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Effects of Volitional Spine Stabilization
on Trunk Control During Asymmetric
Lifting Task in Patients With Recurrent
Low Back Pain

Ram Haddas, PhD1 , Yigal Samocha, MD2, and James Yang, PhD3

Abstract

Study Design: Prospective, concurrent-cohort study.

Objectives: To determine the effects of volitional preemptive abdominal contraction (VPAC) on trunk control during an
asymmetric lift in patients with recurrent low back pain (rLBP) and compare with matched controls.

Methods: Thirty-two rLBP patients and 37 healthy controls performed asymmetric lifting with and without VPAC. Trunk, pelvis,
and hip biomechanical along with neuromuscular activity parameters were obtained using 3-dimensional motion capture and
electromyography system. Hypotheses were tested using analysis of variance.

Results: The VPAC resulted in significantly reduced muscle activity across all trunk extensor muscles in both groups (M + SD,
6.4% + 8.2% of maximum contraction; P� .005), and reduced trunk side flexion (1.4�+ 5.1� smaller; P� .005) and hip abduction
(8.1�+ 21.1� smaller; P � .003). rLBP patients exhibited reduced muscle activity in external oblique (12.3% + 5.5% of maximum
contraction; P � .012), as well as decreased hip flexion (4.7�, P � .008) and hip abduction (5.2�, P � .001) at the final position of
lifting in comparison with healthy controls.

Conclusions: The results of this study defend the recommendation that the use of a VPAC increase spine stability during an
asymmetrical loading task. Our results provide an indication that a VPAC strategy that is achieved during an asymmetric lifting
decreases exposure for lumbar spine injury and instability. Spine care providers and ergonomists can use this information when
designing neuromuscular control training programs, both for healthy individuals aimed at prevention of injury, as well as those
with a history of rLBP, aimed at full functional recovery and protection from future injury.
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Introduction

Low back pain (LBP) is the main cause of disability worldwide

with 540 million individuals experiencing unilateral or bilateral

symptoms between T12 and the mid-thigh for one or more

episode over their life span.1 LBP occurs across all ages, is

highly linked to disability, and represents a serious burden on

health care providers.2 The etiology of LBP is often multifa-

ceted and is typically hard to link to specific, individual pathol-

ogies. Potential nociceptive contributors to LBP may include

the intervertebral disc, facet joints, vertebral endplates, the

vertebral ligaments, tendons, and muscle pain.3,4 Deficiencies

in low back musculature size, integrity, and motor coordination

have also been linked to LBP.5-9 Persistent LBP has been

linked to core trunk and low back muscle weakening, which

can result in motor control deficiencies and asymmetries.10-12

Over time, these imbalances can affect patients abilities to

stand, walk, lifting, and or prolonged periods of sitting or stand-

ing naturally, and in turn, may become a self-perpetuating
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driver of LBP itself.12-17 Biomechanical research suggests that

