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Spatial transcriptomics (ST) has advanced significantly in the last few years. Such advancement comes
with the urgent need for novel computational methods to handle the unique challenges of ST data anal-
ysis. Many artificial intelligence (AI) methods have been developed to utilize various machine learning
and deep learning techniques for computational ST analysis. This review provides a comprehensive
and up-to-date survey of current AI methods for ST analysis.
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1. Introduction

ST refers to transcriptome technologies that can preserve the
spatial context and gene expression profiles of the tissue sample.
The past years have witnessed tremendous growth in the field of
ST. (Fig. 1(a)). Depending on the data generation method, ST tech-
nologies can be divided into NGS-based (next-generation sequenc-
ing) and image-based approaches [1]. NGS-based ST technologies
obtain spatially-resolved data by attaching spatial barcodes with
fixed locations to tissue sections. As a result, each spot captured
by NGS-based ST datasets usually contains multiple cells. Many
NGS-based ST methods have been developed, including Visium
by 10XGenomics [2], GeoMx by NanoString [3], Slide-Seq [4],
Slide-SeqV2 [5], Stereo-Seq [6] etc. Image-based methods obtain
RNA transcripts via either in-situ sequencing or in-situ hybridiza-
tion and retain the spatial information of the cells through images
of the stained tissue sample. Image-based ST techniques such as
STARMap [7], merFISH [8], and seqFISH+ [9] often achieve single-
cell or subcellular resolution. Typically, an ST dataset consists of
a gene expression matrix where each row represents a gene and
each column a spot/cell, and a spatial location matrix where the
spatial coordinates of the spots/cells are recorded (Fig. 1(b)).
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Fig. 1. Overview of AI methodologies and application areas in ST data analysis. (a) Timeline of emerging AI methods in ST analysis, (b) characteristics of ST data, the potential
reference datasets such as associated histology image and scRNA-Seq data, and the application areas in computational ST analysis: SVG detection, clustering, communication
analysis, deconvolution, and enhancement.
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Depending on the ST technology, an ST dataset can also include
matched H&E images of the tissue sample [2].

Many new computational challenges for ST analysis come along
with the new ST technologies. Since the spatial context of tissues is
highly relevant to gene expression, cell type distribution, cell-cell
2896
communication, and cell function, there is a need for novel compu-
tational methods that can analyze ST data while taking full advan-
tage of the added spatial information. In recent years, machine
learning and deep learning methods have become increasingly
popular in single-cell transcriptomics analysis due to their ability
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to analyze large data using sophisticated model architectures. In
this article, we provide a comprehensive review of the representa-
tive deep learning and machine learning methods that have been
developed to tackle different aspects of ST analysis, including
detecting spatially variable genes, clustering, communication anal-
ysis, deconvolution, and enhancement (Table 1 and Fig. 1(b)).
Specifically, we focus on methods that directly work with ST data.
Computational tools that infer spatial location or spatial gene
expression based on other data types were excluded. We provide
an in-depth review of the technical methodology, advantages, dis-
advantages, and benchmarked performance of machine learning
and deep learning methods of ST datasets to provide a user-
friendly guide for researchers working on developing AI methods
for ST analysis. For more general and introductory surveys on ST,
readers are encouraged to refer to the work of Rao et. al. [1], Lu
et. al. [10], Atta. et. al. [11], and Zeng et. al. [12].

2. AI Methods for Spatially Variable Gene Detection.

Detecting spatially variable genes (SVGs) is an essential step of
ST analysis. SVGs are defined as genes whose expression patterns
across physical space are significantly distinct. SVGs can be novel
markers for specific cell types; they can also be used to refine
expression histology and further elucidate the spatial architecture
of the data. Most SVG detection methods are hypothesis testing
frameworks based on either spatial point process models [13] or
Gaussian Processes [14–16]. However, there have also been some
machine-learning-based approaches developed for detecting SVGs.
Such methods utilize machine learning techniques to improve the
statistical framework by compressing the data and reducing com-
putational burden [17], or adapting SVG detection to a binary com-
puter vision problem [18].

SOMDE [17] is a hybrid machine learning and statistical method
to detect SVG based on self-organizing maps (SOM) and the Gaus-
sian Process model. The SOM clusters neighboring spatial spots and
outputs condensed spatial nodes while preserving the original
topological structure and relative spot densities. The meta-gene
expression of the compressed nodes is computed as the weighted
average of the maximum and the average expression values of
the cluster of spots corresponding to each node. The compressed
ST data are then fit to a Gaussian Process model similar to spa-
tialDE [14]. Given the spatial coordinates of the compressed SOM

nodes X
�
, the meta expression of a gene on the SOM scale y

�
is mod-

eled using Gaussian Process (see Eq. (1)). The kernel function is
decomposed as the sum of a squared exponential kernel of the spa-
tial locations (R

kðX
�
;X0� jhÞ

) and random noise (d∙I). Similar to spatialDE

[14], SOMDE constructs a null model under which the spatial vari-
ation of the gene is random (see Eq. (2)). The significance of each
gene’s spatial variation is determined using a likelihood ratio test.
The nominal p-value of each gene is adjusted for multiple testing.
Compared to other methods such as spatialDE[14], SPARK[15],
Giotto[19], and scGCO[18], SOMDE is 5–50 times more efficient.
Its first step enables data compression, which lessens the compu-
tational burden of the subsequent Gaussian Process model without
losing crucial spatial structures. When applied to datasets by Vis-
ium [2] and Slide-Seq [20] (both NGS-based ST platforms),
SOMDE’s results were mostly reproducible by other popular SVG
detection methods, such as spatialDE[14] and SPARK [15]. How-
ever, SOMDE’s performance on single-cell resolution ST datasets
remains un-validated.

