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Abstract: Fungi have traditionally been a very rewarding source of biologically active natural products,
while diterpenoids from fungi, such as the cyathane-type diterpenoids from Cyathus and Hericium sp.,
the fusicoccane-type diterpenoids from Fusicoccum and Alternaria sp., the guanacastane-type diter-
penoids from Coprinus and Cercospora sp., and the harziene-type diterpenoids from Trichoderma sp.,
often represent unique carbon skeletons as well as diverse biological functions. The abundances of
novel skeletons, biological activities, and biosynthetic pathways present new opportunities for drug
discovery, genome mining, and enzymology. In addition, diterpenoids peculiar to fungi also reveal
the possibility of differing biological evolution, although they have similar biosynthetic pathways.
In this review, we provide an overview about the structures, biological activities, evolution, organic
synthesis, and biosynthesis of diterpenoids that have been specially produced by fungi from 2010 to
2020. We hope this review provides timely illumination and beneficial guidance for future research
works of scholars who are interested in this area.
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1. Introduction

Fungi are widely distributed in terrestrial environments, freshwater, and marine
habitats; more than one million distinctive fungal species exist, but only approximately
100,000 of these have been classified [1]. These eukaryotic microbes produce specialized
metabolites that participate in a variety of ecological functions, such as quorum sensing,
chemical defense, allelopathy, and maintenance of symbiotic interactions [2]. There are
more than 40,000 terpenoid compounds in nature, which compose the largest family of
natural products [3]. Terpenoids exist in all domains of life, but are particularly prevalent
in plants, fungi, and marine invertebrates, and are essential constituents of secondary
metabolism [3,4].

Diterpenoids are a class of C20 compounds derived from isoprenoid precursor ger-
anylgeranyl diphosphate (GGPP) under the catalysis of diterpene synthases (DTSs) [5–11].
Prenyltransferase (PT) and terpene synthase (TPS) are key enzymes in the formation of the
basic carbon skeletons of terpenoids [8,12]. The PT enzymes determine the prenyl carbon
chain length, whereas the TPS enzymes generate the structural complexity of the molec-
ular scaffolds, forming various ring structures [8]. Fungi are among the most important
microbial resources for drug discovery, owing to their capability to produce structurally
diverse and biologically important secondary metabolites [13,14]. It is also well known
that fungi possess extraordinary biosynthetic gene clusters that may encode highly diverse
biosynthetic pathways of natural products [15–18].

Between 2010 and 2020, about 400 fungal-specific diterpenes have been reported. In
addition to 172 cyathane diterpenes reviewed by Bailly et al. [19] and Gao et al. [20], a
total of 232 diterpenes were collected in this review (Chart 1). These diterpenoids are
mainly tricyclic or tetracyclic skeletal structures such as cyathane-type, fusicoccane-type,
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guanacastane-type, and harziene-type diterpenoids (Chart 1). Judging from the distribution
of fungal diterpenoid resources, the diterpenes from the genera Trichoderma, Penicillium,
Cyathus, Hericium, and Crinipellis account for 60% of the total (Chart 2). In addition,
systematic studies on the chemical constituents of fungi have shown that a large number of
fungal diterpenoids exhibited significant biological functions such as anti-inflammatory,
cytotoxic, antimicrobial, and antiviral activities (Chart 3). For instance, the semi-synthetic
pleuromutilin analogues tiamulin 193 and valnemulin 194 have been used for over three
decades as antibiotics to treat economically important infections in swine and poultry [21–25].

Chart 1. Fungal diterpenoids (2010–2020) classified by skeleton.

Chart 2. Source genera of fungal diterpenoids (2010–2020).

Consequently, a wealth of novel skeletons, biosynthetic pathways, and bioactivities
have provided new opportunities for drug discovery, genome mining, enzymology, and
chemical synthesis. During the period covered in this review, there have been several more
specialized reviews of fungal metabolites [26–28], including benzene carbaldehydes [29], tri-
chothecenes [30,31], protoilludane sesquiterpenoids [32], meroterpenoids [33–35], meroter-
penoid cyclases [36], terpenoids [37], and natural product biosynthetic genes and enzymes
of fungi [17,18,38,39]. In addition, the isolation and chemistry of diterpenoids from ter-
restrial sources have been summarized [40]. In this review, we provide an overview of



J. Fungi 2022, 8, 244 3 of 32

diterpenoids that were specially produced by fungi during the period from 2010 to 2020,
and focus on their structures, biological activities, and biosynthesis, and we also conduct
an evolutionary analysis.

Chart 3. The proportion of one activity as compared with the whole occurrence of activities of
bioactive fungal diterpenoids (2010–2020).

In particular, literature investigation of known databases such as PubMed and Web of
Science was conducted from 2010 to July 2020 using the keywords “diterpenes/diterpenoids”
paired with “fungi”, “fungal diterpenoids” paired with “structure elucidation”, or “fungal
diterpenoids” paired with “biosynthesis”. There were no language restrictions imposed.
The references were further scrutinized and, finally, 210 references were selected. The data
inclusion criteria included: (1) diterpenes/diterpenoids isolated from fungi, (2) carbon
skeleton obtained only from fungi or rarely from other sources, (3) studies on the biological
activities of diterpenes/diterpenoids and their derivatives that had been carried out in vitro
or in vivo, (4) studies on the biosynthesis of diterpenes/diterpenoids and their derivatives.
The data exclusion criteria included: (1) carbon skeleton of diterpenes/diterpenoids ob-
tained in abundance from other sources, such as plants, bacteria and so on, (2) duplication
of data and titles and/or abstracts not meeting the inclusion criteria.