patients with recurrent LBP (rLBP) lack adequate spinal stabi-

lizing contractions and may also demonstrate impaired postural

control, delayed muscle reflex latencies, and abnormalities in

trunk muscle recruitment patterns.18,19

Asymmetric lifting is a known risk factor for low back dis-

orders,15-17,20 and such repeated loading places the patients at a

higher risk for injuries to the lumbar spine and lower extre-

mity.21 Often, patients are required to manage materials while

performing lifting tasks in restricted areas in various body

positions.21-24 Such common lifting scenarios are encountered

repeatedly in healthcare,25,26 farm animal management,27 phy-

sically heavy and monotonous work,28 and performing arts.29 A

typically slouched posture during lifting sequences is often

accentuated when returning to an upright position with the

load,30 which increases the compressive forces between the

lumbar vertebrae.31 Moreover, the shear forces on the lumbar

intervertebral discs are increased when lifting from that

slouched position.31 All too often, vocational lifting is asym-

metric,15,32 which is associated with decreased trunk strength, a

reduction in the maximum acceptable weight of the lift, and

more complex trunk motion.15,22,32 Normal lumbar spinal seg-

ments in individuals without LBP appear to be tolerant of a

700- and1000-N shear force during repetitive versus occasional

shear exposures, respectively.14 However, repeated lifting in a

slouched posture increases those shear forces during manually

demanding activities, especially when the patient has a history

of LBP.22,27 Patients with LBP reportedly use naturally differ-

ent lifting techniques to prevent pain exacerbation and dam-

aged lumbar tissue overloading.17

Several spine exercise protocols for LBP have been pro-

posed with conflict in outcomes.33-36 The abdominal bracing

maneuver is one form of volitional preemptive abdominal con-

traction (VPAC) that produces activity in both the abdominal

and spine muscles.37,38 The VPAC is commonly employed to

improve lumbar spine stabilization and reduce pelvic motion in

patients with spinal dysfunction.21,39,40 Moreover, the VPAC

induces deeper abdominal muscle activity, which works to

stabilize the spine.41,42 This trunk muscle recruitment is nec-

essary in order to control trunk momentum and increase intra-

abdominal pressure, which can improve spine stabilization.43,44

The VPAC can serve as a protective measure during extremity

movement.21,42 This stabilization strategy can help prevent

back injury or, in the event of existing LBP, can contribute

to rehabilitation.38 It has been previously investigated during

landing and lifting maneuvers, with conflicting results regard-

ing trunk control and the ability to reduce injury risk.21,39,40,45

The effect of spine stabilization on patients with rLBP is well

documented.39,40,43 rLBP and asymmetric lifting have both

been established in the literature as significant predictors for

a low back disorder.15,39 However, there is limited literature on

whether spine stabilization strategies can increase spine stabi-

lity and trunk control and decrease the risk of injury during

asymmetric lifting in patients with rLBP. Therefore, the pur-

pose of this study was to determine the effects of VPAC and

rLBP on trunk mechanics and neuromuscular control during an

asymmetrical 1-m box-lift task. Our findings can further the

understanding of the complex interactions between spine sta-

bility, the lifting response, and the risk of development and

recurrence of LBP.

Methods

Design

In this controlled laboratory study, a mixed 2-factor design was

used to determine the effects of rLBP (rLBP vs healthy control)

and abdominal contraction condition (VPAC vs no VPAC) on

neuromuscular control and 3-dimensional (3D) spine and pel-

vis joint kinematics in a group of patients with rLBP compared

with a group of healthy individuals during asymmetric lifting.

The within-subjects factors were abdominal contraction condi-

tion, and the independent factor was a subject group. The sam-

ple size needed in this study to approach 80% statistical power

was estimated from the data of previous literature that exam-

ined lifting.24,40 A large effect size index of f ¼ 0.40 was

estimated. With the desired power of 80% (1 � b ¼ 0.80) and

desired a ¼ 0.05, this effect size index would require a mini-

mum sample size of 26 per group.46

Subjects

All participants read and signed an informed consent form

approved by the institutional review board for the protection

of human subjects at the affiliated university. The study was

approved by the Institutional Review Board for the Protection

of Human Subjects at Texas Tech University (IRB#:504 051).

Thirty-seven healthy individuals and 32 rLBP patients partici-

pated in the study (Table 1). All subjects were between the ages

of 18 and 35 years. Volunteers were excluded if they had a

history of knee pain, surgery to the knee or lumbar spine, active

abdominal or gastrointestinal conditions, body mass index

>30 kg/m2 or pregnancy, all documented by self-report. An

additional inclusion criterion for the rLBP group was a history

of rLBP that was intermittent, unilateral or bilateral symptoms

between T12 and the mid-thigh. Subjects were to have experi-

enced these symptoms for one or more episode over the previ-

ous 18 months. Subjects were to have experienced one or more

Table 1. Anthropometrics Data.

rLBP (n ¼ 32) Healthy (n ¼ 37)

Age (years) 21.61 + 2.15 20.38 + 4.22
Mass (kg) 75.25 + 10.28 68.78 + 9.91
Height (m) 1.76 + 0.07 1.71 + 0.07
BMI (kg/m2) 23.62 + 5.08 23.13 + 4.50
Box mass (kg) 13.16 + 3.78 13.48 + 3.26
Same day low back paina,b 1.97 + 0.89 0.03 + 0.31
Last week average low back paina,b 3.88 + 1.51 0.06 + 0.25
Last week worst low back paina,b 4.80 + 1.87 0.07 + 0.52

Abbreviations: rLBP, recurrent low back pain; BMI, body mass index.
aVisual analogue scale from least to worst (1-10).
bSignificant group difference (P < .05).
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of the following: (1) a severity sufficient to require medical or

allied health intervention and/or (2) a severity sufficient to

impair the subject’s ability to perform their normal activities

of daily living. At the time of testing, subjects were to be in a

period of remission from their LBP symptoms.47

Data Collection Procedures

Subjects filled out a visual analog scale pain to indicate if they

were experiencing any LBP (Table 1). The subjects were taught

how to perform the VPAC when they were instructed to place

their first webspace of each hand over the respective iliac crest.