Fullmodel : P y
� jX

�
; h

� �
¼ Nðy� jl � 1; r2

S � Rk X� ;X0� jhð Þ þ d � IÞ

Nullmodel : P y
� jX

�
; h

� �
¼ Nðy� jl � 1; d � IÞ
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scGCO [18] identifies SVG by optimizing Markov Random Fields
with graph cut. scGCO treats SVG detection as an image segmenta-
tion problem. For each gene, scGCO builds a graph representation
of the spatial information using Delaunay Tessellation [21]. This
graph representation naturally induces an underlying Markov Ran-
dom Field model (MRF). The MRF is clustered into two subgraphs
based using max-flow min-cut algorithm. The statistical signifi-
cance of the identified spatial expression pattern is determined
using a homogeneous spatial Poisson distribution. scGCO can scale
up in dimensionality to handle three-dimensional ST data such as
STARMaps [7]. In addition, it does not assume prior assumptions
on data distribution and is theoretically guaranteed to find the glo-
bal optimal solution. scGCO was applied to Mouse Olfactory Bulb
and Breast Cancer data by Stahl et. al. [22], as well as merFISH
[8]and seqFISH [23] datasets. Specifically, when applied to the
Mouse Olfactory Bulb dataset, scGCO detected significantly more
SVGs than spatialDE [14] while using less computational memory.
However, scGCO was only compared with spatialDE and Trend-
sceek. Therefore, these "new" SVGs were not validated by other
popular SVG detection methods.
3. AI Methods for Clustering Analysis of Spatial Transcriptomics
Data

Clustering analysis is an integral step in transcriptome data
analysis. In the context of ST data, clustering spots or genes
involves grouping together spots or genes with similar transcrip-
tional profiles and spatial information profiles. Clustering is impor-
tant for annotating cell types, understanding tissue structure,
identifying co-expressed gene modules, and many downstream
analyses such as contextualizing trajectory inference and cell-cell
communication. To this end, many deep learning methods leverag-
ing convolutional neural networks (Fig. 2(b)), graph convolutional
neural networks (Fig. 2(c)), variations of autoencoders (Fig. 2(d)),
and even contrastive learning have been developed [24–32]. Some
methods focus on learning embeddings of ST data for downstream
analysis [24,28–32]; we include those methods in this clustering
methods section since clustering is usually the first analysis step
after learning the embedded representation and is necessary for
further downstream analysis, such as SVG detection and cell–cell
communication analysis.

SEDR [27] is an unsupervised autoencoder model for extracting
low-dimensional latent embeddings of ST data. SEDR has two com-
ponents. First, a deep autoencoder learns the latent representation
of gene expression. Then SEDR constructs a spatial graph based on
the Euclidean distances between the spots/cells and represents the
graph via a binary adjacency matrix. A variational graph autoen-
coder combines the constructed spatial graph and the latent
embedding from the deep autoencoder model and learns the latent
representations of spatial information. The latent gene and spatial
embeddings are then concatenated and further fed through an iter-
ative deep clustering algorithm [33]. The resulting joint embedding
can then be used to perform clustering analysis. SEDR was applied
to Visium’s Human Dorsolateral Prefrontal Cortex (DLPFC) dataset
[34] and showed increased accuracy (ARI = 0.573) compared to fur-
ther downstream analyses such as Seurat [35], Giotto [19], stLearn
[24], and Bayespace [36]. SEDR can also be applied to trajectory
analysis, batch correction, and visualization, further demonstrated
by analyzing Visium’s Human Dorsolateral Prefrontal Cortex and
Human Breast Cancer datasets.

CoSTA [26] is an unsupervised gene clustering method that
learns spatial similarity between genes using convolutional neural
network (CNN). The CoSTA workflow is inspired by DeepCluster
[98], which jointly learns the neural network parameters with
the clustering labels. In the CoSTA framework, the expression of



Table 1
Summary of AI methods in Spatial Transcriptomics Analysis.

Method
Category

Method
Name

Description Algorithm Input Advantage Disadvantage Software Programming link

SVG detection SOMDE Uses self-
organizing-maps
to reduce the
dimension of the
ST dataset while
retaining spatial
structure and
then detects SVG
using a Gaussian
Process model.

self-
organizing-
maps;
Gaussian
Process

ST data SOMDE is
runtime and
memory
efficient.

Performance on
single-cell
resolution ST
datasets is
unknown.

Python https://github.co m/
WhirlFirst/somde

scGCO Identifies
distinct gene
expression
patterns by
optimizing the
MRF model with
graph cut.

graph cut;
markov
random field

ST data scGCO is runtime
and memory
efficient and
potentially
scalable to large
ST datasets.

Reproducibility
needs to be
further tested
by comparison
with other
methods.

Python https://github.co m/
WangPeng-Lab/scGCO

Clustering SEDR An autoencoder
framework that
learns low-
dimensional
joint embedding
of spatial and
gene expression
information.

autoencoder;
deep
generative
model

ST data Capable of
handling high-
resolution ST
datasets.

The utilization
of spatial
adjacency
matrices could
pose a problem
for scaling up to
the analysis of
large ST
datasets.

Python https://github.com/HzFu/
SEDR

coSTA Treats each gene
expression
pattern as an
image, extracts
spatially-aware
gene expression
feature vectors
through CNN,
and clusters
genes by spatial
expression
similarity.

convolutional
neural network

ST data Flexible to
extend to model
genes from
neighboring
samples, not just
the same tissue.

The SVG
detection
functionality is
not as sensitive
as traditional
SVG methods.

Python https://github.com/
rpmccordlab/CoSTA

STAGATE Uses a graph
attention
autoencoder and
cell-type aware
pruning module
to cluster ST
data.

graph
attention
autoencoder

ST data Capable of
handling ST
datasets of
diverse
resolutions,
especially those
with cellular or
sub-cellular
resolution.

Doesn’t
incorporate
heterogeneity
across tissue
samples.

Python https://github.com/
zhanglabtools/STAGATE

RESEPT Embeds ST data
to an RGB image
through a graph
autoencoder, and
detects spatial
domains by
analyzing the
RGB image with
ResNet101, an
established
computer vision
deep learning
model.

graph
autoencoder;
deep
convolutional
neural network

ST data or
RNA
velocity

Flexible to
analyze RNA
velocity data as
well as gene
expression data.