2. Cyathane
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Cyathane diterpenes are a group of natural products that possess unusual, angularly 

fused 5/6/7 tricyclic cores, and they are characteristic of certain basidiomycete species in-
cluding Cyathus, Hericium, and Sarcodon (Figure 1). For example, there have been more 
than 170 compounds isolated from fungi such as Cyathus africanus and Hericium erinaceus 
[19,20,41]. These compounds have a common biosynthetic precursor and can be produced 
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Cyathane diterpenes are a group of natural products that possess unusual, angularly
fused 5/6/7 tricyclic cores, and they are characteristic of certain basidiomycete species in-
cluding Cyathus, Hericium, and Sarcodon (Figure 1). For example, there have been more than
170 compounds isolated from fungi such as Cyathus africanus and Hericium erinaceus [19,20,41].
These compounds have a common biosynthetic precursor and can be produced via biosyn-
thesis, hemi-synthesis, or total synthesis [42–47]. The cyathane diterpenoids include the
classes of cyathins, striatins, sarcodonins, scabronines, and erinancines, according to their
origins. Among them, the striatals, striatins, and erinacines, called cyathane-xylosides,
which represent an unusual group of cyathane diterpenoids attached to a modified pentose
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(D-xylose) moiety, have been isolated from cultures of Cyathus and Hericium species [20].
The cyathane structure is different from the homoverrucosane, mulinane, and valparane
diterpenoids which also possess a 5/6/7 tricarbocyclic system [48,49]. The cyathanes are
most similar to cyanthiwigins and can be differentiated by the orientation of the angu-
lar methyl groups, mainly present in some sponges [50–59]. These compounds display
a diverse range of biological activities, including anticancer, antimicrobial, anti-MRSA
(methicillin-resistant Staphylococcus aureus), anti-inflammatory, anti-proliferative, and nerve
growth factor (NGF)-like properties [19,20,60,61]. An overview of cyathane-type diterpenes
including isolation, structure diversity, synthesis, and bioactivity has been reviewed by
Bailly et al. [19] and Gao et al. [20]. Therefore, in this review, we no longer summarize the
details of cyathane diterpenoids.

Figure 1. The evolutionary analysis tree constructed with selected fungi producing cyathane
diterpenoids. The evolutionary analysis was reconstructed by the maximum likelihood method
from the internal transcribed spacer (ITS) sequences as follows: Cyathus africanus (JX103204.1),
C. earlei (KY964272.1), C. gansuensis (KC869661.1), C. helenae (DQ463334.1), C. hookeri (KC005989.1),
C. stercoreus (MH543350.1), C. striatus (KU865513.1), C. subglobisporus (MH156046.1), Gerronema albidum
(MF318924.1), Hericium erinaceus (KU855351.1), H. flagellum (MG649451.1), H. ramosum (U27043.1),
H. sp. WBSP8 (MN243091.1), Hydnum repandum (LC377888.1), Laxitextum incrustatum (KT722621.1),
Phellodon niger (MH310794.1), Sarcodon glaucopus (MT955152.1), S. scabrosus (MN992643.1),
Strobilurus tenacellus (MF063128.1). Since the ITS sequence of Sarcodon cyrneus was not available,
Sarcodon sp. (MK049936.1) was selected, since it is in the same family with S. cyrneus. The evolution-
ary history was inferred by using the maximum likelihood method and the general time reversible
model [62]. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the evolu-
tionary history of the taxa analyzed [63]. Branches corresponding to partitions reproduced in less than
50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa
clustered together in the bootstrap test (1000 replicates) are shown next to the branches [63]. Initial
tree(s) for the heuristic search were obtained automatically by applying the Neighbor-Join and BioNJ
algorithms to a matrix of pairwise distances estimated using the maximum composite likelihood
(MCL) approach, and then selecting the topology with superior log likelihood value. A discrete
Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G,
parameter = 1.2219)). The rate variation model allowed for some sites to be evolutionarily invariable
([+I], 0.00% sites). This analysis involved 20 nucleotide sequences. Codon positions included were
1st + 2nd + 3rd + noncoding. There were 924 positions in the final dataset. The evolutionary analysis
was conducted in MEGA X (version 10.2.2) [64].

To understand the source genera of cyathane diterpenoids, we performed a phy-
logenetic analysis by using the maximum likelihood method and the general time re-
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versible model [62–64] for all the species involved in the reviews by Bailly et al. [19] and
Gao et al. [20]. The results show that source genera are grouped based on their regiospeci-
ficity, i.e., genera Cyathus, Hericium, and Sarcodon were clustered into different clades
(Figure 1). Taxonomically, Cyathus africanus, C. hookeri, C. gansuensis, C. subglobisporus,
C. stercoreus, and C. striatus all belonged to the genus Cyathus. They were close to each
other, and first, they gathered into one branch, then, they gathered into one branch with
Strobilurus tenacellus of the genus Strobilurus, and finally gathered into one branch with
other genera (Figure 1). C. earlei and C. helenae also belonged to the genus Cyathus, they
were close to each other, and first, they gathered into one branch, then, they gathered into
one branch with Gerronema albidum of the genus Gerronema. Similarly, Hericium erinaceus,
H. flagellum, and Hericium sp. WBSP8, Sarcodon scabrosus, S. glaucopus, and other species
were close to each other. Existing studies have shown that most fungal metabolites are
encoded by biosynthetic gene clusters (BGCs) [17]. The natural product BGCs of species in
the same genus tend to be highly homologous, and BGC functional divergence gives rise
to the evolution of new secondary metabolites, indicating that species-level sampling in
these three genera for natural products mining will yield significant returns for cyathane
diterpenoids discovery.

3. Cyclopiane
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Cyclopiane diterpenoids comprise a class of tetracyclic diterpenes with unique scaf-
folds. They are characterized by a highly fused 6/5/5/5 ring system. The structural
variations of cyclopiane diterpenoids are mainly owing to oxidation occurring at various
sites to generate hydroxy groups [65]. In general, cyclopiane diterpenoids have mainly
been isolated from different species of the genus Penicillium (Figure 2) and have been
classified into two groups according to the functionality at C-1, i.e., conidiogenols and
conidiogenones. The former featured with a hydroxy group at C-1, while the later pos-
sessed a carbonyl group at C-1 [66]. Specifically, Penicillium commune MCCC 3A00940, P. sp.
F23-2, P. sp. YPGA11, P. cyclopium, P. roqueforti IFM 48062, P. sp. TJ403-2, P. chrysogenum
QEN-24S, and Leptosphaeria sp. XL026 have been reported to produce conidiogenol-type
diterpenoids, while P. commune MCCC 3A00940, P. chrysogenum MT-12, P. sp. YPGA11, and
P. cyclopium have been reported to produce conidiogenone-type diterpenoids (Figure 2).
Structurally, cyclopiane diterpenoids differ from the aberrarane-type diterpenoid aber-
rarone, which has shown in vitro antimalarial activity against a chloroquine-resistant strain
of the protozoan parasite Plasmodium falciparum isolated from the Caribbean sea whip
Pseudopterogorgia elisabethae [67]. The molecular structure of aberrarone was established by
spectral analysis and subsequently confirmed by X-ray crystallographic analysis. Some
cyclopiane compounds exhibited pronounced biological activities, such as conidiation
induction, cytotoxic, anti-inflammatory, antimicrobial, and antiallergic effects.
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Figure 2. The evolutionary analysis tree constructed with selected fungi producing cyclopiane
diterpenoids. The evolutionary analysis was reconstructed by the maximum likelihood method
from the ITS sequences as follows: Penicillium commune MCCC 3A00940 (KY978585.1), P. sp. F23-2
(EU770318.1), P. sp. YPGA11 (MG835908.1), P. sp. TJ403-2 (MK613138.1), P. chrysogenum MT-12
(MF765611.1), P. chrysogenum QEN-24S (GU985086.1), P. roqueforti IFM 48062 (AB041202.1), and
Leptosphaeria sp. XL026 (MK603060.1). Since the ITS sequence of strain P. cyclopium IMI 229034 was
not available, P. cyclopium IFM 41611 (AB041169.1) was selected, since it was in the same family as
P. cyclopium. The evolutionary analysis was conducted in MEGA X (version 10.2.2) [64].
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Conidiogenol 1 is a potent and selective inducer of conidiogenesis in the liquid cul-