Once placed, the subject was then asked to “make their lower

trunk wider” while continuing with diaphragmatic respira-

tion.18 The subjects were then taught how to perform the pro-

tocol of asymmetric lifting to the right. Lifting technique was

based on the discretion of the individual and the subject’s box

weight was determined by their maximum psychophysically

acceptable weight (Table 1).21,22 Participants performed 3

weighted box (0.65 m long, 0.35 m wide, and 0.15 m high)

lifting trials with VPAC and 3 trials without VPAC to a 1 m

high table in right side directions (Figures 1 and 2). The VPAC

condition was presented in random order.

Electromyography (EMG) data from the right external obli-

que (EO), erector spinae (ES), and multifidus (Mf) at the fifth

lumbar (L5) spinal level, and gluteus maximus (GM) 48 were

measured using preamplified surface electrodes (Delsys Inc,

Boston, MA) at 2000 Hz. The EMG sensor signal bandwidth

was 20 to 450 Hz with a 3 mV peak-to-peak baseline noise. The

overall channel noise was less than 0.75 mV with a common-

mode rejection ratio of less than 80 dB. Each EMG sensor had

4 contacts with 5 mm by 1 mm dimensions and each contact

was made of 99.9% silver. The skin was cleaned with alcohol,

shaved as necessary, and then lightly abraded to reduce

impedance. Subjects then performed maximum voluntary con-

traction (MVC) tests for all muscles listed above. The MVC

outcomes were used later to normalize subjects’ muscle activ-

ity during the lifting maneuver. EMG data, kinematic data and

ground reaction force data were collected with each lifting trial.

Forty-seven reflective markers (0.9 cm diameter) were

incorporated in order to collect 3D kinematics (VICON Nexus

1.7.1, Denver, CO) of the lower extremity and trunk at a sam-

pling rate of 100 Hz (Figure 1). Raw 3D coordinates were

smoothed using a fourth-order no-phase-shift Butterworth

low-pass digital filter with a cutoff set to 6 Hz prior to export

for further analysis. A static trial was then collected to note

marker placement. Ground reaction forces (GRFs) were mea-

sured at 2000 Hz using 2 parallel force plates positioned side by

side (AMTI, Watertown, MA).

Data Reduction

Dependent variables included 3D trunk, pelvic, and hip joint

angle, and EMG linear envelop magnitude for lower extremity

and trunk muscles. Kinematics and linear envelop variables

were analyzed at 2 times at initial position—0.05 seconds after

lifting was initiated (Figure 1) and again at final position–0.05

seconds before the subject placed the box on the table

(Figure 2). Those times were chosen since the body is at a

mechanical disadvantage for lifting at the initial position, and

the load is far from the body center of mass which creates a

substantial moment across the trunk at the final position. All

raw data was exported from the Vicon Nexus system and

imported into a custom Matlab program (Mathworks Inc,

v7.10.0, Natick, MA) and Visual3D for processing.

Statistical Analyses

A 2 (group) � 2 (abdominal contraction) crossover mixed

design analysis of variance (ANOVA) procedure (SPSS, Ver-

sion 21.0; IBM, Inc, Armonk, NY) was used to determine the

effects of VPAC on the selected kinematic and EMG variables

during 1-m asymmetric lifting in a rLBP patients group com-

pared to a healthy comparison group. The VPAC condition

(with or without activation) was within-subjects factors and

subject group (rLBP or healthy) was a between-subjects factor.

Interaction was assessed first for each 2-factor ANOVA, fol-

lowed by main effects, as appropriate. Significant interaction

effects were further evaluated by examining simple (pairwise)

effects. In addition, 1-way ANOVA was used to compare group

anthropometric and pain data.

