or Harcourt), Orchard (Orchard 1, Orchard
2, Orchard 3, Orchard 4, Orchard 5 or Orchard 6), and Tree Location (Edge or Interior);
and the random variable was an Orchard × Region interaction term.

The orchard that the tree was in was the only variable that significantly explained the
difference in insect damage between netted and open branches (p< 0.005). The difference
was greater in the less intensely managed orchards (see ranking scale, Table 1 and Fig. S5),
i.e., birds were providing more biological control in these orchards. The region the tree was
in (i.e., Shepparton, Harcourt or Batlow) possibly also influenced how much of an effect
the exclusion of birds had on insect damage to apples (p= 0.052). The greatest difference
in damage between netted and open branches occurred in Batlow (average difference of
12.2% ± 7.2 (95% CI)), followed by Harcourt (average difference of 10.9% ± 8.6 (95%
CI)), and Shepparton (average difference of 6.2% ± 10.7 (95% CI)).

Insectivorous bird species richness was measured at the orchard level so could not
be included in the main analysis, however, when the orchard management intensity was
considered against insectivorous bird species richness they were significantly negatively
correlated (Spearman=−0.870, p< 0.05). That is, the least intensively managed orchards
had the higher insectivore richness (Fig. S5). The average difference in damage between
netted and open branches was greater in orchards that had higher insectivore richness
(Spearman = 0.841, p< 0.05).

Bird species richness
Overall, 39 different bird species were detected in the six orchards. Thirty-six species were
native and three were introduced (Table S1). Thirty-four different species were observed
during the full bloom period, 19 species were observed during fruit set, 15 species were
observed at harvest and 21 species were observed post-harvest. All species observed in the
orchards were also observed in adjacent patches of unmanaged vegetation, as well as an
additional eight species (Supplemental Information 1).

Overall, Orchard 3 had the highest species richness (18), followed by Orchard 1 (16),
Orchard 2 and Orchard 4 (15 each), Orchard 5 (12) and Orchard 6 (8) (Fig. 3). When
species richness was broken down by time of season, Orchard 3 had the highest species
richness during the flowering period, with 14 species, followed by Orchard 1 with 12
different species. At fruit set, species richness was also highest at Orchard 3 (9 species),
followed by Orchard 2 (7 species) and Orchard 1 (5 species). At harvest time, Orchard
4 had the highest species richness (9 species), while at post-harvest species richness was
highest at Orchard 2 (8 species).

Feeding guilds
Birds were classified by their main feeding type. Omnivores (birds that consumed insects
and plant material) were the most common feeding type in all orchards across the entire
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Figure 3 Bird species richness in each orchard at key times of the growing season. Orchards are listed
from 1–6 from lowest intensity management to highest intensity.

season, with the exception ofOrchard 4 during harvest where there weremore insectivorous
species. Across the whole season, Orchard 2 had the highest species richness of insectivorous
birds (7 species), followed by Orchard 1 (6 species), Orchard 3 and Orchard 4 (5 species
each), Orchard 6 (3 species) and Orchard 5 (2 species).

When this was broken down into time of season, four insectivorous bird species were
recorded at Orchard 1 and Orchard 3 during flowering, while Orchard 2 and Orchard 6 had
three insectivorous species. During early fruiting, only three orchards had predominately
insectivorous bird species: Orchard 3 three species, Orchard 2 two species, Orchard 1 one
species. At harvest time, Orchard 4 had the highest number of insectivorous species (5)
while post-harvest, Orchard 2 had the highest insectivore species richness (5) (Fig. S6).

Larvae predation experiment
Real larvae were preyed on significantly more than plasticine larvae (p=<0.0001; Fig. 4).
There was no clear pattern to this: some orchards with high predation rates on real larvae
also had high predation rates on plasticine larvae, however this was not always the case.
Region also explained the difference in the predation rate (p=<0.001), with the most
larvae removed in Batlow, followed by Harcourt and then Shepparton (Fig. 4).