ture of Penicillium cyclopium under non-nutrient limiting conditions [66]. Conidiogenol B 
2 has been obtained from the deep-sea derived fungus P. commune MCCC 3A00940 [68]. 

Conidiogenols C 3 and D 4 have been isolated from a deep-sea derived fungus P. sp. 
YPGA11 [65]. 

The absolute structure of cyclopiane diterpenoids was first confirmed by Abe and co-
workers, in 2018, with the aid of the crystal sponge method [69]. Using the genome-mining 
approach, a chimeric enzyme of prenyltransferase-diterpene synthase (PT-TS) discovered 
from P. chrysogenum MT-12 was designated as P. chrysogenum cyclopiane-type diterpene 
synthase (PcCS). The new diterpene alcohol metabolite 5 was produced after the gene 
heterologously expressed in Aspergillus oryzae, and the crystalline sponge method also re-
vealed the absolute configuration of 5 [69]. The PT domain of PcCS first generated geranyl-
geranyl diphosphate (GGPP) from dimethylallyl pyrophosphate (DMAPP) and isopen-
tenyl pyrophosphate (IPP) (Scheme 1A). Then, GGPP was converted into 5 by a cyclization 
reaction catalyzed by the TS domain of PcCS (Scheme 1B). 

3.1. Conidiogenol Type

Conidiogenol 1 is a potent and selective inducer of conidiogenesis in the liquid culture
of Penicillium cyclopium under non-nutrient limiting conditions [66]. Conidiogenol B 2
has been obtained from the deep-sea derived fungus P. commune MCCC 3A00940 [68].
Conidiogenols C 3 and D 4 have been isolated from a deep-sea derived fungus P. sp.
YPGA11 [65].

The absolute structure of cyclopiane diterpenoids was first confirmed by Abe and co-
workers, in 2018, with the aid of the crystal sponge method [69]. Using the genome-mining
approach, a chimeric enzyme of prenyltransferase-diterpene synthase (PT-TS) discovered
from P. chrysogenum MT-12 was designated as P. chrysogenum cyclopiane-type diterpene
synthase (PcCS). The new diterpene alcohol metabolite 5 was produced after the gene
heterologously expressed in Aspergillus oryzae, and the crystalline sponge method also
revealed the absolute configuration of 5 [69]. The PT domain of PcCS first generated
geranylgeranyl diphosphate (GGPP) from dimethylallyl pyrophosphate (DMAPP) and
isopentenyl pyrophosphate (IPP) (Scheme 1A). Then, GGPP was converted into 5 by a
cyclization reaction catalyzed by the TS domain of PcCS (Scheme 1B).
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Scheme 1. (A) Reaction catalyzed by the prenyltransferase domain of PcCS; (B) reaction catalyzed by
the terpene synthase domains of PcCS [69].

3.2. Conidiogenone Type

Conidiogenone 6, first isolated from Penicillium cyclopium, was also an inducer of
conidiation [66,70]. The biosynthetic pathway of (–)-conidiogenone 6 has been fully elu-
cidated by the heterologous expression of biosynthetic genes in Aspergillus oryzae and
by in vitro enzyme assay with 13C-labeled substrates [71]. After construction of deoxy-
conidiogenol by the action of bifunctional terpene synthases (PchDS gene obtained from
Penicillium chrysogenum, and PrDS gene identified from Penicillium roqueforti showed sig-
nificant homology to PchDS), one cytochrome P450 catalyzed two rounds of oxidation
to furnish conidiogenone 6. The cyclization mechanism catalyzed by terpene synthase,
involving successive 1,2-alkyl shifts, was fully elucidated using 13C-labeled geranylgeranyl
pyrophosphate (GGPP) as a substrate (Scheme 2).

Scheme 2. Proposed cyclization mechanism catalyzed by PchDS/PrDS [71].

A series of new conidiogenone-type diterpenoids have been obtained from several
Penicillium species including conidiogenones B–G 7–12 from the fungus P. sp. F23-2 [72],
conidiogenones H 13 and I 14 from the endophytic fungus P. chrysogenum QEN-24S [73],
conidiogenones J 16 and K 15 from the fungus P. commune [68], and conidiogenone L 17
from P. sp. YPGA11 [65]. Conidiogenone B 7 showed potent activity against methicillin-
resistant Staphylococcus aureus (MRSA), Pseudomonas fluorescens, P. aeruginosa, and
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Staphylococcus epidermidis (each with a MIC value of 8 µg/mL) [73]. Conidiogenone C 8
showed potent cytotoxicity against HL-60 and BEL-7402 cell lines with IC50 values of 0.038
and 0.97 µM, and conidiogenone G 12 showed potent cytotoxicity against HL-60 cell line
with an IC50 value of 1.1 µM [72]. Provoked by the novelty of structures and potent bioac-
tivities, total syntheses of 1, 6, and 7 were achieved, which led to further determination of
their absolute configurations [74].