Results

In rLBP patients, as well as healthy controls, the performance

of the VPAC altered joint kinematics and muscle activity dur-

ing an asymmetric lift. There were no statistically significant

differences between the rLBP patients and healthy controls

with regard to age, height, weight, body mass index, and box

Figure 1. Initial position of 1-m asymmetric lifting.
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weight (Table 1). As expected, there were statistically signifi-

cant differences in pain level between the groups (Table 1).

Interaction Between Volitional Preemptive Abdominal
Contraction and Groups

Tables 2 and 3 provide a summary of kinematics variables

for each condition and group during the asymmetric lifting.

Figures 3 and 4 provide a summary of neuromuscular activity

parameters variables for each condition and group during the

asymmetric lifting. Mf muscle activity in the initial position of

the lifting exhibited a significant 2-way interaction effect in an

asymmetric lifting (P ¼ .011), when VPAC increase Mf activ-

ity in rLBP and decrease in healthy compare to the no-VPAC

condition. Moreover, ES muscle activity (P ¼ .047) and pelvis

obliquity angle (P ¼ .044) in the final position of the lifting

exhibited a significant 2-way interaction effect in an asym-

metric lifting as well.

Effects of Volitional Preemptive Abdominal Contraction

The VPAC altered trunk extensor muscle activity during the

1-m asymmetric lifting. Trunk muscle activity found to reduce

with the performance of VPAC in ES (80.11% + 9.00% of

MVC without VPAC; 74.16% + 9.38% of MVC with VPAC;

P¼ .005) at the initial position of lifting, and in Mf (91.61% +
7.07% of MVC without VPAC; 84.77% + 7.66% of MVC

with VPAC; P ¼ .003) at the final position of lifting when data

were collapsed across groups condition. Unsurprisingly, VPAC

increased muscle activity in the EO (84.03% + 6.79% of MVC

without VPAC; 90.60% + 4.30% of MVC with VPAC; P ¼
.001) at the initial position of lifting when data was collapsed

across groups condition. Volitional preemptive abdominal con-

traction had a little kinematic effect on the trunk and hip during

asymmetric lifting. The VPAC significantly decreased trunk

side flexion angle (�2.46� + 4.73� without VPAC; �1.02�

+ 5.47� with VPAC; P ¼ .005), and hip abduction angle

(29.60� + 19.27� without VPAC; 21.54� + 23.11� with

VPAC; P ¼ .003) at the initial position of lifting when data

was collapsed across groups condition.

Recurrent Low Back Pain Versus Healthy Control

The rLBP group exhibited reduced EO and GM muscle

activity compared with the healthy group. Recurrent LBP

patients demonstrated reduced muscle activity in EO

Figure 2. Final position of 1-m asymmetric lifting.
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(92.94% + 5.58% of MVC in healthy; 80.60% + 5.49% of

MVC in rLBP; P ¼ .012) at the initial position of the lifting,

when data was collapsed across core muscle activation condi-

tion. Furthermore, rLBP patients appeared to lift with smaller

GM muscle activity at the initial position of lifting (P ¼ .047).

The healthy and rLBP groups exhibited minimal differences

in hip kinematics during asymmetric lifting. The rLBP

exhibited greater hip flexion angle (18.38� + 7.53� in

Figure 4. Electromyography variables during final position in asymmetric 1-m lifting. EO, external oblique; ES, erector spinae; Mf, multifidus;
GM, gluteus maximus; MVC, maximum voluntary contraction; VPAC, volitional preemptive abdominal contraction; rLBP, recurrent low back
pain. *Two-way interaction (P < .05). þVPAC main effect (P < .05). ^Group main effect (P < .05).

Figure 3. Electromyography variables during initial position in asymmetric 1-m lifting. EO, external oblique; ES, erector spinae, Mf, multifidus;
GM, gluteus maximus; MVC, maximum voluntary contraction; VPAC, volitional preemptive abdominal contraction; rLPB, recurrent low back
pain. *Two-way interaction (P < .05). þVPAC main effect (P < .05). ^Group main effect (P < .05).

1010 Global Spine Journal 10(8)



healthy;23.13� + 8.44� in rLBP; P ¼ .008), and smaller hip

abduction angle (2.34� + 6.10� in healthy;-2.90� + 6.95� in

rLBP; P ¼ 0.001) at final position of lifting, when data was

collapsed across core muscle activation condition.