Robustness
regarding
varying ST data
resolution,
technology
platforms, and
tissue types
remains
unexplored.

Python https://github.com/OSU-
BMBL/RESEPT

spaGCN Defines spatial
domains by
combining gene
expression and
spatial
information
through a graph
convolutional
neural network.

graph
convolutional
neural network

ST data;
H&E images
(optional)

Flexible enough
to leverage H&E
images in
learning the
embedded
representation of
ST data.

The
reproducibility
of the detection
of spatially
variable genes
or metagenes
remains
unvalidated.

Python https://github.com/
jianhuupenn/SpaGCN
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Table 1 (continued)

Method
Category

Method
Name

Description Algorithm Input Advantage Disadvantage Software Programming link

stLearn Uses pre-trained
ResNet50 to
leverage spatial
neighborhood
information in
H&E images and
extract
morphological
features for each
spot, which are
used to compute
spatially-aware
normalized gene
expression.

deep
convolutional
neural network

ST data;
H&E images

Clustering
functionally can
detect rare cell
types in addition
to spatial
domains.

Method
performance is
dependent on
the resolution
of
morphological
images (if
available).

R/
Python

https://stlearn.readthedocs.
io/en/latest/

spaCell spaCell extracts
image features
with a pre-
trained ResNet50
and combines
them with gene
expression with
an autoencoder
to detect spatial
domains.

deep
convolutional
neural
network;
autoencoder

ST data;
H&E images

Can analyze
multiple images
simultaneously
to predict patient
disease state.

Doesn’t utilize
spatial
coordinate
information of
the spots.

Python https://github.com/
BiomedicalMachineLearning/
SpaCell

MAPLE Simultaneously
analyze multiple
ST datasets with
a graph
autoencoder and
Bayesian finite
mixture model
to define cell
spot sub-
populations.

Graph
autoencoder;
Bayesian finite
mixture model

Multi-
sample ST
data

Allows for
simultaneous
analysis of
multiple ST
datasets.

Assumes the
same number of
cell spot sub-
populations
across samples.

R https://github.com/carter-
allen/maple

conST An interpretable,
multi-modal
contrastive
learning
framework for
learning joint
graphical
embedding of ST
data for
clustering and
other
downstream
analyses.

Contrastive
learning

ST data;
matched
H&E images
(if
applicable)

conST is the first
contrastive
learning
computational
method for ST
data.

The parameter
tuning in
contrastive
learning is non-
trivial.

Python https://github.com/ys-
zong/conST

Communication
Analysis

GCNG Infers ligand-
receptor gene
pair
relationships by
learning joint
embedded
features of gene
pair expression
values and cell-
adjacency matrix
using a graph
convolutional
neural network.

graph
convolutional
neural network

single-cell
ST data

Directly uses
spatial
information in
gene pair
relationship
inference and
can predict novel
interactions.

Does not
incorporate
prior cell-type
knowledge in
gene-gene
relationship
inference.

Python https://github.com/
xiaoyeye/GCNG

NCEM Disentangles
cell-cell
communication
on multiple
orders through
variations of a
graph neural
network model.

deep
generative
model

single-cell
ST data

The multi-level
framework of
NCEM allows it
to reconcile
variation
attribution and
communication
in different
orders in a single
model.

NCEM is
currently only
applicable to
merFISH
datasets; its
performance on
other single-
cell ST
platforms is
unknown.

Python https://github.com/theislab/
ncem

(continued on next page)
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Table 1 (continued)

Method
Category

Method
Name

Description Algorithm Input Advantage Disadvantage Software Programming link

MISTy An ensemble
machine
learning
algorithm that
uses random
forest submodels
to
simultaneously
learn gene
interactions,
local cellular
niche effects, and
overall
communication
analysis that
accounts for
tissue structure.

ensemble
machine
learning

ST data Doesn’t require
prior-
knowledge-
based cell type
annotations.

Doesn’t
guarantee
causality for the
extracted
interactions.

R https://saezlab. github.io/
mistyR/

Deconvolution Tangram Aligns ST dataset
with sn/sc RNA-
seq data by
matching spatial
cell densities.
The resulting
mapping can be
used for the
deconvolution of
lower-resolution
ST data.

soft mapping ST data; sn/
sc RNA-Seq;
H&E images
(optional)

Capable of
incorporating ST
data with diverse
resolutions.

The spot-to-cell
assignment in
deconvolution
is random and
can’t provide
one-to-one
alignment.

Python https://github.com/
broadinstitute/Tangram

DestVI A deep
generative
model that
learns cell-type-
specific latent
variables in
scRNA-Seq data
and maps them
to ST data for
deconvolution
and cell state
estimation.

deep
generative
model

ST data;
scRNA-Seq

Addresses
marked variation
within cell types
by directly
estimating cell-
type-specific
latent variables.

External
benchmark
studies showed
that DestVI’s
performance
was not robust
across
heterogeneous
tissue types.

Python https://scvi-tools.org/
https://github.com/romain-
lopez/DestVI-reproducibility

CellDART Deconvolves ST
data using
ADDA, where the
model
adaptively learns
to distinguish
between
pseudo-spots
generated from
reference dataset
with known cell
proportions and
actual ST spots.

Adversarial
Discriminative
Domain
Adaptation
(ADDA)

ST data;
scRNA-Seq

Accommodates
both ST and
scRNA-Seq as
reference data.

The size of the
pseudo-spots is
fixed, which
could be
susceptible to
tissue types
with
heterogeneous
spatial cell
densities.

Python https://github.com/
mexchy1000/CellDART

DSTG Deconvolutes ST
data by aligning
pseudo-ST data
and real ST data
with a graph
convolutional
neural network.

graph
convolutional
neural network

ST data;
scRNA-Seq

Simultaneously
utilizes graphical
structures and
variable genes.

An external
benchmark
showed DSTG
performance
was not robust
when the
reference
dataset is
unmatched.

Python https://github.com/Su-
informatics-lab/DSTG

Enhancement &
Imputation

XFuse A deep
generative
model that infers
super-resolved
spatial gene
expression data
by learning joint
embedding
space of ST data
and high-
resolution
histological
images.

deep
generative
model

single-cell
ST data;
histological
images

Capable of
spatial gene
expression
inference on a
full-
transcriptome
scale.