Three new cyclopiane diterpenes 13β-hydroxy conidiogenone C 18 and 12β-hydroxy
conidiogenones C 19 and D 20 have been isolated and identified from a sea sediment-
derived fungus Penicillium sp. TJ403-2 [75]. Their absolute configurations were further
established by X-ray crystallography experiment. Compounds 18–20 were evaluated for their
anti-inflammatory activity against LPS-induced NO production, and compound 18 showed
notable inhibitory potency with an IC50 value of 2.19 µM, which was three-fold lower than the
positive control indomethacin (IC50 8.76 µM). Further Western blot and immunofluorescence
experiments demonstrated that 18 inhibited the NF-κB-activated pathway.

Leptosphin C 21 has been isolated from the solid cultures of an endophytic fungus
Leptosphaeria sp. XL026 [76]. Its structure was elucidated by extensive spectroscopic methods
and single-crystal X-ray diffraction.

4. Fusicoccane
4.1. Structural and Biological Diversity

Fusicoccane diterpenoids, characterized by 5/8/5, 5/8/6, 5/9/4, and 5/9/5 fused
carbocyclic ring systems, include the fusicoccins, cotylenins, brassicicenes, heterodimers,
and homodimers [77–80]. They were first isolated as glycosides from the phytopathogenic
fungus Fusicoccum amygdali, in 1964 [81]. Substances exhibiting this structural motif have
been isolated from a variety of sources including fungi such as Talaromyces purpureogenus,
Alternaria brassicicola XXC, and Trichoderma citrinoviride cf-27 (Figure 3), and rarely from
liverworts, algae, ferns, streptomycetes, and higher plants, some of which showed re-
markable biological effects relevant for drug discovery, such as antibacterial, antitumor,
anti-inflammatory, and antifungal activities [82–89].

Figure 3. The evolutionary analysis tree constructed with selected fungi producing fusicoc-
cane diterpenoids. The evolutionary analysis was reconstructed by the maximum likelihood
method from the ITS sequences as follows: Alternaria brassicicola XXC (KR779774.1), Penicillium sp.
DT10 (MH458525.1), Periconia sp. No. 19-4-2-1 (KP873157.1), Roussoella hysterioides KT1651
(KJ474829.1), Talaromyces stipitatus (MH857968.1), Talaromyces purpurogenus (MH120320.1), and
Trichoderma citrinoviride cf-27 (KT259441.1). The evolutionary analysis was conducted in MEGA
X (version 10.2.2) [64].
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Six new fusicoccane-type diterpenoids, 14-hydroxycyclooctatin 30, 12α-hydroxycycloo-
ctatin 31, 12β-hydroxycyclooctatin 32, fusicomycin A 33, fusicomycin B 34, and isofu-
sicomycin A 35, along with a known compound, cyclooctatin 29 [82,92], have been isolated
from the fermentation broth of Streptomyces violascens [93]. Compounds 33–35 have demon-
strated cytotoxicity against five human cancer cell lines (BGC823, H460, HCT116, HeLa,
and SMMC7721), with IC50 values ranging from 3.5 to 14.1 µM. Cell adhesion, migration,
and invasion assays have shown that fusicomycin B 34 inhibited the migration and inva-
sion of human hepatocellular carcinoma SMMC7721 cells in a dose-dependent manner.
Through further investigation, it was revealed that 34 inhibited the enzymatic activity of
matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), in addition
to downregulating the expressions of MMP-2 and MMP-9 at both the protein and mRNA
levels to influence the migration and invasion of cancer cells.
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Between 1999 and 2014, eleven new fusicoccane-like diterpenoids were isolated from
the phytopathogenic fungus Alternaria brassicicola [94–96]. With the aid of computational
predictions, experimental validation, and biosynthetic logic-based strategies, Zhang and
co-workers first rectified the conclusion that all brassicicenes were originally proposed
to have a 5/8/5 fused skeleton and, thus, reassigned brassicicenes C–H 36–41, J 42, and
K 43 to have a unique bridgehead double-bond-containing 5/9/5 fused skeleton [97].
Meanwhile, brassicicenes L–N 44–46 were three highly modified fusicoccanes also isolated
from the fungus Alternaria brassicicola [97]. Afterward, alterbrassicene A 47 [78] and alter-
brassicicene A 48 [98], two unprecedented fusicoccane-derived diterpenoids featuring a
5/9/4-fused carbocyclic skeleton and a newly transformed monocyclic carbon skeleton
(Scheme 4), respectively, were obtained from the same fungal strain and found to function
on different targets in the NF-κB signaling pathway of anti-inflammatory activity. Later, the
biogenetically related intermediates, brassicicenes O 49 and P 50, were also discovered [78].

Scheme 4. Hypothetical biosynthetic pathways for alterbrassicene A 47 and alterbrassicicene A 48 [78,98].



J. Fungi 2022, 8, 244 11 of 32

Brassicicenes Q–X 51–58 have been isolated from the phytopathogenic fungus
Alternaria brassicicola [99]. Brassicicene S 53 was found to show significant anti-inflammatory
activity against the production of NO, TNF-α, and IL-1β at 10 µM. Further Western blot
and immunofluorescence experiments found the mechanism of 53 inhibiting the NF-κB-
activated pathway.
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Seven new modified fusicoccane-type diterpenoids 59–65, together with two known
congeners, have been obtained from A. brassicicola [100]. Alterbrassicicenes B 60 and C 62
represented the first examples of fusicoccane-type diterpenoids featuring two previously
undescribed tetracyclic 5/6/6/5 ring systems, while 1β,2β-epoxybrassicicene I 63 featured
a previously undescribed tetracyclic 5/8/5/3 ring system. Alterbrassicicene E 65 showed
moderate anti-inflammatory activity against NO production in lipopolysaccharide (LPS)-
induced RAW264.7 cell with an IC50 value of 24.3 µM. In addition, alterbrassicicene B 60,
3-ketobrassicicene W 61, 1β,2β-epoxybrassicicene I 63, and alterbrassicicene E 65 exerted
weak cytotoxicity against certain human tumor cell lines (OCVAR, MDA-MB-231, HeLa,
HT-29, and Hep3B cells) with IC50 values ranging from 25.0 to 38.2 µM.
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Alterbrassinoids A–D 66–69, the first examples of fusicoccane-derived diterpene
dimers furnished by forming an undescribed C-12–C-18′ linkage, have been isolated from
modified cultures of Alternaria brassicicola [79]. Alterbrassinoids A 66 and B 67 repre-
sented unprecedented heterodimers, whereas alterbrassinoids C 68 and D 69 represented
unprecedented homodimers, and alterbrassinoid D 69 also featured an undescribed anhy-
dride motif. Alterbrassinoids A–D 66–69 showed moderate activities against five cancer
cells (including OCVAR, MDAMB-231, HeLa, HT-29, and Hep3B). Afterward, three re-
arranged fusicoccane diterpenoids bearing a rare bridgehead double-bond-containing
tricyclo[9.2.1.03,7]tetradecane (5/9/5 ring system) core skeleton, namely alterbrassicenes
B–D 70–72, were obtained from the same fungus A. brassicicola [101]. Their structures were
assigned via spectroscopic methods, ECD calculations, and single-crystal X-ray diffraction.
Compounds 70–72 showed moderate cytotoxicity against several human tumor cell lines
with IC50 values ranging from 15.87 to 36.85 µM.