Discussion

The purpose of this study was to determine the influence of

VPAC and rLBP on trunk mechanics, as well as neuromuscular

control, during an asymmetrical 1-m box-lift task. Our findings

demonstrated that patients with rLBP exhibit differences in

trunk neuromuscular control and spine kinematic during 1-m

asymmetric lift. The rLBP group exhibited lesser EO and GM

muscle activity and an increase in hip flexion angle and a

decrease in hip abduction angle at the final position (Tables 2

and 3). The VPAC resulted in reduced Mf and ES muscle

activity and increase in EO muscle activity, in both rLBP and

healthy groups, and had minimal effects on pelvis and trunk

kinematics during an asymmetrical lift (Tables 2 and 3).

Recurrent LBP patients have diminished trunk49 and lower

extremity strength, flexibility, and range of motion,22,39,50 as

well as altered neuromuscular control.22,39,51 These patients

presented with reduced activity in the EO and GM and

increased activity in Mf in both initial and final position of

lifting in comparison to healthy control. Laird et al49 reviewed

43 studies on the lumbopelvic kinematics in LBP patients and

found that these patients have reduced lumbar range of motion,

move more slowly, and have reduced proprioception compared

with people without LBP. Our study found that hip flexion and

adduction were found to be higher at the final position of lifting

in patients with rLBP, which can be explained by reduced GM

muscle activity and by a different lifting style for people with

rLBP in comparison with healthy subjects.22

Predictably, the VPAC altered trunk neuromuscular control

and kinematic during 1-m asymmetric lifting. As reported by

Haddas and his group, trunk muscle function is altered in LBP

sufferers.21,22,39,52 Based on this study outcome, patients with

rLBP may not be able to produce sufficient pelvic stability in

order to provide a firm base for the trunk motion and control.

The VPAC showed a significant effect on Mf and ES muscle

activity in rLBP patients. Moreover, the VPAC causes a greater

trunk side flexion angle in the final position of lifting which can

be explained by the increased activity of the abdominal mus-

cles and prepare for the asymmetric lifting. Furthermore,

VPAC results in more hip adduction, which may potentially

increase pelvic stability which is supported by previous studies.

Increase in pelvis stability found to highly correlated with

increased spine stability.39,44 As part of a broad neuromuscular

control training program, VPAC should be incorporated as a

validated method for reducing injury in healthy individuals and

those with rLBP.

As supported by ultrasound study, Nagar et al40 also found

increases in abdominal muscle activity during lifting. Our

results agree with those of Nagar et al by virtue of the increased

EO activity with the use of VPAC, which actively increases

spine stability. A VPAC strategy using an abdominal bracing T
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maneuver produces a global trunk muscle contraction, which

includes the external and internal oblique muscles.38 Oh

et al44 found that activation of the abdominal muscles signif-

icantly decreases the activity of the lumbar erector spinae

muscles. Again, our results support this finding, VPAC

reduced ES and Mf activity, which may potentially promote

a reduction in the trunk flexion moment. Reduced lumbar

spine extensor muscle activity could implement a more effi-

cient lift. Increasing spine stability and alignment using

VPAC may reduce trunk flexion load and reduce the need for

the lumbar extensor muscles activity.

Although subjects in this study were trained on lifting tech-

niques they were not assisted or guided in any way, and the

subject’s box weight was determined by their maximum psy-

chophysically acceptable weight. Our analysis focuses only on

the subject’s right side, thus assuming symmetry between

sides. Our data demonstrates large intersubject variability,

therefore uncertainty around our estimates is a limitation that

raises the risk of chance findings. Additionally, we acknowl-

edge the limitations associated with the use of skin markers that

may move during the lifting trials, as well as a potential system

tracking error and data smoothing procedure error.

Conclusion

The results of this study defend the recommendation that the

use of a VPAC increase spine stability during an asymmetrical

loading task. Our results provide an indication that a VPAC

strategy that is achieved during an asymmetric lifting decreases

exposure for lumbar spine injury and instability. Spine care

providers and ergonomists can use this information when

designing neuromuscular control training programs, both for

healthy individuals aimed at prevention of injury, as well as

those with a history of rLBP, aimed at full functional recovery

and protection from future injury. Such programs should focus

on VPAC and other specific proven core muscle activation

techniques in order to improve lower extremity and spine con-

trol and stability thus potentially decrease injury risk.
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