The implicit
assumption
that histological
images and ST
data share the
same latent
space may
introduce bias
in spatial gene
expression
inference.

Python https://github.com/ludvb/
xfuse
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Table 1 (continued)

Method
Category

Method
Name

Description Algorithm Input Advantage Disadvantage Software Programming link

DeepSpaCE A convolutional
neural network
model that
predicts spatial
gene expression
from histological
images.

convolutional
neural network

Matched
H&E images
from ST
data.

The training of
the DeepSpaCE
model doesn’t
require multiple
samples.

Performance on
other tissue
types (besides
human breast
cancer) remains
unvalidated.

Python https://github.com/tmonjo/
DeepSpaCE

DEEPsc A neural
network-based
method that
infers spatial
locations of
scRNA-Seq data
by extracting
and aligning ST
and scRNA-Seq
feature vectors.

neural network ST data;
scRNA-Seq

Robust to
random noise.

Training time is
dependent on
the dimension
of spatial
locations,
which could
pose scalability
issues.

Matlab https://github.com/fmaseda/
DEEPsc

stPlus Enhances ST data
by learning joint
embedding of ST
and scRNA-seq
data via an
autoencoder.

Autoencoder;
k-NN

ST data;
scRNA-Seq

Computationally
scalable to large
sample sizes or
gene numbers.

An external
benchmark
study showed
that stPlus had
a relatively low
accuracy rate in
predicting
spatial
distribution of
RNA
transcripts.

Python http://health.tsinghua.edu.
cn/software/stPlus/
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each gene is represented as a matrix whose rows and columns
indicate the spatial coordinates of the spots. The gene expression
matrices are forwarded through a neural network with three con-
volutional layers, each followed by a batch normalization layer and
a max pooling layer. The corresponding matrix output for each
gene is then flattened into a vector. Such vectors can be interpreted
as a spatial representation of the corresponding gene. The com-
bined spatial representation vectors are normalized using L2-
normalization, dimension reduced using UMAP, and clustered
using Gaussian Mixture Modeling (GMM). The final spatial repre-
sentation vectors learned by the CNN can be used for downstream
analyses such as gene clustering, co-expression analysis, SVG iden-
tification, visualization, etc. CoSTA was applied to both merFISH
and Slide-Seq datasets and demonstrated a clear distinction of
genes by expression patterns. When studying gene-gene relation-
ships, CoSTA emphasizes general spatial patterns in learning repre-
sentations of each gene, enabling more biologically meaningful
results than simply focusing on the exact overlap of cells. The
authors showed that CoSTA tended to provide more specific results
than other spatial gene analysis methods such as spatialDE [14]
and SPARK [15], suggesting that CoSTA has advantages in cases
where users would like to narrow down selected genes for further
analysis. Since CoSTA is not dependent on the strict overlap of
spots, it can also be helpful in cases where gene matrices are not
based on exactly the same tissue but on neighboring samples.

STAGATE [29] is a graph attention autoencoder model that clus-
ters the spots/cells in ST data and detects spatial domains. STA-
GATE constructs a binary spatial neighbor network (SNN) based
on the pairwise spatial distances between spots. The SNN has the
flexibility to be cell-type-aware by pruning the network with
pre-clustered gene expression. The gene expression profile and
the spatial neighborhood network are then fed into a graph atten-
tion autoencoder. The encoder learns a low-dimensional embed-
ding of the gene expression profile and spatial information. The
graph attention mechanism allows the model to estimate edge
weights and update the SNN adaptively. When compared to other
2901
ST computational tools with clustering functionality, such as
spaGCN [25], SEDR [27], and BayesSpace [36], the authors showed
that STAGATE improved the accuracy of spatial domain identifica-
tion through real data analysis examples of ST datasets with vary-
ing resolutions, including DLPFC dataset by Visium [34], the mouse
hippocampus datasets by Visium [2], Slide-Seq [20], and Slide-
SeqV2 [5], and the mouse olfactory bulb datasets by Slide-SeqV2
[5] and Stereo-Seq [37]. Furthermore, STAGATE can also mitigate
technical noise in ST data.

RESEPT [28] is a deep learning framework that reveals tissue
architecture by clustering ST data. RESEPT can take either gene
expression information or RNA velocity as input. A spatial graph
is built based on pairwise spot distance and gene expression. The
Euclidean distance between neighboring spots are represented as
edge weights, and the gene expression at each spot are represented
as node attributes. Such a graph is then forwarded through a graph
autoencoder; the encoder portion embeds the graph into a three-
dimensional representation using two graph convolution layers;
the decoder reconstructs the graph through a sigmoid activation
of the inner product of the graph embedding. The three-
dimensional output of the encoder is then mapped to an RGB
(red, green, blue) image, which naturally induces a visual represen-
tation of the spatial gene expression. The image is segmented via a
deep convolutional neural network model, consisting of backbone,
encoder, and decoder portions. The backbone portion utilizes
ResNet101 [38], a deep neural network model, to extract image
features; the encoder portion selects multi-scale semantic features
from the features generated by ResNet101; finally, the decoder
portion aligns the multi-scale semantic features by size and out-
puts a segmentation map which clusters the spots and reveals tis-
sue architecture. RESEPT allows for direct visualization of spatial
expression. The authors showed that RESEPT accurately inferred
spatial architecture by comparing its performance with Seurat
[39], BayesSpace [36], spaGCN [25], stLearn [24], STUtility [40],
and Giotto [19] on several real ST datasets, including the DLPFC
datasets [34] by Visium and in-house human postmortem middle



Fig. 2. General schematic of (a) the fully connected neural network, (b) the convolutional neural network, (c) the graph convolutional neural network, and (d) the
autoencoder.
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temporal gyrus (MTG) datasets sequenced by the same platform.
Furthermore, RESEPT can perform spatial-temporal analysis of ST
data via RNA velocity analysis.