Five new diterpenoid glycosides, dongtingnoids A–E 73–77, two new diterpenoid
aglycones, dongtingnoids F 78 and G 79, and two known analogues, cotylenins E and J,
belonging to the fusicoccane family, have been isolated from the fungus Penicillium sp.
DT10 [102]. Dongtingnoids A 73, D 76, and E 77 showed comparable seed-germination-
promoting activities to the growth regulator cotylenin E [103,104]. Such diterpene glu-
cosides have been used for the production of an intermediate compound suitable for
semi-synthesis by a mutant constructed by disruption of a specific gene by homologous
recombination [105,106].

Trichocitrin 80, representing the first Trichoderma-derived and furan-bearing fusic-
occane diterpene, has been isolated from the culture of marine brown alga-endophytic
Trichoderma citrinoviride [107]. A new class of fusicoccane-type diterpenoid alkaloids with
an unusual 5/5/8/5 tetracyclic system, i.e., pericolactines A–C 81–83, have been isolated
from Periconia sp. [108].

4.2. Biosynthesis of Fusicoccane Diterpenes

A unique chimeric enzyme PaFS, possessing both a geranylgeranyl diphosphate
(GGDP) synthase domain and a diterpene cyclase domain, has been identified from
Phomopsis amygdali [109]. A biosynthetic gene cluster of brassicicene C 36, a fusicocca-
diene synthase (AbFS) containing 11 genes (orf1 to orf11, Scheme 5A), has been identified
in Alternaria brassicicola ATCC 96836 from genome database search [110,111]. In vivo and
in vitro studies have clearly revealed the function of Orf8 and Orf6 as a fusicoccadiene
synthase similar to PaFS and methyltransferase, respectively. In this gene cluster, five genes
(orf1, orf2, orf5, orf7, and orf11) encoded cytochrome P450s. Orf9 was a key dioxygenase to
determine the aglycon structures of fusicoccin and brassicicene [112].

Other fusicoccane-type diterpene synthases have been identified from bacteria or fungus,
such as CotB2 from bacteria responsible for the biosynthesis of cyclooctat-9-en-7-ol 84 [113],
and SdnA from fungus responsible for the biosynthesis of cycloaraneosene 85 [114]. The
same 5/8/5 tricyclic skeleton occurred in the sesterterpene ophiobolin F for which the
terpene synthase AcOS has been reported from Aspergillus clavatus [115]. Oikawa and
co-workers applied the Aspergillus oryzae heterologous expression system to functionally
characterize cryptic bifunctional terpene synthase genes found in fungal genomes and
identified the sesterfisherol (contains a characteristic 5/6/8/5 tetracyclic system) synthase
gene (NfSS) from Neosartorya fischeri [116].
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Scheme 5. (A) Biosynthetic gene clusters of the brassicicenes in P. fijiensis and A. brassicicola; (B) pro-
posed biosynthetic pathway for brassicicenes (dashed arrows are those deduced from expected
protein function) [117].

A unique P450 enzyme bscF has been identified in the phytopathogen Pseudocercospora
fijiensis that generated two structurally different products from the single substrate. In addi-
tion to the heterologous expression of the eight genes, bscA-bscH elucidated the biosynthetic
pathway for brassicicenes (Scheme 5B) [117].

A new fusicoccane-type diterpene synthase MgMS has been identified from the fungus
Myrothecium graminearum by the genome mining method, which catalyzed the formation of
the new diterpene alcohol myrothec-15(17)-en-7-ol 86 with all the seven stereocenters being
introduced in the cyclization steps and conserved in the structure of the product. Based on
this, its novel cyclization mode was unambiguously assigned (Scheme 6) [118].
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Scheme 6. Mechanistic hypothesis for the cyclization of GGPP to myrothec-15(17)-en-7-ol 86 and
myrotheca-7,15(17)-diene 87 [118].

5. Guanacastane

The discovery of 5/7/6 ring-fused guanacastane diterpenoids has been limited to
several fungal species in the different genera Cercospora, Cortinarius, Coprinellus, Coprinus,
Psathyrella, and Verticillium (Figure 4). Coprinellus heptemerus and C. radians M65 belong
to the same genus, and first, they gather into one branch. Psathyrella candolleana and
Cercospora sp. gather into one branch although they come from different genera. They are
all able to produce guanacastane diterpenoids, indicating that highly homologous BGCs
may also exist in fungi of different genera. The first member guanacastepene A 88, a
new diterpene antibiotic against methicillin-resistant Staphylococcus aureus (MRSA) and
vancomycin-resistant Enterococcus faecalis (VREF), has been isolated from an unidentified en-
dophytic fungus [119]. Meanwhile, fourteen new analogues guanacastepenes B–O 89–102
have been isolated from the same resource [120]. The novel skeleton has attracted great
interests for organic synthesis [121–136]. The biological activities of guanacastanes have
mainly been reported to possess cytotoxicity and antimicrobial effects.