Several insectivorous bird species were observed within the orchards during early fruit
set and these could potentially be providing biological control of insect pests (Table S1).
However, themotion-sensor cameras only detected two birds (a superb fairy-wren (Malurus
cyaneus) and a satin bowerbird (Ptilonorhynchus violaceus)) potentially feeding on the
larvae at one orchard (Orchard 3). All predation of plasticine larvae was by insects, with the
exception of two bird predated larvae in Orchard 3. The motion-sensor cameras recorded
earwigs (Dermaptera sp., including the European earwig (Forficula auricularia)) predating
upon the larvae in Orchard 1, Orchard 2 and Orchard 5 (Fig. S7). The damage to larvae in
the remaining orchards was similar (pincer marks and ‘chewed’ sections in the plasticine
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Figure 4 Least squares means of the number of real and plasticine larvae attacked/removed from each
region. Error bars show 95% confidence intervals.

Figure 5 Net value of bird activity in apple orchards when considering a cost-benefit trade-off
(i.e., reduction in insect damaged fruit minus amount of bird damaged fruit).Orchards are listed 1–6
from lowest intensity management to highest intensity. Error bars show 95% confidence intervals.

larvae, and only the hard head remaining for real larvae) and therefore suggests earwigs or
similar predatory invertebrates were also responsible for the majority of predation. Ants
(unknown sp.) were also observed eating the real larvae.

The net value of bird activity
Birds damaged an average of 1.9% of apples within the study orchards, while they reduced
the amount of insect damaged apples by an average of 12.8%. This result suggests that
birds are providing a net benefit value to orchard growers, reducing damage by an average
of 10.9%. When considered at the orchard level, all orchards except two had an overall
positive net value of bird activity (Fig. 5).
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DISCUSSION
This study considered the cost-benefit trade-off between birds providing biological control
of insect pests, and bird damage to fruit in apple orchards in central Victoria and southern
New South Wales. We found that: (1) excluding birds from branches of apple trees (via
netting) resulted in 12.8% greater insect damage to fruit and reduced crop yields, therefore
indicating that birdsmay contribute to controlling insect pests; (2) bird damage to apples on
open branches was very low (1.9%), and only detected at two sites; and (3) the net outcome
of bird activity, trading off the potential benefits of birds controlling insect pests vs. birds
directly consuming fruit was positive, with the amount of damaged fruit reduced by 10.9%.
The experiment using real and artificial codling moth larvae suggested that earwigs may
significantly contribute to the predation of codling moth larvae in apple orchards, and this
was more evident in less intense orchards. Real larvae were also predated on more often
than plasticine ones. Hence, our combined results suggest that both insectivorous birds
and certain predatory insects may together help control insect pests in apple orchards.

Apple damage
The highest amount of insect damage to apples was recorded at Orchard 2, where almost
40% of apples on netted branches were damaged. Orchard 6 was the only orchard where
trees received less damage on open branches than bird excluded ones, and overall insect
damage was low compared with the other orchards. This was possibly due to low species
richness of insects (ME Saunders & GW Luck, 2015, unpublished data) and birds, and
relatively substantial pesticide use. It is likely that the lowest intensity orchards (Orchard 1
and Orchard 2), which were certified organic, had more insect damage because the growers
did not spray any pesticides. It is important to note that the damage estimates in the higher
intensity orchards reflect the combined influence of natural (biological) and chemical pest
control, unlike the two organic orchards which use natural pest control alone.

Distance to unmanaged vegetation was not included in the analysis as it was moderately
correlated with Orchard, however, native vegetation is important habitat for birds (Bennett
& Ford, 1997;Tscharntke et al., 2008;Puckett et al., 2009) and this is one possible explanation
for why birds were providing greater biological control in the orchards closest to patches of
unmanaged vegetation. The least intensively managed orchards had the highest insectivore
richness (potential biological control providers), which also supports this conclusion. This
was additionally supported by observations during bird surveys, with many insectivorous
birds being observed at the orchard edges near unmanaged vegetation (e.g., yellow-faced
honeyeaters (Lichenostomus chrysops) and grey fantails (Rhipidura albiscapa) darting to
and from unmanaged vegetation and apple trees near the edges of the orchards).