spaGCN [25] is a spatial domain detection method that can inte-
grate histology information with ST data using graph convolutional
neural network (GCN). spaGCN integrates the spatial information
from ST data and histology information by concatenating the his-
tology pixel values to the spatial coordinate values. The integrated
spatial information matrix is then represented as a weighted undi-
rected graph. Each edge weight is identified by applying a Gaussian
kernel to the Euclidean distance between the corresponding spots.
The gene expression matrix is dimensionally reduced using PCA.
2902
spaGCN combines the spatial and gene expression information
using a graph convolution layer. The graph convolution layer
allows for the integration of gene expression information and spa-
tial information while acknowledging the spatial neighborhood
structure. The resulting spot representations are then used for iter-
ative clustering to define coherent spatial domains with respect to
genetic, spatial, and histological information. spaGCN also allows
for detecting SVGs ormeta-genes by doing differential gene expres-
sion analysis between spots in arbitrary target domains and neigh-
boring domains. The authors demonstrated that spaGCN could
define spatial domains with coherent gene expression and histol-
ogy patterns through a comprehensive analysis of ST datasets from
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diverse platforms, including mouse olfactory bulb dataset [22],
mouse brain sagittal posterior [2], human DLPFC [34] and human
pancreatic cancer [41] by Visium, and mouse hypothalamus data-
set from merFISH [8]. Furthermore, the domains identified by
spaGCN could detect SVGs or meta genes with much clearer spatial
expression patterns than other SVG detection methods such as
spatialDE [14] and SPARK [15].

stLearn [24] is an ST analysis pipeline that can cluster the cells/
spots, perform spatial trajectory inference, spot-spot interaction
analysis, and microenvironment detection. stLearn utilizes Spatial
Morphological gene Expression normalization (SME), a deep-
learning-based method for normalization, which considers the
data’s spatial neighborhood information and morphological struc-
ture. SME normalization requires both ST data and H&E images of
the tissue as input. SME normalization assumes that cells sharing
morphological similarities also have more similar transcriptional
profiles. The neighborhood of a spot is determined through a
disk-smoothing approach. All spots whose center-to-center physi-
cal distances to the target spot are within an arbitrary length r are
considered the target spot’s neighbors. SME normalization utilizes
morphology information by inputting H&E images to a pre-trained
ResNet50 [38] network, a very popular deep convolutional neural
network for image classification. The pre-trained ResNet50 model
extracts a morphological feature vector for each spot. SME normal-
ization then computes the pairwise morphological similarity of
spots by taking the cosine distance of their corresponding feature
vectors. Finally, the normalized gene expression of a spot is com-
puted as the average of gene expression in each neighboring spot
weighted by the morphological similarity score. After SME normal-
ization, stLearn employs a novel two-step clustering technique
SMEclust. First, the normalized gene expression data is clustered
using standard Louvain clustering [42]. Then, SMEclust applies a
two-dimensional k-d tree neighbor search based on the spatial
coordinates, dividing broad clusters that span over spatially dis-
joint areas into smaller sub-clusters. stLearn pipeline further uses
the SMEclust results for downstream analysis, such as spatial tra-
jectory inference and spot-spot interaction analysis. SMEclust
detected refined tissue architecture when applied to the mouse
brain coronal dataset, mouse brain sagittal anterior dataset, mouse
brain sagittal posterior dataset, and human DLPFC dataset by Vis-
ium [2].

SpaCell [30] integrates ST with imaging data to predict cell
types and disease stages. There are two main models in SpaCell:
a representation learning model that describes each spot using
both the image information and the gene expression data and a
classification model that predicts the disease stage using the two
data modalities. Like stLearn, spaCell’s representation learning
model starts by using a pre-trained ResNet50 CNN model [43] to
extract image-based features describing each spot. Then, two dif-
ferent autoencoders are used to reduce the image-based features
and the gene expression values to a latent space of the same
dimension. Such representations are then concatenated to produce
a joint representation vector for each spot, and clustering is per-
formed on such joint representations to distinguish between cell
types in an unsupervised manner. Similarly, the classification
model applies a pre-trained CNN model to the imaging data and
combines this information with gene expression by using a neural
network to arrive at disease-stage predictions. It allows the pre-
trained CNN network to be fine-tuned through the training process
to better capture biological data’s intricacies. SpaCell was applied
to analyze ST data of prostate cancer [44] and amyotrophic lateral
sclerosis [45] patients by Visium. It showed improved spatial
domain identification than analysis using just gene expression or
spatial information.

MAPLE [32] is a hybrid Bayesian deep learning model that
simultaneously analyzes multiple ST datasets to detect cell spot
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sub-populations. MAPLE first extracts low-dimensional spot
embeddings for each input ST dataset using a spatially-aware
graph autoencoder used in RESEPT [28]. The learned cell spot
embeddings are then modeled with a Bayesian finite mixture
model. The mixture model assumes each cell embedding follows
a multivariate Gaussian distribution with sub-population parame-
ters and random effects terms that account for spatial correlation
within each sample. The mixture model provides continuous
uncertainty measures for cell spot sub-populations assignments
through the posterior distribution. MAPLE showed improved tissue
architecture detection for posterior and anterior mouse sagittal
brain datasets [2], detected distinct tissue architecture of
ER + and triple-negative breast cancer datasets [46], and revealed
anatomical development trends in developing chicken heart sam-
ples [2].