Figure 4. The evolutionary analysis tree constructed with selected fungi producing guanacastane
diterpenoids. The evolutionary analysis was reconstructed by the maximum likelihood method
from the ITS sequences as follows: Coprinus heptemerus D99052 (JN159553.1), Coprinus radians
M65 (HM045514.1), Coprinus plicatilis 82 (Parasola plicatilis) (FM163216.1), Psathyrella candolleana
(MF401519.1), Cercospora sp. (KF577929.1), and Verticillium dahlia (HQ839784.1). Since the ITS se-
quence of Cortinarius pyromyxa was not available, Cortinarius misermontii (NR_130230.1) was selected
since their ITS sequences were the most similarly. The evolutionary analysis was conducted in MEGA
X (version 10.2.2) [64].
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Heptemerones A–G 103–109 have been isolated from cultures of Coprinus heptemerus [137,138].
Radianspenes A–M 110–122 have been obtained from Coprinus radians [139]. Among the
biological activities of these isolates, the inhibition of fungal germination was the most
potent, and depended highly on the composition of the assay medium [137]. Radianspene
C 112 showed inhibitory activity against human breast carcinoma (MDA-MB-435) cell with
an IC50 value of 0.91 µM [139]. Investigation of secondary metabolites from the fungal
Coprinus plicatilis led to the discovery of several new guanacastane-type diterpenoids,
named plicatilisins A–D 123–126 [140] and E–H 127–130 [141]. In vitro cytotoxic activities
against the human cancer cell lines (HepG2, HeLa, MDA-MB-231, BGC-823, HCT 116, and
U2OS) showed that plicatilisin A 123 exhibited significant cytotoxicity with IC50 values
ranging from 1.2 to 6.0 µM [140].

Guanacastepenes P–T 131–135 have been isolated from cultures of the fungus
Psathyrella candolleana [142]. Guanacastepene R 133 exhibited inhibitory activity against
both human and mouse isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD1) with
IC50 values of 6.2 and 13.9 µM, respectively. Cercosporenes A–F 136–141, including two
homodimers 140 and 141, have been isolated from the fungus Cercospora sp. [143]. Cer-
cosporene F 141 was cytotoxic to five human tumor cell lines (HeLa, A549, MCF-7, HCT116,
and T24) with IC50 values of 8.16–46.1 µM, and induced autophagy in HCT116 cell.
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Eleven new guanacastane-type diterpenoids dahlianes A–K 142–152 have been ob-
tained from the fungus Verticillium dahlia that was isolated from the gut of insect
Coridius chinensis [144,145]. In the cytotoxicity evaluation against human tumor cell lines,
dahlianes B 143 and C 144 exhibited significant cytotoxicity against human breast cancer
cell MCF-7 with IC50 values of 3.35 and 4.72 µM, respectively [144]. In addition, the isolates
were evaluated for their cytotoxicity toward drug-sensitive and DOX resistant MCF-7 cells
by MTT assay. As a result, dahliane G 148 showed an 80-fold potentiation effect on the
sensitization of doxorubicin at the concentration of 15 µM when screening the reversal
activity on doxorubicin-resistant human breast cancer cell (MCF-7/DOX) [145].

Pyromyxones A–D 153–156 have been isolated from fruiting bodies of Cortinarius pyromyxa,
which possessed an undescribed nor-guanacastane skeleton of a 5/7/6 tricyclic system [146].
Pyromyxones A 153, B 154, and D 156 exhibited weak activity against Gram-positive Bacillus
subtilis and Gram-negative Aliivibrio fischeri, as well as the phytopathogenic fungi Botrytis
cinerea, Septoria tritici, and Phytophthora infestans [146].

J. Fungi 2021, 7, x FOR PEER REVIEW 17 of 34 
 

 

 

6. Harziene 
Harziene is a small group of diterpenoids that have a unique 4/7/5/6 tetracyclic scaf-

fold. They have mainly been obtained from different Trichoderma species and rarely from 
liverworts [147]. Harziandione 157 was the first harziene diterpenoid isolated from the 
liquid culture of T. harzianum, in 1992 [148]. Harzianone 158, a new harziene diterpene, 
has been isolated from an alga-endophytic isolate of T. longibrachiatum [149]. The structure 
with absolute configuration of 158 was unambiguously identified by NMR and mass spec-
trometric methods as well as quantum chemical calculations. In addition, the absolute 
configuration of harziandione 157 was supported by optical rotation calculation, and the 
structure of isoharziandione isolated from culture filtrate of a strain of Trichoderma viride 
[150] was revised to harziandione 157 on the basis of 13C NMR data comparison and cal-
culation. 

 

The terpene cyclization mechanism of harzianone 158 has been studied by feeding 
experiments using selectively 13C- and 2H-labeled synthetic mevalonolactone isotopo-
logues, followed by the analysis of the incorporation patterns of 13C NMR spectroscopy 
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Four new harziene-related compounds 159−162 have been isolated from an endo-
phytic fungus Trichoderma atroviridae UB-LMA [152]. Among them, 159 is a potential de-
rivative of geranylgeranyl diphosphate and may represent the biosynthetic precursor of 
this scarce family of compounds (Scheme 7). Recently, the first total synthesis of nominal 
harziene diterpenoid 160 has been achieved; stereochemical analysis and subsequent syn-
thesis of the epimeric tertiary alcohol led to the reassignment of configuration for com-
pound 160 as shown for harzianol I 180 [153]. 
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6. Harziene

Harziene is a small group of diterpenoids that have a unique 4/7/5/6 tetracyclic scaf-
fold. They have mainly been obtained from different Trichoderma species and rarely from
liverworts [147]. Harziandione 157 was the first harziene diterpenoid isolated from the
liquid culture of T. harzianum, in 1992 [148]. Harzianone 158, a new harziene diterpene, has
been isolated from an alga-endophytic isolate of T. longibrachiatum [149]. The structure with
absolute configuration of 158 was unambiguously identified by NMR and mass spectromet-
ric methods as well as quantum chemical calculations. In addition, the absolute configura-
tion of harziandione 157 was supported by optical rotation calculation, and the structure
of isoharziandione isolated from culture filtrate of a strain of Trichoderma viride [150] was
revised to harziandione 157 on the basis of 13C NMR data comparison and calculation.
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(9R,10R)-Dihydro-harzianone 163 and harzianelactone 164 have been isolated from the
endophytic fungus Trichoderma sp. Xy24 [154]. Compound 163 was the reductive product
of harzianone 158 while 164 possessed a 6/5/7/5-fused ring core containing a lactone. The
latter was the Baeyer–Villiger monooxygenase catalyzed oxidation product of harzianone
158. Compound 163 exhibited cytotoxicity against HeLa and MCF-7 cell lines with IC50
values of 30.1 and 30.7 µM, respectively.