Almost all (92.3%) of the 39 bird species observed were native. The greatest species
richness occurred during the full bloom period, as did the greatest species richness of
insectivores (however, these still occurred in fairly high numbers across the whole season).
Between early fruiting and harvest, the apple trees in the two Harcourt orchards were
covered with drape netting (excluding the open branches used in this experiment) and
this appeared to provide a haven for many small bird species (e.g., striated thornbills
(Acanthiza lineata) and yellow-faced honeyeaters) which could fit under gaps in the net,
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while excluding most larger parrot species and birds of prey (e.g., black-shouldered kite
(Elanus axillaris)).

Across the season (flowering, early fruiting and harvest) parrot species (crimson rosella
(Platycercus elegans) and eastern rosella (Platycercus eximius)) were observed feeding on
flower buds and fruit on the trees (possibly reducing fruit set) in all orchards except
for the two in Shepparton (where no parrots were observed). These species were also
observed consuming unharvested (waste) fruit on the trees and ground post-harvest,
possibly reducing the spread of disease and increasing the transfer of nutrients and organic
matter into the soil, which is particularly important in organic orchards (Neeson, 2008;
Queensland Department of Agriculture and Fisheries, 2015). Satin bowerbirds were observed
also feeding on apple flowers (detrimental activity) at Orchard 3 during flowering, and
on fallen fruit (beneficial activity) in the same orchard during the early fruiting stage.
Therefore, these bird species have the potential to be providing both costs and benefits
to growers depending on the time of season. This supports work done by Luck (2013),
who found that parrot species in almond orchards caused costs by eating the growing nuts
before harvest, but then also provided benefits by cleaning up waste nuts after harvest.

The omnivorous silvereye (Zosterops lateralis) was observed eating nectar during
flowering (possible detrimental activity of nectar robbery and possible beneficial activity of
incidental pollination), gleaning insects from apple leaves and fruit across the whole season
(potential beneficial activity of biological control), and eating unharvested or fallen fruit
after harvest (potential beneficial activity of reducing the spread of disease and increasing
the transfer of nutrients and organic matter into the soil). Such behaviour demonstrates
the complex relationships between species activity and crop production, underscoring the
importance of accounting for both the costs and benefits of the activity of multiple species
across the entire growing season for individual crops in different contexts (see Saunders et
al., 2016). Other omnivorous species, such as the Australian magpie (Cracticus tibicen) and
European blackbird, were also identified in the orchards across the whole season and were
only observed eating insects, some of which may have been apple pests.

Larvae predation experiment
The larvae predation experiment found a significant difference in the prey type used,
i.e., real larvae were preyed on more than plasticine larvae. This can possibly be explained
by the high incidence of insect predation of larvae, particularly by earwigs. The larvae
in this study were first attached to the study trees in the evening to allow birds to have
the first morning of foraging uninterrupted (i.e., when they are most active); however,
many of the real larvae were eaten by earwigs in the first night. This could have reduced
the amount of larvae available for birds to prey on that first morning and therefore
underestimated their biological control potential. Perhaps more importantly, earwigs
seem to be largely overlooked as potential biological control providers of invertebrate
pests in apple orchards. European earwigs are known to cause damage to many crop
types (Capinera, 2001), although they have also been shown to provide benefits such as
controlling aphids (e.g., Nicholas, Spooner-Hart & Vickers, 2005; Romeu-Dalmau, Piñol &
Espadaler, 2012). Native carnivorous earwigs (e.g., Labidura truncata) are better recognised
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as potential predators (Williams, 2002; Atlas of Living Australia, 2015), but more research
is needed into their potential as biological control agents, particularly in apple orchards.

Our study found that the use of plasticine larvae significantly under-estimates the
amount of predation occurring in the orchard (i.e., they were attacked less than the real
larvae). Other studies have found plasticine larvae to be effective in recording predation
events (e.g., Loiselie & Farji-Brener, 2002; Koh & Menge, 2006; Posa, Sodhi & Koh, 2007;
Howe, Lövei & Nachman, 2009; Tvardikova & Novotny, 2012), however these studies did
not directly compare their results with predation rates on real larvae. Sam, Remmel &
Molleman (2015) considered this difference in prey type in a tropical forest system. They
found no difference between real and artificial larvae; however, they found a significant
difference in predation rates based on the type of artificial material used. Our study is
therefore the first to consider the differences in predation rates on different types of prey
items in fruit orchards. We suggest that while the use of plasticine prey models can help
identify potential predators, and they may have some utility in recording differences in
relative predation pressure among sites, they should not be used to infer actual predation
levels on a given prey type. Our study also suggests that caution should be taken when using
plasticine larvae to infer relative predation pressure. For this to be reliable, sites with high
predation pressure for real larvae should also have high predation pressure for artificial
larvae; however, this was not always the case in our study region.