conST [31] is a multi-modal, interpretable contrastive learning
framework that learns low-dimensional embeddings of ST data and
utilizes it for downstream analyses such as clustering, trajectory
inference, cell-cell interaction, etc. conST takes ST data’s gene
expression, spatial coordinates, and the H&E images, if applicable,
as input. conST represents the input data as a graph where the
node attributes are either principal components of gene expression
data or morphological feature vectors extracted using MAE
(Masked Autoencoder) [47], a powerful computer vision tool. The
edges of the input graph are built based on spatial distances
between the spots. conST learns a low-dimensional graph embed-
ding of the input via a graph autoencoder. To facilitate the under-
standing of the relationship between spots (local), sub-clusters
(context), and global (global) structures, conST is trained via con-
trastive learning [48,49], a training strategy that enhances model
performance by using contrasting samples to learn shared and
unique attributes amongst data classes. In the context of conST,
the graph autoencoder is trained by maximizing the mutual infor-
mation between local-local, local-global, and local-context levels.
Finally, conST adds interpretability to the model using GNNExplai-
ner [50] (a model-agnostic framework that finds the subgraphs and
the subset of nodes that contribute the most to a graph neural net-
work’s prediction) to reveal subnetworks’ contributions to the
model prediction outcome. conST demonstrated increased spatial
domain detection accuracy in Visium’s human DLPFC dataset [34]
compared to Seurat [39], Giotto [19], stLearn [24], spaGCN [25],
SEDR [27], and BayesSpace [36]. Furthermore, downstream cell-
cell interaction analysis by conST evaluated neighborhood-
spreading risk in the tumor microenvironment of the human breast
cancer dataset by Visium [2].
4. AI methods for Communication Analysis of Spatial
Transcriptomics Data

The study of cell-cell or spot-spot communication is essential
for studying cellular states and functions. It is well established that
communication between cells/spots can be inferred based on gene
expression [51–53]. However, the physical location of cells also
restricts communications between cells. Several AI methods based
on ensemble learning, graph convolutional neural networks (Fig. 2
(c)), and variational autoencoders (Fig. 2(d)) have been developed
for communication analysis of ST data, utilizing the added spatial
context [54–56].

GCNG [54] is a supervised graph convolutional neural network
model for inferring gene interactions in cell-cell communication
for single-cell ST data. GCNG takes two inputs: the gene expression
matrix of a gene pair and a matrix that encodes the spatial graph
based on the ST data. GCNG first computes the pairwise Euclidean
distances between all cell pairs to build the spatial graph. A thresh-
old distance value is used to select neighbors. The resulting binary
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adjacency matrix is then used to calculate a normalized Laplacian
matrix, representing the spatial graph input for the GCNG model.
The GCNG model is a five-layer graph convolutional neural net-
work consisting of two graph convolutional layers, a flatten layer,
a dense layer, and a final classification layer which determines
whether the gene pair interacts. The first graph convolutional layer
integrates the gene expression and spatial graph and learns
embedding features for each cell. The second convolutional layer
combines the embedded features of each cell with its neighbors,
allowing users to learn indirect graph relationships. GCNG is
trained in a supervised approach, using a curated list of interacting
ligands and receptors as the ground truth. The authors analyzed
the mouse brain cortex dataset and the mouse olfactory bulb data-
set by seqFISH+ [9], and the mouse hypothalamus dataset by mer-
FISH [8] and showed that GCNG could successfully identify known
ligand-receptor pairs with much higher accuracy than single-cell
Pearson correlation, spatial Pearson correlation, and Giotto [19].
GCNG can be further utilized downstream for functional gene
assignment, causal interaction inference, and co-expression
analysis.

NCEM [55] is a deep generative method that models cell/spot
communication in tissue niches. Given a cell, a niche is defined
as the cells within an arbitrary radius from the cell’s center. NCEM
builds a spatial graph based on the Euclidean distance between
cells. The NCEM framework takes three inputs: a matrix specifying
the expression of each gene in each cell, a matrix specifying
observed cell types of all cells, and a matrix specifying batch
assignments. NCEM then feeds the input into an autoencoder.
The encoder compresses cell-type labels, graph-level predictors,
and local graph embedding based on the spatial graph to a latent
state. The latent state is then reconstructed through a decoder.
Depending on the spatial complexity of the data, NCEM accommo-
dates three levels of model complexities: (1) the local graph
embedding can be computed through simple indicator embedding
functions, which simplifies the model to a generalized linear model
that measures linear expression effects of the cell communication;
(2) the local graph embedding is computed through a graph convo-
lutional neural network, making the framework a non-linear
autoencoder that can model non-linear cell interaction; (3) the
non-linear autoencoder can be further extended to a generative
variational autoencoder model, which imposes a probability distri-
bution over the latent space and learns the reconstructed data
through a likelihood function. This type of model is also capable
of modeling latent confounders. Through this flexible framework,
NCEM reconciles variance attribution and communication model-
ing. NCEM application to the mouse motor cortex dataset by mer-
FISH [57] successfully delineated niche effects within the tissue.
Although the NCEM framework could, in theory, be extended to
datasets with larger features spaces, it’s currently only applied to
ST assays with subcellular resolution and relatively low through-
put, namely merFISH.

MISTy [56] is a flexible ensemble machine learning method for
scalable cell-cell communication analysis. MISTy consists of multi-
ple ‘‘views”, each representing a different model under a different
spatial context. For example, ‘‘intraview” is the baseline view that
models intracellular gene interactions, ‘‘juxstaview” focuses on
capturing local cellular niches, and ‘‘paraview” captures the effect
of tissue structure. The multiple views form a meta-model, where
the expression of a gene is modeled as the weighted sum of the
output of each view. MISTy used random forests [58] as the
machine learning model for each view, but the MISTy framework
is also flexible to accommodate other algorithms, as long as the
algorithm in question is interpretable and can make up ensemble
models. Each view is trained independently first; then, the meta-
model is trained by linear regression. The flexible framework of
MISTy allows users to simultaneously study cell-cell communica-
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tion under different contexts, analyze each view’s contribution to
the prediction of gene expression, and rank feature importance.
MISTy was applied to the human breast cancer dataset generated
by Visium [2] and uncovered biological functional mechanisms in
niches of the tissue sample.
5. AI Methods for Deconvolution of Spatial Transcriptomics
Data

Depending on the specific ST technology, the generated ST data
do not always have single-cell resolution. In addition, since cell
type distribution is correlated with their spatial locations, comput-
ing cell-type proportions in each spot utilizing both spatial and
genomic information is of great interest. Many deep learning
methods have been developed for such purposes, either in combi-
nation with high-resolution H&E images [59]or by integrating
scRNA-Seq data [60,61]. The methods utilize diverse methodolo-
gies, including neural networks (Fig. 2(a)), adversarial mecha-
nisms, and variational autoencoders (Fig. 2(d)).