3R-Hydroxy-9R,10R-dihydroharzianone 165 has been isolated from an endophytic fungus
Trichoderma harzianum X-5 [155]. 11-Hydroxy-9-harzien-3-one 166, isolated from T. asperellum
cf44-2, showed inhibitory activity against pathogenic bacteria Vibrio parahaemolyticus with
a 6.2 mm zone [156]. 3S-Hydroxyharzianone 167, isolated from T. asperellum A-YMD-9-2,
could highly inhibit four marine phytoplankton species (Chattonella marina, Heterosigma
akashiwo, Karlodinium veneficum, and Prorocentrum donghaiense) with the IC50 values ranging
from 3.1 to 7.7 µg/mL [157]. Deoxytrichodermaerin 168, a harziene lactone possessing
potent inhibition against the four phytoplankton species (C. marina, H. akashiwo, K. veneficum,
and P. donghaiense), has been obtained from an endophyte Trichoderma longibrachiatum A-
WH-20-2 [158].

Two new harziene diterpene lactones, i.e., harzianelactones A 169 and B 170, and five
new ones, i.e., harzianones A–D 171–174 and harziane 175, have been isolated from the
soft coral-derived fungus Trichoderma harzianum XS-20090075 [159]. These compounds ex-
hibited potent phytotoxicity against seedling growth of amaranth and lettuce. Harzianone
E 176, which exhibited weak antibacterial activity against Photobacterium angustum, has
been obtained from the culture of coral-derived fungus T. harzianum treated with 10 µM
sodium butyrate [160]. Harzianols F–J 177–181 and three known derivatives have been ob-
tained from the liquid fermentation of an endophytic fungus T. atroviride B7 [161]. Among
them, compound 180 exhibited significant antibacterial effect against Staphylococcus aureus,
Bacillus subtilis, and Micrococcus luteus with EC50 values of 7.7, 7.7, and 9.9 µg/mL, re-
spectively. Meanwhile, cytotoxic activity of 180 against three cancer cell lines was also
observed [161].

Furanharzianones A 182 and B 183 are two new harziene-type diterpenoids with an
unusual 4/7/5/6/5 ring system, while harzianols A–E 184–188 and harziane acid 189 are
six new oxidized derivatives of harzianone [162,163]. These compounds have all been
obtained from microbial transformation by the bacterial strain Bacillus sp. IMM-006.
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signals of phomopsene 190 resulted in the isolation of a new diterpene, methyl pho-
mopsenonate 191 (Scheme 8) [164].

Scheme 8. Proposed biosynthetic pathway of phomopsene 190 and methyl phomopsenonate 191 [164].

The cyclization mechanism of tetracyclic diterpene phomopsene 190 with phomopsene
synthase (PaPS) has been examined through systematically deuterium-labeled geranyl-
geranyl diphosphate (GGPP), starting from site-specific deuterium-labeled isopentenyl
diphosphates (IPPs) using IPP isomerase and three prenyltransferases (Scheme 9) [165].

Scheme 9. Proposed cyclization mechanism catalyzed by PaPS [165].

Otherwise, other phomopsene synthases have been identified from actinomycetes
such as Allokutzneria albata (PmS), Nocardia testacea (NtPS), and Nocardia rhamnosiphila
(NrPS) [166,167]. All enzymes were subjected to in-depth mechanistic studies involving
isotopic labeling experiments, metal-cofactor variation, and site-directed mutagenesis.
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8. Pleuromutilin

Pleuromutilin 192 is a diterpene with a tricyclic skeleton possessing antimicrobial
properties. It was first discovered from two basidiomycete fungal species including
Pleurotus mutilis (synonymous to Clitopilus scyphoides f. mutilus) and Pleurotus passeckerianus
(synonymous to Clitopilus passeckerianus) [168], and then produced by a number of other
related species [169]. Its chemical structure and cyclisation mechanism has been elucidated
by independent works [170–172], while total synthesis has been achieved by [173,174]. The



J. Fungi 2022, 8, 244 20 of 32

semi-synthetic pleuromutilin analogues tiamulin 193 and valnemulin 194 have been used
for over three decades to treat economically important infections in swine and poultry with-
out showing any significant development of resistance in their target bacteria [21–25]. In
recent years, extensive research including structure–activity relationship studies have been
conducted to generate new orally available pleuromutilin derivatives having been used
systemically in human medicine to treat acute bacterial skin and skin structure infections,
as well as multidrug-resistant tuberculosis [175–178].

The gene cluster for the antibiotic pleuromutilin 192 has been isolated in Clitopilus
passeckerianus [179]. Total de novo biosynthesis of pleuromutilin 192 was achieved through
the expression of the entire gene cluster in the secondary host Aspergillus oryzae, proving
that the seven genes isolated were sufficient for biosynthesis of the diterpene antibiotic.
Heterologous expression of genes from the pleuromutilin gene cluster in A. oryzae revealed
the biosynthesis of the antibiotic pleuromutilin 192 (Scheme 10) and generated bioactive
semi-synthetic derivatives [180].

Scheme 10. Proposed biosynthetic pathway to pleuromutilin 192 in Clitopilus passeckerianus [180].
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9. Sordaricin

Sordarin 195, an antifungal antibiotic possessing a unique 5/6/5/5-fused ring sys-
tem, was discovered in 1971 as a metabolite of Sordaria araneosa [181]. A number of
related semisynthetic sordarin derivatives have also been reported and some have been
developed as antifungal agents such as zofimarin 196, hypoxysordarin (FR231956) 197,
and FR290581 198 [182–186]. Sordarin 195 and related compounds have been shown to
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inhibit protein synthesis by a mechanism involving selective binding to the elongation
factor 2 (EF-2) and ribosome complex in fungi [187–189].

Sordarins C–F 199–202, possessing a unique 5/6/5/5 or 5/6/5/5/3 ring system
varied at the C-11 position and the branch attached to C-12 of the sordaricin-type diterpene
skeleton, have been isolated from the fungus Xylotumulus gibbisporus [190]. Genome mining
of the sordarin biosynthetic gene cluster from Sordaria araneosa has been carried out, and
the results suggest that the identified sdn gene cluster is responsible for the biosynthesis of
sordarin 195 and hypoxysordarin 197 (Scheme 11) [114].

Scheme 11. The biosynthetic pathway for sordarin 195 and hypoxysordarin 197 [114].

10. Tetraquinane

Several antibiotic crinipellin-related diterpenoids containing a 5/5/5/5 tetraquinane
skeleton have been obtained from the basidiomycetous fungus Crinipellis stipitaria [191,192].
Up to now, the total synthesis of (±)-crinipellin B 203 and (–)-crinipellin A 204 have been
reported [186,193–195].