Our study did not consider the potential for insectivorous bats to be providing biological
control, although they can be important predators of crop insect pests (Cleveland et
al., 2006; López-Hoffman et al., 2014; Wanger et al., 2014; Brown, Braun de Torrez &
McCracken, 2015). No bats were recorded on the motion sensor cameras, but several
growers have observed insectivorous bats in their orchards, so this would be an important
avenue for further investigation. Similarly, some growers commented on grey-headed
flying foxes (Pteropus poliocephalus) causing serious damage to apple trees and fruit, but
they were not observed during our study and there was no evidence of their damage
(e.g., snapped branches and chewed fruit) (Victorian Department of Natural Resources and
Environment, 2002).

The net value of bird activity
When trading off the amount of bird damage in the orchards (average of 1.9% of apples)
with the amount of biological control they provided (i.e., reducing apples damaged by
insects by 12.8%), it can be suggested that birds are providing an overall net benefit to
orchard growers, reducing damage by an average of 10.9%. This value differed between
orchards, with birds providing less biological control in the most intensively managed
orchard (Orchard 6), and also causing more damage to apples than the insect control they
provided in the least intensively managed orchard (Orchard 1) (i.e., a net outcome that was
detrimental to growers). This highlights the importance of recognizing the spatio-temporal,
management and ecological differences between orchards and understanding that there is
no one-size-fits-all approach to sustainable management. Bird damage was only detected
at two sites, Orchard 1 and Orchard 2, which were the two least intensely managed
orchards. As insectivore species richness was also highest in these orchards, this suggests
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that there is a point when the trade-off between encouraging insectivores (e.g., by planting
native vegetation near orchards) may be out-weighed by attracting detrimental species
(e.g., parrots). Though data are sparse, our results suggest that some active management
of apple orchards is required to tip the balance in favour of a positive net outcome of bird
activity for growers.

It is important to note that the bird damage recorded in our study was low and likely
impacted by orchard management actions (e.g., drape netting). While some studies suggest
that bird damage to apples is also low (e.g., Long (1985) who found a maximum of 1.75%
damaged fruit per orchard), other studies have found bird damage in apples to be much
higher, for example up to 18% in some varieties (Grasswitz & Fimbres, 2013). These studies
also found that the amount of damage depended on apple variety, with birds showing
a preference for red-coloured, late season ripening fruit. Logistical reasons prevented us
from controlling for apple variety, so all apple damage assessments were done at the same
time in the season to account for temporal variation in bird activity. However, it is possible
that apple variety could have impacted damage levels across orchards.

The amount of bird damage to crops can also vary between seasons and years (e.g., Long,
1985; Luck, Triplett & Spooner, 2013). In addition, there is a large amount of spatial
variability in damage from large flocks of birds (e.g., cockatoo species) that descend
somewhat randomly on localised areas in orchards (Long, 1985). Therefore, it is possible
that at other sites within the study orchards, or in future years, there may be more apple
damage by birds. This is supported by personal observations of crimson rosellas and
Australian king parrots (Alisterus scapularis) feeding on uncovered fruit near orchard edges
at four of the orchards, and growers’ observations of flocks of musk lorikeets (Glossopsitta
concinna) feeding on fruit in previous years. Therefore, further work is needed to consider
the cost-benefit trade-off of bird activity over larger spatial scales and longer time spans.

Our study begins to address the complex ecological interactions that occur between
birds, invertebrates and apple crops. It highlights how birds can provide costs or benefits to
growers depending on a range of contextual factors including time of season, location, and
interactions with other fauna (i.e., invertebrates). This can better inform land managers
about implementing strategies which promote the beneficial processes that are essential
to the sustainability of agriculture and conservation alike (Saunders et al., 2016; Peisley,
Saunders & Luck, 2015), while reducing negative impacts on production.
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