Tangram [59] aligns ST data with scRNA-seq data from the
same tissue by learning a soft mapping between the cells assayed
by scRNA-seq and the spots in the ST assays. This mapping is
learned by optimizing an objective function characterizing the
quality of the cell-spot assignments. It considers the difference
between spatial cell densities as measured by the ST assay and
as predicted by the cell-spot assignments. It aims to maximize
the cosine similarity between the predicted and observed ST mea-
surements. Once the cell-spot assignments are learned, the lower-
resolution ST measurements can be deconvolved to infer the cell
type composition of each spot. The spatial structure of single-cell
datasets can also be inferred. This package also provides function-
ality for incorporating histological images in the analysis. The
authors deconvoluted the mouse coronal dataset by Visium [2]
by leveraging H&E images and alignment with sn-RNA seq data;
the deconvolution analysis successfully recovered cell-type ratios
in the lower-resolution ST data that were consistent with know
ratios in the reference sn-RNA seq data. Tangram’s model can also
be extended to generate high-resolution spatial expression maps
when applied to single-cell resolution ST datasets such as merFISH
[62]. Furthermore, Tangram could visualize the chromatin accessi-
bility information in space by analyzing SHARE-seq [63] data con-
taining matched RNA and chromatin accessibility information from
single cells. External benchmark study [64] showed Tangram had
decent deconvolution performance across diverse real and syn-
thetic datasets and top performance in predicting spatial distribu-
tion of gene expression compared to Seurat [65], Cell2location [66],
SpatialDWLS [67], RCTD [68], Stereoscope [69], DestVI [60], STRIDE
[70], SPOTLight [71], and DSTG [72].

DestVI [60] is a Bayesian deep generative model for deconvolu-
tion and continuous estimation of cell states of ST data. DestVI con-
sists of two latent variable models (LVMs): one for the reference
scRNA-Seq data (scLVM), and the other for the ST data (stLVM).
scLVM is quite similar to scVI [73]. It models the gene expression
of each gene per cell as a negative binomial distribution. The cell
type of each cell and an underlying latent vector describing its vari-
ability within each cell type are mapped to the negative binomial
model via a neural network. scLVM learns the distribution for each
cell, quantifying the probability of potential cell states. The rate
parameter of the distribution is dependent on latent variables that
respectively capture technical and biological variations over all
possible cell types. Correspondence between the two LVMs is
established by sharing the same decoder. DestVI estimates the cell
type proportion in each spot and approximates the average cell
state for every cell type in that spot. Simulation studies showed
DestVI outperformed discrete deconvolution tools such as RCTD
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[74], SPOTLight [71], Stereoscope [69], and Seurat [65]. The authors
also applied DestVI to in-house ST datasets of human lymph node
sections and syngeneic mouse tumor tissues profiled by Visium
[2]; DestVI delineated transcriptional states of the cell types and
identified spatially resolved multicellular immune responses and
hypoxic population of macrophages in the tumor core, respec-
tively. The deconvolution functionality of DestVI was further tested
in two recent external benchmark studies that focus on ST decon-
volution [64,75], which showed that DestVI had decent perfor-
mance but was not robust enough across different tissue types.

CellDART [61] is a supervised neural network-based model for
estimating the cell-type composition of spots in non-single-cell
resolution ST data. It utilizes both ST data and scRNA-Seq data as
the reference. It deconvolutes ST data by adapting an ADDA
(Adversarial Discriminative Domain Adaptation algorithm) [76], a
domain adaptation algorithm that utilizes GAN (Generative Adver-
sarial Network) loss. Cells in scRNA-Seq data are randomly selected
to form coarsened ‘‘pseudospots” whose cell-type composition is
known. CellDART employs a feature embedder to compute lower-
dimensional latent features of ST or reference scRNA-Seq data.
The feature embedder is attached to a source classifier model that
predicts each spot’s cell type composition and a domain classifier
that separates the ‘‘pseudospot”s from the real ST spots. This
domain adaptation mechanism allows CellDART to learn the cell
composition in ST data. For the loss function, CellDART uses a loss
function based on Kullback-Leibler divergence (LS) and two sepa-
rate adversarial loss functions (Ladv,1 and Ladv,2). The feature
embedder and the source classifier are first pre-trained using LS.
Then the entire CellDART model is trained by iteratively minimiz-
ing LS, Ladv,1 and LS, Ladv,2. When applied to the Human Dorsolat-
eral Prefrontal Cortex dataset (Visium) [77], CellDART was able to
achieve higher AUC (area under curve) values than other deconvo-
lution tools such as Scanorama [78], Cell2location [79], RCTD [68],
SPOTlight [71], Seurat [39] and SPOTlight [71].

DSTG [72] is a semi-supervised method for deconvolving ST
data. DSTG uses a graph convolutional neural network model.
DSTG uses scRNA-Seq data and ST data as input. First, DSTG gener-
ates pseudo-ST data by combining the expression of single cells in
the scRNA-Seq data. Then, DSTG creates a soft mapping between
the pseudo-ST and real ST data. DSTG reduces the dimension of
both datasets using canonical correlation analysis. Then, the
dimension-reduced datasets are used to build a link graph using
the mutual nearest neighbors algorithm, capturing the inherent
topological structure of the mapping of spots. Finally, DSTG feeds
the link graph and concatenation of the pseudo-ST dataset and
the real ST dataset into a graph convolutional neural network with
multiple convolution layers, effectively learning a latent embed-
ding of the gene expression and local graph structures. The output
layer of the graph convolutional neural network predicts both the
cell composition of the pseudo and real ST data. The graph convo-
lutional neural network is trained by minimizing the cross-entropy
between the two sets of predicted composition. DSTG is an accu-
rate and efficient method. DSTG consistently outperformed SPOT-
Light [71] in both synthetic and real datasets (the mouse cerebral
cortex dataset [2] and the human pancreatic cancer dataset [41]
by Visium) when benchmarked in the original publication. How-
ever, an external benchmark study with extensive comparison
across synthetic and real datasets showed that DSTG was not
robust against unmatched reference datasets [75].
6. AI Methods for Enhancement & Imputation of Spatial
Transcriptomics Data

Besides deconvolution, enhancing the spatial gene expression of
non-single-cell ST data is another important aspect of computa-
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tional ST analysis. Such tasks usually require reference data such
as high-resolution histological images or scRNA-Seq data. Many
deep learning techniques, including fully connected neural net-
works (see Fig. 2(a)), convolutional neural networks (see Fig. 2
(b)), and autoencoders (see Fig. 2(d)) have been developed to
enhance the resolution of ST data. We focus on AI methods that
use ST data as input. Methods that infer ST data using purely other
data types will not be discussed in this section [80].