Four novel diterpenoids, namely (4β)-4,4-O-dihydrocrinipellin A 205, (4β,8α)-4,4-
O,8,8-O-tetrahydrocrinipellin B 206, crinipellins C 207 and D 208, along with three known
diterpenoids have been isolated from the fungus Crinipellis sp. 113 [196]. Antitumor assays
demonstrated that the compounds possess moderate activities against HeLa cell.

Four new tetraquinane diterpenoids crinipellins E–H 209–212 have been isolated from
fermentations of a Crinipellis species [197]. Crinipellins E–G 209–211 inhibited the LPS/IFN-
γ induced CXCL10 promoter activity in transiently transfected human MonoMac6 cell in a
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dose-dependent manner with IC50 values of 15, 1.5, and 3.15 µM, respectively. Moreover,
crinipellins E–G 209–211 reduced mRNA level and synthesis of proinflammatory mediators
such as cytokines and chemokines in LPS/IFN-γ stimulated MonoMac6 cell.

A new crinipellin derivative crinipellin I 213 together with the known crinipellin A 204
have been obtained from the fungus Crinipellis rhizomaticola [198]. Crinipellin A 204 exhibited
a wide range of antifungal activity in vitro against Colletotrichum coccodes, Magnaporthe oryzae,
Botrytis cinerea, and Phytophthora infestans (MICs of 1, 8, 31, and 31 µg/mL, respectively).
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11. Others
11.1. Spirograterpene

A novel spiro-tetracyclic diterpene featuring a 5/5/5/5 spirocyclic carbon skele-
ton, i.e., spirograterpene A 214, has been isolated from the deep-sea-derived fungus
Penicillium granulatum [199]. Spiroviolene 215, bearing the same carbon skeleton to that
of 214, has been obtained from a bacterial terpene synthase [200]. Spirograterpene A 214
showed an antiallergic effect on immunoglobulin E (IgE)-mediated rat mast RBL-2H3 cell
with 18% inhibition as comparedwitho 35% inhibition for the positive control (loratadine)
at the same concentration of 20 µg/mL [199].
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11.2. Psathyrin

Two skeletally novel tetracyclic diterpenoids that possess a novel 5/5/4/6 tetracyclic
system, psathyrins A 216 and B 217, have been characterized from cultures of the ba-
sidiomycete Psathyrella candolleana. They displayed weak antibacterial activities against
Staphylococcus aureus and Salmonella enterica. The biosynthetic pathway of 216 and 217 was
proposed to start from GGPP and the final products were obtained through a series of
reactions (Scheme 12) [201].
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Scheme 12. Proposed biosynthetic pathway for psathyrins A 216 and B 217 [201].

11.3. Coicenal

Coicenals A–D 218–221, possessing a previously undescribed 6/6 fused carbon skeleton,
have been isolated from the solid culture of the plant pathogenic fungus Bipolaris coicis [202].
Coicenals A 218 and B 219 could be transformed into 221 and compound 222 by treatment
with acetyl chloride, respectively. Coicenals A–D 218–221 showed moderate inhibitory activity
against NO release with IC50 values of 16.34, 23.55, 10.82, and 54.20 µM, respectively.
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11.5. Trichodermanin

Trichodermanin A 224, a structurally unique diterpenoid with skeletal carbons ar-
ranged compactly in a 6/5/6/6 ring system, has been isolated from cultures of
Trichoderma atroviride [204]. Its absolute configuration was elucidated by single crystal
X-ray diffraction. Wickerols A 225 and B 226 were two novel diterpenoids produced by
Trichoderma atroviride and the absolute configuration of 226 was confirmed by X-ray crystal-
lographic analysis [205,206]. Wickerol A 225 showed potent antiviral activity against the
A/H1N1 flu virus (A/PR/8/34 and A/WSN/33 strains) with an IC50 value of 0.07 µg/mL,
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but not active against the A/H3N2 virus. Wickerol B 226 also showed anti-influenza virus
activity against A/PR/8/34 virus with an IC50 value of 5.0 µg/mL [206].
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mechanism of wickerol B 226 was predicted, as shown in Scheme 14. First, pyrophos-
phate was ejected from the terminus of the boat-like transition state of GGPP, forming
a verticillen-12-yl cation intermediate, the same as the first step of phomactatriene and
taxadiene biosynthesis [207]. 1,2-Rearrangements of β-methyl and α-hydride occurred at
the six-membered ring part, then, the ring inversion and cyclization progressed to form the
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membered, and the last step resulted in the formation of the 6/5/6/6 ring skeleton. The
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Trichodermanins C–H 227–232 are new diterpenes with a 6/5/6/6 tetracyclic system that
have been isolated from the marine sponge-derived fungus Trichoderma harzianum [208,209].
Trichodermanin C 227 potently inhibited the growth of murine P388 leukemia, human
HL-60 leukemia, and murine L1210 leukemia cell lines with IC50 values of 7.9, 6.8, and
7.6 µM, respectively [208].

12. Conclusions and Future Prospects

Diterpenoids show huge potential for drug discovery and development due to their ex-
tensive biological functions and structural diversity. Fungal diterpenoids are a diverse fam-
ily of hybrid natural products with potent bioactivities and intriguing structural architec-
tures. A large number of fungal diterpenoids have exhibited significant anti-inflammatory,
cytotoxic, anti-MRSA, antimicrobial, antiviral, antihypertensive, and platelet aggregation-
inhibitory activities. Consequently, these bioactive diterpenoids are always hot trending
topics for the synthesis community [173,174,186]. Nevertheless, the structural complex-
ity and limited availability of natural products remain obstacles to synthesizing a large
collection of natural products and their structural analogues in sufficient amounts. Thus,
a synthetic biology method based on the combination of heterologous biosynthesis and
genome mining is a promising approach to translate enormous amounts of biosynthetic
gene information to richly diverse natural products. Interestingly, while fungi have evolved



J. Fungi 2022, 8, 244 25 of 32

their systems to create terpenoid diversity, they have also biosynthesized some of the
same classes of terpenoids found in plants, bacteria, and other organisms. These relation-
ships provide accessible and renewable prokaryotic systems for eukaryotic natural product
biosynthesis and enzymology. In conclusion, we hope it is evident from this review that
most of the fungal diterpenoids are biologically active with a few key scaffolds paving a
path towards potential drug discovery and development.
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