XFuse [81] uses a Bayesian deep generative model to enhance
the resolution and impute spatial gene expression with histological
images. XFuse assumes the gene expression and histological image
share an underlying latent state. The conditional distribution of the
gene expression and the histological image given the latent state
are negative binomial and Gaussian, respectively. The parameters
of these conditional distributions are mapped from the latent state
through a neural generator network. XFuse utilizes variational
inference to approximate the joint posterior distribution. The
underlying tractable distribution parameters are encoded by a con-
volutional recognition network. The generator and recognition net-
works form an U-Net-like structure [82].

The latent tissue state is modeled over multiple resolutions to
efficiently capture the spatial gene expression of the tissue. XFuse
can enhance the resolution of spatial gene expression up to the res-
olution of the integrated histological image and impute spatial
gene expression at missing spots. The authors applied XFuse to
mouse olfactory bulb datasets and human breast cancer datasets
[22] and found that inferred gene expression closely matched the
ground truth reference and revealed detailed anatomical structures
in both datasets.

DeepSpaCE [83] is a semi-supervised learning method that
imputes spatial gene expression from H&E images and enhances
the resolution of ST data using convolutional neural networks.
H&E images are split into sub-images of each spatial spot. Pairs
of spot images are forwarded through a deep convolutional neural
network with sixteen weight layers, adapted from the VGG16
architecture [84], a very deep convolutional neural network model
for image recognition. The output of the VGG16 network predicts
either the gene expression or the gene cluster type of the corre-
sponding spot. The authors applied DeepSpaCE to the human
breast cancer data by Visium [2] and showed that DeepSpaCE could
predict gene expression on missing spatial spots, create super-
resolution, and impute expression levels over the entire tissue
sections.

DEEPsc [85] uses a deep learning framework to transfer the spa-
tial information from an ST assay onto a scRNA-seq dataset assayed
from the same tissue. For each cell in the scRNA-seq data and each
of the spatial spots in the ST data, a score (ranging between 0 and 1)
is calculated, proportional to the probability that the cell belongs to
a particular spot. To this end, a fully connected neural network is
trained, which takes inputs from two vectors of equal length: one
corresponding to the dimensionally reduced gene expression val-
ues of a given cell and one corresponding to the ‘‘features” of each
spatial spot. The said ‘‘features” are defined as the gene expression
values of the spots in the spatial transcriptomic data, reduced to the
same dimensions as the scRNA-seq data. The neural networkmodel
then predicts the spatial location of the cell from the scRNA-seq
data by computing matching likelihood between the single-cell
and spatial feature vectors. DEEPsc showed robust accuracy on
scRNA-seq datasets across diverse biological systems compared to
other tools such as Seurat [86] and DistMap [87].

stPlus [88] is a reference-based autoencoder model for enhanc-
ing ST data. stPlus takes both ST data and reference scRNA-Seq data
as input. stPlus consists of three steps. First, the top 2000 highly
variable genes from the scRNA-Seq dataset are selected as genes
set U. The set of overlapping genes present in both the ST dataset
and the scRNA-Seq dataset are denoted as gene set S. The subset
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of gene set U in the ST data is augmented with zeros, merged with
the subset of gene sets U and S and shuffled over cells. Second,
stPlus feeds the preprocessed data into an autoencoder to learn
the joint cell embeddings of ST and scRNA-Seq data. The autoen-
coder is trained via optimizing a two-part loss function, which con-
sists of reconstruction loss for the subset of shared gene set S in the
ST data and the sparsity penalized loss of the reconstruction of the
subset of gene set U in the scRNA-Seq data. Finally, stPlus predicts
spatial gene expression through a weighted k-NN approach based
on the embeddings learned by the autoencoder. Real data analysis
on osmFISH [89], merFISH [90], and STARmap [7] datasets showed
that the predicted spatial gene expression by stPlus helped to
reduce technical noise and achieved improved cell type clustering
compared to other methods such as SpaGE [91], Seurat [65], Liger
[92], and gimVI [93]. However, an independent benchmark study
[64] showed that stPlus had low accuracy in predicting spatial gene
expression compared to Tangram [59], gimVI [93], SpaGE [91], Seu-
rat [65], SpaOTsc [94], novoSpaRc [95], and LIGER [92]. Therefore,
the overall performance of stPlus requires further examination.

7. Concluding remarks

Many novel computational methods have been developed to
tackle the challenges in computational ST. This survey covered
the advances in artificial intelligence for different aspects of ST
analysis, including selecting SVGs, clustering analysis of spots or
genes, communication analysis, cell type deconvolution, and
enhancement of spatial gene expression. Of the available methods,
deep learning based on neural networks are the dominant type.
The flexible architecture of neural networks makes them naturally
desirable candidates for building sophisticated models to analyze
ST data. As the field of spatial omics continues to develop, compu-
tational ST analysis calls for more pipeline methods that can per-
form multiple analysis tasks and have the flexibility for
integrative analysis with other data types, such as scRNA-Seq,
H&E images, and single-cell multi-omics data [96]. Given the pace
of these methods’ development, a benchmarking effort is usually
lacking or very limited. Thus more comprehensive comparison
studies are also needed to provide researchers with valuable guide-
lines for choosing appropriate analysis methods for various ST
technologies [97].
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